Twin-T Active Filter

TwinT.png

As these two $\pi$-networks are combined in parallel, they form a single $\pi$-network with three branches $Z_1=Z'_1\vert\vert Z''_1$, $Z_2=Z'_2\vert\vert Z''_2$, and $Z_3=Z'_3\vert\vert Z''_3$:

  $\displaystyle Z_1=Z'_1\vert\vert Z''_1=Z_2=Z'_2\vert\vert Z''_2=\frac{1}{2}\left(R+\frac{1}{j\omega C}\right)
$ (7)
  $\displaystyle Z_3=Z'_3\vert\vert Z''_3=\frac{Z'_3 Z''_3}{Z'_3+Z''_3}
=\frac{2R(1+j\omega RC)}{1+(j\omega RC)^2}
$ (8)
The frequency response function of this $\pi$-network (a voltage divider) is:
$\displaystyle H(j\omega)$ $\textstyle =$ $\displaystyle \frac{Z_2}{Z_2+Z_3}=\frac{R+1/j\omega C}
{R+1/j\omega C+4R(1+j\omega RC)/(1+(j\omega RC)^2)}$  
  $\textstyle =$ $\displaystyle \frac{(1+j\omega RC)/j\omega C}{(1+j\omega RC)/j\omega C+4R(1+j\omega RC)/(1+(j\omega RC)^2)}$  
  $\textstyle =$ $\displaystyle \frac{1/j\omega C}{1/j\omega C+4R/(1+(j\omega RC)^2)}
=\frac{1}{1+4j\omega RC/(1+(j\omega RC)^2)}$  
  $\textstyle =$ $\displaystyle \frac{1+(j\omega\tau)^2}{1+(j\omega\tau)^2+4j\omega\tau}
=\frac{(j\omega)^2+(1/\tau)^2}{(j\omega)^2+4j\omega/\tau+(1/\tau)^2}$  

Alternatively, we apply KCL at the middle points of the RCR and CRC networks with $v_a$ and $v_b$:

  $\displaystyle \frac{v_{in}-v_a}{R}+\frac{v_{out}-v_a}{R}=\frac{v_a}{1/j\omega 2...
...\frac{v_{in}-v_b}{1/j\omega C}+\frac{v_{out}-v_b}{1/j\omega C}=\frac{v_b}{R/2}
$ (9)
Solving for $v_a$ and $v_b$, we get
  $\displaystyle v_a=\frac{v_{in}+v_{out}}{2(1+j\omega\tau)},\;\;\;\;\;\;\;
v_b=\frac{(v_{in}+v_{out})j\omega\tau}{2(1+j\omega\tau)}
$ (10)
Also, apply KCL to the output to get
  $\displaystyle \frac{v_{out}-v_a}{R}+\frac{v_{out}-v_b}{1/j\omega C}=0,\;\;\;\;\;\;
v_{out}=\frac{v_a+j\omega\tau v_b}{1+j\omega\tau}
$ (11)
Substituting $v_a$ and $v_b$ into this equation we get:
  $\displaystyle v_{out}=\frac{v_{in}(1+j\omega\tau)+v_{out}(1-(\omega\tau)^2)}{2(1+j\omega\tau)^2}
$ (12)
Solving this for $v_{out}$
  $\displaystyle H(j\omega)=\frac{v_{out}}{v_{in}}=\frac{1+(j\omega\tau)^2}{1+4j\o...
...au)^2}
=\frac{(j\omega)^2+\omega_n^2}{(j\omega)^2+4j\omega\omega_n+\omega_n^2}
$ (13)
where $\omega_n=1/\tau=1/RC$.

Active twin-T filter

  $\displaystyle v_1=\frac{R_5}{R_4+R_5}v_{out}=\alpha v_{out}
$ (14)
where $\alpha=R_5/(R_4+R_5)$, i.e., $1-\alpha=R_4/(R_4+R_5)$.

  $\displaystyle \frac{v_{in}-v_a}{R}+\frac{v_{out}-v_a}{R}=\frac{v_a-v_1}{1/j\ome...
...c{v_{in}-v_b}{1/j\omega C}+\frac{v_{out}-v_b}{1/j\omega C}=\frac{v_b-v_1}{R/2}
$ (15)
Solving these for $v_a$ and $v_b$, we get
  $\displaystyle v_a=\frac{v_{in}+(1+2\alpha j\omega\tau)v_{out}}{2(1+j\omega\tau)...
...;
v_b=\frac{j\omega\tau v_{in}+(j\omega\tau+2\alpha)v_{out}}{2(1+j\omega\tau)}
$ (16)
Substituting these into the expression for $v_{out}$, we get
  $\displaystyle v_{out}=\frac{v_{in}+v_{out}(1+2\alpha j\omege\tau)
+(j\omega\tau)^2v_{in}+j\omega\tau(j\omega\tau+2\alpha)v_{out}}{2(1+j\omega\tau)^2}
$ (17)

$\displaystyle H(j\omega)$ $\textstyle =$ $\displaystyle \frac{v_{out}}{v_{in}}=\frac{1+(j\omega\tau)^2}{1+4j\omega\tau(1-\alpha)+(j\omega\tau)^2}$  
  $\textstyle =$ $\displaystyle \frac{1+(j\omega\tau)^2}{1+4j\omega\tau R_4/(R_4+R_5)+(j\omega\ta...
...=\frac{\omega_n^2-\omega^2}{\omega_n^2+4j\omega\omega_n R_4/(R_4+R_5)-\omega^2}$