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Abstract—This paper reports the discovery of certain self-
organized patterns that develop automatically and unexpectedly
during the training of a typical self-organizing map (SOM) ar-
tificial neural network. These highly structured patterns emerge
and evolve gradually from the random initial state of the
network as the training progresses. These patterns are web-like
and characterized by some linear features at different scales,
which tend to intersect at some common positions, and they
gradually form a highly organized hierarchical structure as the
network is continuously trained. The properties and variations
of these patterns are affected by the parameters used in the
training process. The specific mechanism of the formation of
such self-organized patterns is still mostly unknown and currently
under investigation. As a preliminary effort to understand the
phenomenon, this paper also speculates and hypothesizes the
possible mechanism of the phenomenon based on some qualitative
and heuristic studies.
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I. INTRODUCTION

A. Review of Competitive Learning of SOM Network

A Self-organizing map (SOM) is a classical artificial neural

network ([1], [2]) that is composed of an input layer of n
nodes and an output layer of m nodes organized in a 2-D

map (e.g.,
√
m×

√
m square grid), as shown in Fig. 1. Each

output node is fully connected to all n input nodes through n
weights, represented as an n-D vector w = [w1, · · · , wn]

T , and

produces an activation value w · x, each time an n-D sample

vector x = [x1, · · · , xn]
T is presented to the input layer. The

operation of a SOM is essentially a mapping from an n-D

vector space to a 2-D grid of m points. During training, the

spatial vicinity of the output nodes is maintained, i.e., output

nodes close to each other in the SOM respond to similar

input samples. The typical application of such a network is

to represent and visualize the potential cluster structure in an

n-D dataset by the output nodes in the SOM.

During the iterative training process of a SOM network, a

set of training samples (n-D vectors) is presented to the input

layer in random order, and the output nodes gradually learn

to respond selectively to different clusters in the dataset by

continuously modifying their weights, which are initialized

randomly. The steps of the competitive learning are listed

below.

1) Present one of the samples randomly selected from the

training data to the input of the network, calculate the

corresponding activation for each of the m output nodes

Fig. 1. The SOM network

yi = wi · x (i = 1, · · · ,m). If yj ≥ yi for all i =
1, · · · ,m, the jth node becomes the winner.

2) Modify the weights of the output nodes:

w
new
i = w

old
i + gijη(x−w

old
i ) (i = 1, · · · ,m) (1)

where gij = exp
(

−d2ij/σ
2
)

is a Gaussian weighting

function, which determines the amount of learning for

the ith node based on its distance dij to the winner

(assumed to be the jth node). Update both the learning

rate 0 < η < 1 and the width of the weighting function

σ so that they both decay exponentially over time from

their initial values.

3) Repeat the steps above until the iteration converges to

a steady state in which all output nodes have learned to

selectively respond to certain type of input patterns and

the feature map has stabilized.

Different from the typical winner-take-all competitive learn-

ing, where only the winning node gets to modify its weight

vector so that it moves closer to the current sample in the

n-D space, here in the training of the SOM neetwork, the

weight vectors of all output nodes are modified to different

extent together with that of the winner, with the amount of

learning reduced as the distance to the winner in the 2-D map

increases. As the result of such a learning algorithm, all nodes

in a local region of the SOM become specialized in responding

to a cluster of similar samples. When the training is complete,

the output nodes in the 2-D array are partitioned into a set of

locally homogeneous regions composed of nodes responsive

to a cluster of similar input samples, i.e., the output nodes

form a self-organized map.

An optional step in the learning process is the normalization

of all n-D training vectors, together with all weight vectors



after each training iteration. By doing so, all input and weight

vectors are of unit length, i.e, they are points on the surface

of the unit hyper-sphere in the n-D space.

B. The Competitive Learning of Colors

In the experiments reported here, the SOM network is

trained by a set of samples representing different colors. The

n=3 components of each sample vector [r, g, b] are for the

three primary colors of red, green, and blue, each taking one

of the L intensity values (i.e., r, g, b = 0, · · · , L − 1). The

total number of training samples is therefore L3. The SOM

can be visualized by color coding each output node according

to its n = 3 weights treated as the R, G, B components of

the color. Of course this color is also the favored color of the

node, as shown in Figure 2 (left). In the following this color

map is referred to as image A.

Moreover, when the network is trained, the training samples

can be presented to its input layer of the network one more

time to identify those output nodes that become the winners

for these training samples. These nodes are also color coded

by the input color they represent, while the rest output nodes

that never become the winner to any of the training samples

remain black, as shown in Fig. 2 (right). This color map is

referred to as image B. It is in this image some self-organized

patterns are observed. We will be mostly concentrating our

attention on image B in the discussion below.

Fig. 2. The color-coded SOM image A (left) and the color-coded winners
for the training samples image B (right)

II. SELF-ORGANIZED PATTERNS IN THE SOM

A. Discovery of the self-organized patterns

Fig. 3 shows a set of SOMs (image B) of different sizes

(
√
m ×

√
m), trained by different number of samples (L3).

