ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/2577260
Natural Gradient Descent for Training Multi-Layer Perceptrons

Article - January 1998

Source: CiteSeer

CITATIONS READS
18 304

3authors, including:

Howard H Yang _ Shun-ichi Amari
National Institutes of Health P\ G RIKEN

240 PUBLICATIONS 6,924 CITATIONS 564 PUBLICATIONS 34,909 CITATIONS

SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Information Geometry and Applications to Neuroimaging View project

roject State-space Ising model View project

All content following this page was uploaded by Howard H Yang on 27 September 2013.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/2577260_Natural_Gradient_Descent_for_Training_Multi-Layer_Perceptrons?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/2577260_Natural_Gradient_Descent_for_Training_Multi-Layer_Perceptrons?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Information-Geometry-and-Applications-to-Neuroimaging?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/state-space-Ising-model?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howard_Yang4?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howard_Yang4?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/National-Institutes-of-Health?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howard_Yang4?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shun_Ichi_Amari?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shun_Ichi_Amari?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/RIKEN?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shun_Ichi_Amari?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Howard_Yang4?enrichId=rgreq-f6191b582d48bd89d7db307a94810cbf-XXX&enrichSource=Y292ZXJQYWdlOzI1NzcyNjA7QVM6OTk3NjM3MTQyNjUwOTlAMTQwMDc5NjkzMTg1MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Natural Gradient Descent for Training

Multi-Layer Perceptrons

Howard Hua Yang and Shun-ichi Amari
Lab. for Information Representation, FRP, RIKEN
Hirosawa 2-1, Wako-shi, Saitama 351-01, JAPAN
FAX: +81 48462 4633
E-mails: hhy@koala.riken.go.jp, amari@zoo.riken.go.jp

Submitted to IEEE Tr. on Neural Networks
May 16, 1996

Abstract

The main difficulty in implementing the natural gradient learning rule is to compute
the inverse of the Fisher information matrix when the input dimension is large. We have
found a new scheme to represent the Fisher information matrix. Based on this scheme, we
have designed an algorithm to compute the inverse of the Fisher information matrix. When
the input dimension 7 is much larger than the number of hidden neurons, the complexity
of this algorithm is of order O(n?) while the complexity of conventional algorithms for the
same purpose is of order O(n?®). The simulation has confirmed the efficience and robustness
of the natural gradient learning rule.

1 Introduction

Inversion of the Fisher information matrix is required to obtain the Cramer-Rao lower bound
which is fundamental for analyzing the performance of an unbiased estimator. It is also needed
in the natural gradient learning framework [2, 3] to design statistically efficient learning al-
gorithms for parameter estimation in general and for training neural networks in particular.
In this paper, we assume a stochastic model for multi-layer perceptrons. Considering the pa-
rameter space as a Riemannian space with the Fisher information matrix as its metric, we
apply the natural gradient learning rule to train a multi-layer perceptron. The main difficulty
encountered is to compute the inverse of the Fisher information matrix of a large size when
the input dimension is large. By exploring the structure of the Fisher information matrix and
its inverse, we shall design a fast algorithm with lower complexity to implement the natural
gradient learning algorithm.

The outline of the paper is as follows. The natural gradient descent method and related
problems for training a multi-layer perceptron are described in Section 2. The Fisher informa-
tion matrix and the scheme to represent this matrix are given in Section 3. The main focus
of this paper is to present a fast algorithm to compute the inverse of the Fisher information
matrix. Several issues related to this are discussed in Section 4: a group structure for the blocks
in the Fisher information matrix is found in Section 4.1. Based on this finding the inverse of
the Fisher information matrix is computed in Section 4.2-4.3; the complexity of our algorithm
in computing the inverse of the Fisher information matrix is analyzed in Section 4.4; by the

result on the group structure of the Fisher information matrix, the Cramer-Rao lower bound
for the committee machine is explicitly given in Section 4.5. The natural gradient vector field
is compared with the ordinary vector field in Section 5 via an example to illustrate the effects
of the natural gradient learning in training multi-layer perceptrons. The effectiveness of the
natural gradient is further demonstrated by some simulation results in Section 6.

2 Natural Gradient Descent Method and Its Efficiency

2.1 Model of a stochastic multi-layer perceptron
Assume the following model of a stochastic multi-layer perceptron:
m
2= aip(w]x+b)+¢ (1)
i=1

where (-)” denotes the transpose, ¢ ~ N(0,02) is a Gaussian random variable, and ¢(z)
is a differentiable output function of hidden neurons such as hyperbolic tangent. Assume
that the multi-layer network has a n-dimensional input, m hidden neurons, a one dimensional
output, and m < n. Denote @ = (ay,---,an)’ the weight vector of the output neuron,
w; = (w4, -, wyi)’ the weight vector of the i-th hidden neuron, and b = (by,-- -, by,,)" is the
vector of thresholds for the hidden neurons. Let W = [wy,- -, w,,] be a matrix formed by
column weight vectors w;, then (1) can be rewritten as

z=al oWz +b)+¢.

