next up previous
Next: The Structure and Purpose Up: bp Previous: The Gradient Descent Method

The Learning Law

Every time a particular pattern pair $(X_p, Y_p)$ is presented at the input layer, all the weights are modified in the following manner.

Summary of Back Propagation Training

The following is for one training pattern pair $\{X_p, Y_p\}$.

  1. Apply $X_p=(x_{p1}, x_{p2}, ... , x_{pn})^t$ to the input nodes;

  2. Compute net input to hidden nodes

    \begin{displaymath}
net_{pj}=\sum_{k=1}^{n} w_{jk}^{h} x_{pk}+T_j
\end{displaymath}

  3. Compute output from hidden nodes

    \begin{displaymath}
z_{pj}=f(net_{pj})
\end{displaymath}

  4. Compute net input to output nodes

    \begin{displaymath}
net_{pi}=\sum_{j=1}^{l} w_{ij}^{o} z_{pj} + T_i
\end{displaymath}

  5. Compute output from output nodes

    \begin{displaymath}
y'_{pi}=f(net_{pi})
\end{displaymath}

  6. Find error terms for all output nodes (not quite the same as defined previously)

    \begin{displaymath}
\delta_{pi}^{o}=f'(net_{pi}) (y_{pi}-y'_{pi}) \;\;\;(i=1,...,m)
\end{displaymath}

    where $Y_p=(y_{p1},y_{p2},...,y_{pm})^t$ is the desired output for $X_p$.
  7. Find error terms for all hidden nodes (not quite the same as defined previously)

    \begin{displaymath}
\delta_{pj}^{h}=f'(net_{pj}) \sum_{i=1}^{m} \delta_{pi}^{o} w_{ij}^o
\;\;\;(j=1,...,l)
\end{displaymath}

  8. Update weights to output nodes

    \begin{displaymath}
w_{ij}^o \leftarrow w_{ij}^o+\eta \delta_{pi}^o z_{pj}
\end{displaymath}

  9. Update weights to hidden nodes

    \begin{displaymath}
w_{jk}^h \leftarrow w_{jk}^h+\eta \delta_{pj}^h x_{pk}
\end{displaymath}

  10. Compute

    \begin{displaymath}
E_p=\frac{1}{2}\sum_{i=1}^{m} (y_{pi}-y'_{pi})^2
\end{displaymath}

When this error is acceptably small for all of the training pattern pairs, training can be discontinued.

Competitive learning Network


next up previous
Next: The Structure and Purpose Up: bp Previous: The Gradient Descent Method
Ruye Wang 2002-12-09