The standard deviation (width) of the Gaussian function is

typically set to be about one third of the size of the square

SOM (σ =
√
m/3). It is seen that when the number of training

samples increases, some linear features, a central line with

narrow black strip on either side, start to emerge. Three such

linear features always intersect at the same point around the

central area of the SOM. Moreover, as the number of training

samples and the size of the SOM array become larger, more of

such linear features, but thinner and fainter, continue to emerge

and intersect to form more sophisticated and better organized

web-like patterns. These self-organized patterns have some

hierarchical structure composed of similar line intersections

of different scales, as shown in the lower-right panel of Fig.

3. A larger SOM image of size 400 is shown in Fig. 4.

Fig. 3. SOMs of sizes 402, 602, 802, 1002, 2002 (top down), trained
by 63 = 216, 83 = 512, 103 = 1, 000, 203 = 8, 000 and 403 = 16, 000
samples (left to right). Some self-organized patterns gradually emerge.

Fig. 4. SOMs of size 400× 400, trained by progressively higher number of
training samples: 63 = 216, 8

3
= 512, 10

3
= 1, 000, 20

3
= 8, 000 and

403 = 64, 000.



B. Emergence of self-organized patterns during training

The self-organized patterns gradually emerge and evolve in

image B of the SOM and they become progressively more

organized and developed in terms of the fine details and the

hierachical structures, as more training iterations are carried

out. Fig.5 shows image B after every one of the first 20

iterations. The random nature of the SOM is obvious in the

first few iterations following the random initialization of the

weights. However, as the training proceeds, some primitive

linear feature starts to emerge in the top-left region of the

SOM after 15 iterations, and some additional linear feature

starts to emerge in the lower-right region after 19 iterations.

Such patterns keep evolving to form three-line intersections

and the patterns become progressively more organized and

complicated with some finer detailed structures, as shown in

the subsequent B images in Fig. 6, after every 10 subsequent

training iterations.

Fig. 5. The B images after each of the first 20 training iterations

When the size of the SOM is further increased (e.g., 20002),

and the network is trained by a larger number of samples (e.g.,

1603) of different colors, the self-organized patterns become

highly structured with much more sophisticated details. In

particular, the hierarchical nature of the patterns becomes more

obvious, with as many as four visible hierarchical levels of

similar patterns.

C. The Self-organized Patterns affected by the weighting func-

tion

The width σ of the Gaussian weighting function affects the

number of homogeneious regions in the SOM. Fig. 7 shows

images B of two SOMs trained with σ =
√
m/3 and σ =√

m/8, respectively. Comparing these two images we see that

when σ is reduced, the SOM becomes less homogeneous, as it

is partitioned into a larger number of regions each composed

of fewer nodes responsive to a set of similar colors. Moreover,

the web-like patterns become less regular but richer in shape

variations.

Fig. 6. The B images after every 10 subsequent iterations (30, 40, · · ·, 220)

D. The Self-organized Patterns in 3-D SOM

When the dimension of the input vectors is increased from

N = 3 to N = 4, the patterns in the 2-D image B of the

SOM become less obvious than those trained by 3-D samples,

as shown in Fig. 8 (only the first three principal components

extracted from the four components are color coded as R, G,

and B). However, when the m output nodes are rearranged

as a cubic grid, a 3-D SOM, instead of a 2-D square grid,

some intersections formed by three linear features previously

observed in 2-D image B appear again, as shown in Fig. 9.

A few more examples for these self-organized patterns are

shown in the appendix.

In summary, whether or not the self-organized patterns will

form in image B of the SOM, and the specific natures of

the patterns when they do form, depend on the following

parameters used in the training process:

• The number of training samples L3 used in training (not

too low or too high).

• The number of output nodes m in the SOM (not too low).

• The number of training iterations.

• The width σ of the Gaussian weighting function.

III. MECHANISMS OF THE FORMATION OF SOM PATTERNS

To discover the mechanisms of the formation of the web-

like patterns, a sequence of the B images are obtained after

each iteration of the training process to see how the pattern

gradually emerge and evolve. The size of the SOM and the

number of the training samples are deliberately kept small,

so that the patterns in the B image are relatively simple and

therefore easy to study. As expected, initially both images

A and B are composed of nodes of random colors, due to

the random initialization of their weights. As the number

of training iterations increases, neighboring nodes gradually

learn by modifying their weights to selectively respond to

similar colors and form homogeneous regions represented by

the colors they are most responsive. Moreover, as the training



Fig. 7. SOMs trained with σ =
√
m/3 (left) and σ =

√
m/8 (right)

process further progresses, some line features start to emerge

in image B, and they grow longer and more regular to grad-

ually form an intersection around the center of the image, as

shown in the four images in Fig. 10. A much longer sequence

of such images can be viewed on the author’s web page at:

http://fourier.eng.hmc.edu/e161/lectures/SOM/node4.html

To explore the mechanisms of the formation of the web-like

patterns in the SOM, efforts are made to gain some insights

regarding how the patterns in the images gradually emerge,

develop, and become progressively more organized, and some

preliminary and qualitative explanations can be made as shown

Fig. 8. Image B of 2-D SOM of the output nodes trained on 4-d samples

Fig. 9. Image B of 3-D SOM of the output nodes trained on 4-d samples.
The cubic image B is viewed from six different vantage ponts to reveal the
self-organized patterns in 3-D space.

below.