Here, the scalar function ¢ operates on each component of the vector W'z + b and this
convention will be used throughout this paper. By this convention, the column vector

[p(wia +b1), -, plwha + by)]"
is written as o(W”x + b) and the row vector
[p(wi e +bi), - p(w,@ + by)]

is written as @(z! W + b1).
In this paper, we consider the realizable learning problem. Let

0= (w{a e awgm aTa bT)T

denote the parameter vector for the student network and

* *T *T _xT gxT\T
0 _(wl Wy, A 7b)

for the teacher network.
The problem is to estimate 8* based on training examples

Dy = {(mtazt)at =1,-- aT}'

The training examples as well as the future examples for evaluating the generalization error
are generated by two steps. First, x; is randomly generated subject to an unknown probability

density function p(x). Second, the corresponding output is generated by the teacher network
as
z=aT oW e, +b*)+ ¢

where & ~ N(0,0?). Note the variance of the additive noise & is the same as the variance of
the additive noise ¢ in the stochastic perceptron model.
The input-output pairs {(xzy, z¢), t > T'} are the future examples. Define the generalization
error
Ey(0.0%) = Eg-[(z — a’ p(W'z +b))?]

where the expectation Eg-[-] is taken with respect to the joint probability density function
p(z, 2 0%).

The purpose of learning is to minimize the generalization error but it cannot be easily
evaluated in practice. Instead of the generalization error, we use the training error

1 T
Eip(60.Dr) = = > {1 — ol (W', + b))
t=1

to derive a learning algorithm. Minimizing the training error is not equivalent to minimizing
the generalization error in general (see, for example, Amari and Murata, 1993)[4]. Some aux-
iliary methods such as early stopping and regularization are necessary to avoid overtraining or
overfitting (see, for example, Ripley, 1996 [10]; Amari et al, 1997 [5]). The overtraining problem
is important but it will not be discussed here. We shall only focus the learning algorithm for
minimizing the training error.

2.2 Fisher information matrix

The joint probability density function (pdf) of the input and the output is
p(x, 2 W, a,b) = p(z|lz; W, a, b)p(z)

where p(z|z; W, a,b) is the conditional pdf of z when is input. The loss function is defined
as the negative log-likelihood function

L(z, 7 0) = —logp(x, 2;0) = l(z|x; 0) — log p(x)

where

1
U(s];0) = —logp(=/:0) = - (= — a” (W' + b))’

is also a loss function equivalent to L(x, z; 0) since p(x) does not depend on 0. Hence, given
the training set Dp, minimizing the loss function L(x,z;8) is equivalent to minimizing the
training error.

Since % = E?_é’ the Fisher information matrix is defined by
OL OL] ol ol a

G = G(8) = gl g (55)") = Bglog(5g)

(2)
where Eg[-] denotes the expectation with respect to p(x, 2;).

The inverse of the Fisher information matrix is often used in performance analysis, because
the Cramer-Rao states that an unbiased estimator 6 of the true parameter 8 satisfies

Eg-[16 — 0°|°] > Tr(G(6"))

where Tr(-) denotes the trace of a matrix.
For the on-line estimator 8; based on the independent examples {(xs, z5), s = 1, -, ¢}, the
negative log-likelihood function is

t
Ll,t = L(mla"' 3Lty 215" 7Zt;0) = 710gp(m1a"' 7mtazla"'7zt;a) = ZL(mSazs;a)'

s=1
Since oL oL
EG[%(”"S’ Zs; 9)(%(337,) 0))T] = 55,TG(0)
due to the independence of the examples,
OL1 ,OL1 4 p
Gy(0)=E : : =tG(0).
So when the examples {(xs, 2z5),s = 1,2---,} are independently drawn according to the prob-

ability law p(a, z; 8%), the Cramer-Rao inequality for the on-line estimator is

Eg-[|6: — 6"|") > - Tx(G' (67)) (3)

o~ | =

2.3 Natural gradient learning

Let ® = {6} be the parameter space. The divergence between two points 6, and 65, or two
distributions, p(x, z; 61) and p(x, z; 05), is given by the Kullback-Leibler divergence

D(61,02) = KL[p(=, z; 61)|[p(z, 2; 02)].

When the two points are infinitesimally close, we have the quadratic form
1
D(6,0 + df) = EdOTG(())dO (4)

where G(6) is the Fisher information matrix. This is regarded as the square of the length
of df. Since G(60) depends on 6, the parameter space is regarded as a Riemannian space in
which the local distance is defined by (4). Here, the Fisher information matrix G(0) plays the
role of the Riemannian metric tensor. See (Amari, 1985)[1] and (Murray and Rice, 1993)[9] for
information geometry.

The natural gradient descent method proposed by Amari [3, 2] makes use of the Riemannian
metric given by the Fisher information matrix to optimize the learning dynamics such that the
Cramer-Rao lower bound is achieved asymptotically. The idea is to convert the covariant
gradient g—l into contravariant form Gilaa—l. It is shown by Amari [2] that the steepest descent
direction of a function C(#) in the Riemannian space @ is

—VC(0) = -G '(8)VC(8).

