next up previous
Next: About this document ... Up: averagevalue Previous: Average Value of Sinusoids

The Effective or RMS Value of Sinusoids

The effective value of a time-varying current $i(t)$ or voltage is the constant value of current $I_{rms}$ or voltage $V_{rms}$ that in period $T$ would transfer the same amount of energy:

$\displaystyle W=\int_0^T p(t) dt$ $\textstyle =$ $\displaystyle R\int_0^T i^2(t) dt
=R I^2_{rms}T$  
  $\textstyle =$ $\displaystyle \frac{1}{R}\int_0^T v^2(t) dt=\frac{1}{R}V^2_{rms}T$  

i.e.,

\begin{displaymath}
I_{rms}=\sqrt{\frac{1}{T}\int_0^T i^2(t) dt},\;\;\;\;\;\;\;\...
...{or}\;\;\;\;\;\;
V_{rms}=\sqrt{\frac{1}{T}\int_0^T v^2(t) dt}
\end{displaymath}

As $I_{rms}$ or $V_{rms}$ is the ``square root of the mean of the squared value'', it is also called the root-mean-square (rms) current or voltage.

For a sinusoidal variable $i(t)=\cos(\omega t)$, we have

\begin{displaymath}
I^2_{rms} = \frac{1}{T}\int_0^T i^2(t) dt
= \frac{1}{T}\int_...
...dt
= \frac{1}{2T}\int_0^T [1+\cos(4\pi t/T)]\; dt=\frac{1}{2}
\end{displaymath}

(Recall trigonometric identity: $\cos^2\alpha=[1+\cos(2\alpha)]/2$.) Similarly, we also have

\begin{displaymath}
V_{rms}=\frac{1}{\sqrt{2}}=0.707
\end{displaymath}



Ruye Wang 2016-01-17