next up previous
Next: About this document ...

Solution for Example 5 (using Thevenin's theorem)

Remove $R$ as the load, model the rest of the circuit as a non-ideal Thevenin model in terms of $R_T$ and $V_T$. To find $R_T$, we short $V$ and find:

\begin{displaymath}
R_T=R_1\vert\vert(R_3+R_2\vert\vert R_5)=6\vert\vert(3+2\vert\vert 2)=6\vert\vert 4=2.4\,\Omega
\end{displaymath} (1)

To find $V_T$, we first find $V_5$ across $R_5$:
\begin{displaymath}
V_5=V\frac{R_5}{R_5+R_2\vert\vert(R_1+R_3)}=5 \frac{2}{2+2\vert\vert 9}=2.75\,V
\end{displaymath} (2)

$V_2$ across $R_2$:
\begin{displaymath}
V_5=V\frac{R_2\vert\vert(R_1+R_3)}{R_5+R_2\vert\vert(R_1+R_3)}=5 \frac{2}{2+2\vert\vert 9}=2.25\,V
\end{displaymath} (3)

$V_3$ across $R_3$:
\begin{displaymath}
V_3=V_2\frac{R_3}{R_1+R_3}=2.25\frac{3}{3+6}=0.75
\end{displaymath} (4)

Now we get $V_T=V_3+V_5=3.5$. To get $R$ so that the current through it is $I=0.5$, we solve the equation based on the Thevenin model
\begin{displaymath}
\frac{V_T}{R_T+R}=\frac{3.5}{2.4+R}=0.5
\end{displaymath} (5)

and get $R=4.6\,\Omega$.

Solution for Example 6




next up previous
Next: About this document ...
Ruye Wang 2019-09-26