The on-line learning algorithms corresponding to % and G71(0)% are, respectively, the

ordinary gradient descent algorithm:

ol
011 =0, — %%(Zt‘mﬁ 6:) (5)
and the natural gradient descent algorithm:
! ol
01 =0, -G (8055 (u]@1:0)) (6)

4

where 4 and p' are learning rates.

It is proved in [2] that the natural gradient learning is Fisher efficient. When the negative
log-likelihood function is taken as the loss function, the natural gradient descent algorithm (6)
gives an efficient on-line estimator, i.e., the asymptotic variance of 8, driven by (6) satisfies

1 - *
Eg:[(6:—07)(6, — 0")'] ~ -G (67 (7)
which gives the mean square error
* 1 — *
Eg 0°|"] = S Te(G1(67)). (8)

However, the algorithm (5) does not attain this limit.

Remark 1 The equilibrium points are the same for the averaged versions of the dynamics (5)
and (6), but the inverse of the Fisher information matriz optimizes the learning dynamics. The
local minima problem still exists in the natural gradient learning.

Remark 2 The natural gradient learning algorithm is efficient, but its complexity is generally
high due to the computation of the matriz inverse. In later sections, we shall explore the struc-
ture of the Fisher information matriz for a multi-layer perceptron and design a low complexity
algorithm to compute G~ (8). The dimension of G(8) is (nm + 2m) x (nm + 2m), the time
complezity of computing G~ (@) by generally accepted algorithms is O(n®) which is too high
for the on-line natural gradient learning algorithm. Our method reduces the time complexity to

O(n?).

3 Fisher Information Matrix of A Multi-Layer Perceptron

3.1 Likelihood function of the stochastic multi-layer perceptron

In previous sections, we did not give any specific assumption about the input. To compute an
explicit expression of the Fisher information matrix, we now assume that the input x is subject
to the standard Gaussian distribution N (0, I'), where I is the identity matrix.

From [(z|z;0) = %(z — 3™ aip(w!x +b;))?, we obtain
P LY apwla + b wle + b))
= wlz a;o (w; & + b;)z;
8'[1)2] O_ = k(‘p k k ’L(‘ID 1 ? J
B = Z axp wkm—l—bk)) (w; © + b;) (10)
I3 —
ol = Vo T
o Z app(wiz + b)) (wl e + b;) (11)

When (x, z) is the input-output pair of the stochastic multi-layer perceptron, the equations
(9)-(11) become

ol ¢

S = —;aigp'(wiTm + b))z (12)
ij

ol

L el b (13)

ol

9 —%ai@'(w;rm + b;), (14)
(3

and in vector forms

ol 13

ow; *ﬁ"n"ﬁ'(w?m +hi)z,i=1,---,m (15)
ol ¢
2 = f;gp(WTm +b) (16)
ol ¢
o = aleod(Wiz+b)} (17)

where ® denotes the Hadmard product which is the componentwise product of vectors or
matrices. The above three vector forms can be written as one:

a1 ¢ (a0 Wiz +b) @
a® ¢ (Whe 4 b)

where ® denotes the Kronecker product. For two matrices A = (a;;) and B = (b;j), A® B is
defined as a larger matrix consisting of the block matrices [a;;B]. For two column vectors a
and b, a ® b gives the higher-dimensional column vector [a; b, ,aan]T.

3.2 Blocks in the Fisher information matrix
The parameter 8 consists of m + 2 blocks

0= [’UJT, e awza aTa bT]T
where the first m blocks w;’s are n-dimensional and the last two blocks a and b are m-
dimensional. From (18), the Fisher information matrix G(6) = #A(O) is of (n+2)mx (n+2)m
dimensions. Here, the matrix A(6) does not depend on o2. It is partitioned into (m+2) x (m+2)
blocks of sub-matrices corresponding to the partition of . We denote each sub-matrix by A;;.

The Fisher information matrix is written as
1
G(0) = —5[Aijl(mt2)x (m+2)- (19)

g

The partition diagram for the matrix A(@) is given below:

(wl s wl a” b"
w; | A e Aim Al mit Al yo
A(0) = (20)
W Am,l o Am,m Am,m+1 Am,m+2
a Am—|—1,1 te Am—l—l,m Am+1,m+1 Am+1,m+2
\ b Am—|—2,1 e Am+2,m Am+2,m+1 Am+2,m+2

where
Ajj = a;a;E[¢' (w] 'z + bi)gp’(w;-rm +bj)zz’], for1<i,j<m,
Aimi1 = a; Bl (wlz +b)zp(x” W + b)] and
A1 = AZ:mH for 1 <i < m,
Am+1m+1 = E[‘P(WTSU + b)gp(mTW +b)],
Aimi2 = Elajp (wlz + b)z(a’ © o' (W + b'))] and
Ao = A%F,m+2 for 1 <i < m,
Atz = Al o mi1 = Blp(W Tz +b)(a” @ ¢/ (2" W + b)),
Apiomiz = (aa’) @ B[(WTz + b)y/ ("W + b")).

Here, E[-] denotes the expectation with respect to p(x). From the above expressions, we
know that A(0) = [A;;] does not depend on o?. The explicit forms of these matrix blocks in
the Fisher information matrix are characterized by the three lemmas in the next section.