• During training, when node n0 becomes the winner with

respect to a specific input of color C0, the weights of

n0 and its neighbors are modified in such a way that

they all get closer to the input, i.e., in the local region

around node n0, the color component C0 becomes ele-

vated. Consequently, due to the elevated C0 of all nodes,

another color C1 previously represented by node n1 in

the neighborhood around n0 will now be represented by

a different node n′

1
farther away from n0 than n1, whose

weights match most closely C1. In other words, the effect



Fig. 10. SOM patterns of four consecutive iterations in training. The white
dots in the A images (left) indicate the winner locations. In the B images
(right) some line features gradually emerge and develop.

of the elevation of certain color component in image A as

the result of the learning is that in image B those nodes

in the neighborhood representing some colors similar to

C0 are pushed away from n0.

• Assume two colors C1 and C2 were represented respec-

tively by nodes n1 and n2 in image B before the current

iteration, and n1 is closer to the winner n0 than n2.

After weight modification, C1 and C2 will now be best

matched and represented by two different nodes n′

1
and

n′

2
, both farther away from n0, due to the elevation of the

color component in the updated SOM. However, as n1 is

closer to n0 and therefore elevated more than n2, n′

1
best

matching C1 has to be farther away from n0 than n′

2
best

matching C2. In general, the nodes in image B will be

pushed farther away from the winner if they used to be

close to it, but less far away if they used to be farther

away from it. Because of this effect, all nodes around

the winner in the B image are pushed away in such a

way that their distances to the winner tend to become

more similar than before the iteration, i.e., they tend to

be aligned to form a curve along a contour line of the

Bell shape elevation around the winner. This effect is

illustrated in Fig. 11 (left).

Fig. 11. Formation of linear features (left) and their intersections (right)

• As most colors similar to the current input are represented

by the nodes in the neighborhood of n0, which are pushed

to different degrees to form a line, there will be no other

nodes in the immediate vicinity of the line, consequently

a black strip will appear along either side of the line.

• The linear features discussed above gradually form and

grow in length, while being pushed around repeatedly in

various directions depending on the winners’ locations,

which are randomly distributed in the SOM. As it is more

probable for the winners to be located away from the

central region of the SOM, the linear features tend to be

oriented along the radial directions of the center. In other

words, they gradually form longer curves all intersecting

at some point in the central region, as illustrated in Fig.

11 (right).

• As training progresses, the patterns formed by intersect-

ing linear features will be in progressively finer scales,

as the width σ of the Gaussian function decays exponen-

tially. When training is complete after a large number of

iterations, the overall patterns in the final SOM appear to

be hierarchically structured.

IV. SUMMARY AND FURTHER WORK

In summary, this paper reveals an interesting property of

the classical self-organizing map (SOM) previously unknown

to the artificial intelligence and neural network community.

Specifically some highly structured hierarchical patterns in two

or higher dimensional space may be spontaneously developed

during the regular competitive learning process. However, due

to the random and iterative nature of this process, to pin-

point the exact mechanism of the development of such patterns

may be difficult, before more in-depth investigation. To further

explore the phenomenon and understand the underneath mech-

anism, more experiments need to be carried out with varying

parameters, larger scales, and different dimensionalities. The

author welcomes joint efforts from all interested researchers.

Although it is not clear what potential applications, if any,

this property may have, it still has certain significance to

discover and understand such a property of this most popular

and widely used SOM neural network algorithm.
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V. APPENDIX: LARGE SCALE PATTERNS

Here the B images of a few large size SOM

are shown to show the detailed structures. For

better viewing effect, see the author’s webpage at:

http://fourier.eng.hmc.edu/e161/lectures/nn/node15.html

Fig. 12. Images A and B of a SOM with the width of the Gaussian weighting
function σ reduced to one tenth of the SOM size. The resulting image A looks
less homogeneous as now it is partitioned into a larger number of smaller
regions each composed of fewer nodes. In the corresponding B image the
web-like features become less regular and richer in shape variations. Also
note that there exist some line features that are across the boundaries between
some of the color regions.



Fig. 13. A SOM of size 2000 × 2000, trained on 160
3

= 4, 096, 000
colors. It can be seen that there exist many intersections formed by curves of
different scales, and they form some hierarchical web-like structures.



Fig. 14. A SOM of size 2000 × 2000, trained on 160
3

= 4, 096, 000
colors. It can be seen that there exist many intersections formed by curves of
different scales, and they form some hierarchical web-like structures.