Remark 3 Since the loss function I(z|z;0) contains the unknown parameter o2, we should
use the following modified loss function in practice:

1
li(z|z; 0) = 5(2 —a"p(W'zx + b))%
Modifying the learning rule (5), we have the following on-line algorithm:

0111 =0, — ———(zi]|zi; 0;). (21)
Since Gil(ﬂ)% = Ail(ﬂ)%, the learning rule (6) is exactly the same as the following learning
rule:

oly

0= 0, a0

(zt|21; 01). (22)

3.3 Representation of blocks in the Fisher information matrix

Lemma 1 Fori=1,---,m, the diagonal blocks are given by
A = a?ldy(wi, b;) I + {do(w;, b;) — dy(w;, bz)}ulugp] (23)
where
w; = ||w;|| denoting the Euclidean norm of w; ,u; = w;/wj,
dy (w, b) m/ ¢ (wz +b))? 722d:v>0, (24)
da(w, b) \/ﬂ / (wz + b))%z fédac > 0. (25)

When a; # 0, the inverse of the matriz A;; s given by

A i?[dl(“i’ T+ {dg(ui, T dl(ui-,bi) Vul], i=1,--em, (26)
The proof of Lemma 1 is given in Appendix 1.
In particular, for a single-layer stochastic perceptron
z=gp(wlz +b) +¢,
the expressions (23) and (26) give the Fisher information matrix:
G(w) = %[dl(w,)T + {do(w,b) — di(w,b) }u;u; | (27)
and its inverse formula
G lw) = 1 gl (28)

I _
dy (w, b) * {dQ(U), b) di(w,b)

When b = 0, the above formula is found by Amari in [3].

To obtain the explicit forms of the other blocks A;; in G, we need to introduce two bases
in R™ which possess certain properties. Except for a set in R™ with zero Lebesgue measure,
the vectors {ui,---,u,,} are linearly independent. It is easy to supplement n — m vectors
U1, , Up to them, such that they together form a basis in R”, {w1, -+, U Umt1, s Un},
having the following properties:

for j >m, u; — L(ur, -, up) (29)
u]Tu/rc = d;k (delta notation), for j,k =m+1,--- n, (30)
where L(u1,---,u,,) is the vector space spanned by {u1,---, uy,}.

Let U = [u;-uy] and V = (U Y7 = [v;---v,]. The identity
viu=U"v=1I

implies
v]Tuk = u]T'vk = 5j,k- (31)

Hence, {vq,---,v,} is the orthogonal conjugate basis of {uq,- -, u,}.
From (29), (30) and (31), we can easily prove that

u; = v; for 5 > m.

The random input x is represented in dual ways by

n n
l
r = E ru; = E ;U
i=1 i=1

where (x1,- -+, z,) and (2}, -- -, z]) are coordinates of & on the bases (u1,- -, u,) and (v, -+, vy,)
respectively. It follows from (31) that
zi=vie=2"v; and z}=u]z=2a"u,. (32)

In this paper, a m x n matrix is denoted by (@i;)mxn. The subscript m x n may be omitted
when the dimension of the matrix can be determined by the context. Define a n x n matrix
R = (r;;) = (ul'u;). Let R™' = (r¥). Noticing that R = (ulu;) = U'U and V = (U)7,
we have R™' =U "(U)" = VTV, ie., r'y = v]'v;. Due to the properties (29) and (30),

- (Tij)mxm 0 -1 _ (Tij)mxm 0
R = l 0 T , and R = 0 T
nxn nxn

where 0 and I are zero and identity matrices respectively with proper dimensions admissi-
ble in the above partitions of R and R™'. By the definition of R, we have :v; = uf:z: =
uJT Shoq Tpug = Zzzl rikzk and z; = Y p_; r7kz) . Therefore, for 1 < j <m, ’I"J = Y e TikTk
and z; = >)1, T‘Jk.’l,‘;g, and for j =m+1,---.n, z; = 7‘"7 With the above notations, we have
an expression of the matrix A;; for 1 <7 # 5 < m in the following lemma.

Lemma 2 For1<i,57 <m,

m
Aij = aiaj(cijQo + Y cuwy) (33)
Ik=1

where

Z wput =T — Zukvk, (34)

k=m+1
cij = Bl (wiz} + b)) (w]fr + b;)], (35)
Z“ = B¢ (wiz; 4 b;)@' (wjz); + bj) Z rlg!) (36)

The proof of Lemma 2 is given in Appendix 2.

Remark 4 The vectors {tmi1,--+,un} are only used for theoretical analysis. They are not

needed in the equation (33) because of the equation (34). To compute {v1, -+, v}, we define

Ui =[u, U] and Vi = [v,---,v,]. From UTV = I, we then have
V.=U,(U'U))! (37)

which is the generalized inverse of U1.

Remark 5 When i = j, the equation (33) gives another representation for A;; which is more
complicated than the representation (23). But the new representation for Ay is needed to
derive some properties of the Fisher information matriz. To compute the inverse of A;;, we
use the equation (26). To compute the inverse of the Fisher information matriz, we also need
to compute the inverse of matrices which have the same structure as A;j for i # j. This will
be explained later in details when we give an algorithm to compute the inverse of the Fisher
information matriz.

It follows from (32) that both z; and z} are Gaussian random variables with a zero mean
and

Elzizj] = v]vj =r", Elziah] = ul uj = rij. (38)
Therefore,
(xlu"'uxn) NN(OaRil)a (40)

and from (35) and (36) ¢;; is a function of b;, b;, w;, w; and r;;, and cif is a function of b;, b;,
wi, wj and (745) mxm-

Lemma 3 For 1 <:i<m,

m
Ai,m+1 = m+1 i Z Ci1Vk, " Z cfmvk) (41)
k=1
where
cfj = Bl (wiz; 4 bi)o(w;zh + bj)zy], 1<4,5,k <m. (42)

A; mio has the same structure as A; pq:

m m
Ai’m+2 - m+2 i Z Ci1Vks " Z Efmvk) (43)

where

Efj = a;a; E[¢' (wiz; + b))’ (wja’s + bj)xy], 1< 5,k <m.

Am+1,m+1 = (bij)mxm (44)
with bij = Elp(wiz; + b)p(wjz} + bj)] is a function of b, bj, wi, wj and rij.

Am+1,m+2 = AZ;L+2,TTL+1 = (bZ])me (45)

with Zz-j = a; E[p(wiz] + bi)¢' (wjz’; + bj)].

Am+2 m+2 — (b;j)mxm (46)
with by; = a;ja; E[@' (wiz; + b))’ (wjz); + bj)].

The proof of Lemma 3 is given in Appendix 3.

Remark 6 When the input is Gaussian random vector, the matriz G can be calculated ana-
lytically by Lemma 1-3 except for some numerical integrations for those coefficients dy, ds and
cfjl etc. When the pdf of the input is unknown, we can estimate the Fisher information ma-
triz based on the empirical distribution of the input. Howewver, this is time consuming and also
needs a large number of input examples. It is difficult to implement the natural gradient descent
method as an on-line algorithm in this way. When the pdf of the input is known but different
from the standard Gaussian distribution, either non-standard Gaussian or non-Gaussian, we

need some preprocessing procedures.

3.4 Preprocessing

In the previous sections, the explicit form of G is found by assuming a standard Gaussian
input. This assumption facilitates the computation of G. In fact, the explicit form of G is still
useful for non-Gaussian inputs if a preprocessing procedure is applied. This is equivalent to
adding one preprocessing layer in front of the stochastic multi-layer perceptron defined by (1).

Assume the sampled input x; is an i.i.d. process. When the input is not a standard
Gaussian process, we can use a linear or non-linear mapping to transform the input into a
Gaussian process.

If the input is Gaussian but the covariance matrix is not an identity matrix, we can apply
a linear transform u; = Bax; to obtain a standard Gaussian process u;. Here, the matrix B
can be found either by a batch algorithm or an on-line algorithm. By the batch algorithm, we
first compute the sample covariance matrix

T
AT
R;c—T 1;:1%—:0 (x —)",

1

T
Z L,
t:l

then compute the Cholesky factorization Rm = FF" and find B = F~'. We can also apply
the following on-line whitening algorithm in [6]:

Biy1 = (1+p)B; — puu By (47)

10

where u; = Bz, and p > 0 is a learning rate.

If the input is not Gaussian, we need a non-linear function to transform the input x; to a
Gaussian process. Let Fg(-) be the cumulative distribution function (cdf) of @y and Fx(-) be
the cdf of n-dimensional Gaussian r.v., then we obtain a standard Gaussian process

u, = Fy' (Fg(z)) ~ N(0,I).

If Fz (-) is unknown, it can be approximated by the empirical distribution based on the data set.
This method is applicable to the input with an arbitrary distribution but it is not applicable
to on-line processing since the empirical distribution is computed by a batch algorithm. If the
probability density function (pdf) of the input can be approximated by some expansions such as
the Gram-Charlier expansion and the Edgeworth expansion [12], Fiz(-) can be approximated on-
line by using an adaptive algorithm to compute the moments or cumulants in these expansions.

After preprocessing, we use the data set Dy = {(uy,2),t = 1,---,T} instead of Dy to
train the multi-layer perceptron.

4 Inverse of Fisher Information Matrix

Now we calculate the inverse of the Fisher information matrix which is needed in the natural
gradient descent method.

We have already shown the explicit form (26) of the inverse of A; for 1 < i < m. To
calculate the entire inverse of G, we need to compute the inverse of a matrix with the similar
representation as A;; for 1 <4 # j < m.

To this end, let us define

Gl(m,R) = {A € R™™ : det(A) # 0},

M = {apQy + Z aijuiv;-p tag # 0, A = (a;5) € Gl(m. RN)},
ij=1

M = {agQo + Z ai]-uiv;r} (the closure of M),
ij=1

M = {[ag, A] : ag # 0, A € Gl(m,R)},

and recall the definition of Qo = >20";_, uzuf The Gi(m,R) is the set of all non-singular

m x m matrices. The set M is a product space of R\{0} and GI(m, R).

4.1 A group structure
Define a mapping 1) : M — R"*" by

PY(A) = agQp + > aijuiv;r € M, for A = [ag, (a;j)] € M.
ij=1

Then M is the image set of the mapping . .
For A = [ag, A] and B = [by, B] € M, we define a multiplication in M by

g*é = [aobg,AB].

It is easy to verify that M is a group. For A= [ag, A] € Mv, its inverse element is Al =
[, A~']. The following lemma gives the relation between M and M.

ag’

11

Lemma 4 The mapping ¥ s an isomorphism between M and M which implies that M 1is
sub-group of Gl(n,R) and for C = ag€do + 374 aijuiv;-p EM,

B 1 mo
Cc = ;OQO + 4-21 a”uivjr (48)
17]:

where the matriz (a'?) is the inverse of the matriz (a;;) " .

The proof of Lemma 4 is given in Appendix 4.
Regarding the relation between M and M, we have

Lemma 5

M = M(\Gl(n,R) (49)

The proof of Lemma 5 is given in Appendix 5.

Let Biy,xm] = [Bijlmxm be a matrix consisting of m x m blocks. To invert the Fisher
information matrix, we need the following lemma regarding the inverse of a block matrix
By;;,xm) whose blocks belong to M.

Lemma 6 If By, ., s a positive definite matriz with the blocks Bi; € M, then the inverse
B! '

(mxm] has the same structure as Bl), namely, B! = [BY],5m in which BY € M.

[mxm]

The proof of Lemma 6 is given here since it includes procedures to compute the inverse of a
block matrix with blocks in M. These procedures will be referred to for several times in later
sections.

Proof of Lemma 6:
We shall repeatedly apply the following 4-block matrix inverse formula in the current paper.

Bll B12

321 B22 - [321 B22]

l Bi1 By] '
where
B = Bﬂl + B;11312352{1B21B;117
Byy) = By — By B By,
B* = B, |, and
B = (BQI)T = *BﬂlBl2B§21,1-

Since By, is positive definite, the diagonal blocks Bj; in By, and BfmlXm
positive definite. Let us first compute the inverse of [Bj;]ox2. By Lemma 5, if an invertible
matrix belongs to M, it also belongs to M. So By; € M, and by Lemma 4 Bﬁl € M. Since
the equality (65) in Appendix 4 still holds in M, the set M is closed under the matrix product.
It is easy to see that M is also closed under the operations such as the matrix summation and
scaling. By Lemma 5, Bys 1 € M, and so B;QI,1 € M again by Lemma 4. Hence, BY € M for
1 # j. The proposition of Lemma 6 is proved for m = 2. Assume the proposition is true for
m=Fk—1.

Again, we apply the 4-block matrix inverse formula to the following 2 x 2 block matrix

| are also

! !/
Bl = l oa]

!
21 22

12

where

By

r .

12= | :
By

/

91 = [Bk,1, ", Bpg1]

By = By
Because M is closed to the matrix product, summation and scaling, Bhy; = Bjy —

élB'ﬁlB'H belongs to M by the inductive assumption that the proposition is true for
m = k — 1. Since B[y, is positive definite and so is B’QQ’QJnd B'?? — B'Qg’ll. Similarly,
we can prove that the blocks in B"'2, B"?! and B''! belong to M. Therefore, we conclude that

the proposition is also true for m = k.
Q.E.D.

4.2 Inverse of A;;

Define matrices

At M
“ij “ij
Cij=|- - -
el e
ij ij

for 1 <14 # j < m. Here, c are defined by (36). Applying Lemma 4-5, from Lemma 2 we
have the following theorem.

Theorem 1 For 1 <i # j < m, A;; is mvertible iff c;j # 0 and the matriz C;; is invertible.
When A;; is invertible, we have the following inverse formula

Al =

R a;a; (’U

ulvk (50)
I,k=1

where (di?) = C;jl.

4.3 Inverse of the whole Fisher information matrix
To compute the inverse of the Fisher information matrix G = %[Aij](mw)x(erQ), we consider
the following partition of G:
G G
G = 51
[Gn G (51)

where G171 and Goy are the m x m and 2 x 2 block matrices respectively on the left-upper
and right-lower corners of G. We first apply the 4-block matrix inverse formula to the above
partition of G and then apply the procedures in the proof of Lemma 6 to compute the inverse

of Gll-

13

4.4 Complexity of computing the inverse of the Fisher information matrix

The method for computing G~! given in the above section has low complexity when m < n.
We define the complexity of an algorithm by the time and space needed to run the algorithm.
We count the time and space complexity by flops and units. A flop is one multiplication or
one addition. A unit is the memory space for a variable.

One advantage of using the formulas (26) and (50) is to reduce the space complexity for
storing G. To store G directly, we need 3(mn + 2m)(mn + 2m + 1) units. But, by using
the representation (33), when m < n the space complexity for storing G is reduced to O(n)
from O(n?) since the dual bases are shared by all blocks in G1;. Here, Gy; is defined in the
partition (51) of G.

The dual bases {u1,---,uy,} and {v,---,v,} are used in the theoretical analysis. The
vectors {%p; 41, -, Uy} are not needed in the representation (33) of A;; and the inverse for-
mula (50). Normalizing the weight vectors {w,---,w,,}, we obtain {u,---,u,,} with the
time complexity O(n). By the algorithm given in Remark 4, we can compute Vi = [v1, -+, vp,].
The time complexity is also O(n).

In the partition (51), the dimension of Gy; is mn x mn and that of Ggy is 2m x 2m.
When m < n, the time complexity of computing G~! is determined by that of computing
Gﬁl which is computed by the procedures in the proof of Lemma 6 where the 4-block matrix
inverse formula and Lemma 4-5 are repeatedly applied. In this process, Gﬁl is recursively
computed. The size of the working memory needed is still of order O(n?) since m < n. But,
when m < n, the time complexity of computing Gﬁl is significantly reduced from O(n?) by
conventional methods such as the one in [11] to O(n?) by our method. In summary, we have
the following table to compare our method with the conventional methods:

Table 1: The complexity of our method and the conventional methods

Cost Conventional methods | Our method
Space to store G O(n?) O(n)
Time to compute G ' O(n?) O(n?)
Working memory needed | O(n?) O(n?)

Since the explicit expressions (26) and (50) are suitable for parallel matrix computations,
we can further reduce the time complexity by using a computer with distributed memory
multiprocessors.

4.5 The Cramer-Rao lower bound for a committee machine

For a committee machine, we can further simplify the factor Tr(G~'(6*)) in the Cramer-Rao
lower bound inequality (3). When a; = 1,b; = 0,5 = 1,---,m, the multi-layer perceptron
(1) becomes a model for a committee machine. The dimension of the parameter space of this
committee machine is nm.

The Fisher information matrix for the committee machine is

1 1 [A - A -I
G(g):pA[mxm}zp
where 8 = (w?,--- ,w;rz)T and A;; are the same as those for the multi-layer perceptron except

a; = 1.

14

By Lemma 6,
All L Alm

GO) =04, =0

[mxm]

A g
where A" € M for all i and AY € M for i # j.
Note for A = ag€Qy + ch”’l:l aklukv;[e M,

Tr(A) =ag(n —m) + Tr((ag)) = ag(n —m) + i akk
k=1

because of the properties (30) and (31).
Let A" = a0 + X 7'— aflugv], then

m

Tr(A%) = al(n —m) + > atk,
k=1
Hence,
Tr(G(0)) = 02Tr(A[*mlxm}) = o2 ZTr(A”) = 02(co(8) + ¢1(0)n)
i=1
where

So we have the following theorem which gives an order estimation of the Cramer-Rao lower
bound for the committee machine.

Theorem 2 Assume m < n and G(0) is non-singular around 0*, then the Cramer-Rao lower

bound inequality is
o2

6, — 0| > —(co + e1n) (52)

where ¢y = ¢g(0%) and ¢1 = ¢1(0%) are two constants not depending on the input dimension n.

Eg-

It is shown in [2] that the gradient descent learning rule (6) is Fisher efficient. In particular,
for the committee machine, by Theorem 2 the natural gradient descent rule gives the mean

square error
2
% ag

0, — 0*||*] ~ —(co + c1n). (53)

Eg| 4

15

5 Natural gradient vector field vs. ordinary vector field

The behaviors of the two learning dynamics (5) and (6) are characterized, respectively, by the
mean vector fields

’01(0) = Ea*[

5 (:1210)] = Bg-[| .0 (z/a;0) |] and
|

ol

v2(8) = Egr[G'(0) 55

(z]2:0)] = G~1(0)v1(9).

Again, the expectation with respect to p(z, z;0") is denoted by Eg-|-] and the samples (z, 2)
are independently drawn from the pdf p(x, z; 8*) for the teacher network:

m
z=)Y a;‘-tp(w;‘-Tm +bj) +¢&.
7j=1

From (9)-(11), we have

ol 1 m .
Eg*[aw‘(z\m;o ok o- D _(a5o(wi e + b)) — ajp(w] @ + b)) aip’ (w] @ + b;)z],
i j—=1
ol " * T T
Eg*[aa(z|:c;0 ——E Z ajp(w; :I:+bj)—aj<p(wj:c+bj))<p(W x+b)],
ol - .
EG*[(z]z; 0)] ——Ea* Z a’ (,0 w Tp 4 bj) — a,jtp(w]Tm +0j)){a® (p,(WTCD +b)}.

The above two equations are used to compute the vector field v;(6). Note the o2 in v1(0) and
G '(0) are canceled in computing v,(0). So the vector field v(@) does not depend on the
noise level o?.

The following dynamic systems:

% = —nv1(0) (54)
O —a(0) = G (B)01(0) (55)

characterize the averaging behaviors of the gradient descent algorithm (5) and the natural
gradient descent algorithm (6) respectively.

To show the difference between the two mean vector fields v;(0) and v,(0), we consider a
simple committee machine with 2-dimensional input, 2 hidden neurons, a; = a3 = 1 and the
thresholds b; = by = 0, and the 2 weight vectors w; with unit length ||w;|| = 1. The weight
vectors are reparameterized by

16

Let ¢(z) = tanh(z), 02 = 1 and o} = 0 and & = 2 be the parameters for the teacher.
Let @ = (aq,a3). We calculate the mean vector fields vy (a1, as) and ve(aq,) in the same
way of deriving (54) and (55). The two mean vector fields are plotted in Figure 1-2.

Although the gradient descent system (54) and the natural gradient descent system (55)
have the same set of fixed points, they generate different flows. The convergence of the ordinary
gradient flow towards 8" is slower than the natural gradient flow especially along the diagonal
line in the («y, as)-space. On average, the learning dynamics of the natural gradient descent
algorithm is optimized to achieve the Cramer-Rao lower bound.

aT:O,O/;:‘%T”
3 T T T T I -
SV VN NN N N N Y e
PV AN NN NN Y e <o
A ST T T T s
2r LV A N N N S s s s s s e
x\\\\\‘,vv!\\\\, “‘l
RN L e e L N Vo
1k ‘\\“\\\’(711\\ oy oy
N N S T e OO
SN N N N N Lo,
o N NN NN N e s o L - -~
or ~NNNNNANNY o L L . NN
NNNNNNN Y L NN
\\\\\\'\f//,.,g,__“<< NN
-1t NN N NN N v ~ NN
\\\\\\,a\\\\\\\\.\\\\
AN N NS L — ~ - NEE AN N
ol A N Y N NN NN
S~ o~ - VN N N NN S NS NIRRT
\>’x\\\\\\\\\ R N N N
3 T T Y Y N]
R NN NN N ey T T T T T -
-4 I I I I I I
-4 -3 -2 -1 0 1 2 3

Figure 1: The mean vector field vy (a1, asg)

17

- -~~~

\\\\\

o = N w
T T T T
\

~ *—////

B St

<\\ A
<N e

-,

N e o

N - oL

~ .

\ P

\\\\/

o e
A
VA

/ VAV N
Ly '
sy !

/ 1

Ly

) / 1
, /
A W
e e ey,

\ ey
| |

'
'
v A
\ AV
vy N NN N
AN N N ~
-1+ ~ N N NN - -~
~ N~ N XN N - ~
N
~ N N \\ . \ \\\\\ e -~ o~
. NG, 2 -
oL ~ \\\ \\ N T T N NN i
\\\ \\ NN N~~~ - T e e = s ~
~ \\ NN N N~ = - A ~ O~
\ - 7 L - - =~ o~ ~ ™~
3} NN N N N s s ;o 0 i
NN Y Y N N v s s T e s s e ~
-4 L I I I I I I
-4 -3 -2 -1 0 1 2 3 4

Figure 2: The mean vector field vg(ay, ag)

6 Simulation

6.1 Single-layer perceptron
Assume the input @; is of dimension n = 7 subject to the Gaussian distribution &; ~ N (0, I).

The output z; are generated by the model:

zt = SO(UJ*Tﬂ?t) +&

where ¢(u) = ;Z:Z and & ~ N(0,02). For the single-layer perceptron, z = o(w’ x), we have

the two on-line algorithms based on the gradient descent (GD) and the natural GD methods

in the following forms:

wiy1 = wy + po(t) (2 — p(w])’ (w])z, (56)
w1 = wy + (A (wy) (2 — p(w] @) (w] @)@, (57)

where
A (w) = 1 I+ (1)wa7 (58)

dy (w) do(w) dy(w)” w?
di(w) = d;(w,0), i=1,2,

di(w,b) was defined previously by (24) and (25), and pu,(t) are two learning rate schedules
defined by
71 - %t 0,1 59

(1) = n; : = 0,1.
/“L’l() nll_l_%t_l_tga 3 ()

18

Here t is the iteration index. The learning rate function p;(t) is a special form of the following
search-then-converge schedules proposed in [7]:

1_|_££
nt) =n—7p 7
1+ﬁ;+—

T

(60)

t < 7 is a “search phase” and t > 7 is a “converge phase”. The learning rate functions p;(t) do
not have the search phase but they start learning with a weaker converge phase when 7; are
small. When ¢ is large, each learning rate function p;(t) decreases as .

In this example, we choose ny = 1.25, 1 = 0.05, ¢y = 8.75, and ¢; = 1. These parameters
are selected by trial and error to optimize the performance of the GD and the natural GD
methods at the noise level o = 0.2. The learning rate functions po(¢) and p;(¢) are compared

in Figure 3 with their asymptotic curves .

1

10_3 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500

Figure 3: po(t) vs. pi(t) when gy = 1.25, n1 = 0.05, ¢p = 8.75 and ¢; = 1.

A 7-dimensional vector is randomly chosen as w* for the teacher network. In this simulation,
we choose

w* = [—1.1043,0.4302,1.1978, 1.5317, —2.2946, —0.7866, 0.4428]T.

The training examples are the Gaussian random inputs to the teacher network and its outputs
in Gaussian noise. Let w; and w; be the weight vectors driven by the equations (56) and (57)
respectively. The error functions for the GD and the natural GD algorithms are ||w; — w*||
and ||lw; — w*||.

Let w* = ||lw*||. From the equation (58), we obtain the Cramer-Rao Lower Bound (CRLB)
for the deviation at the true weight vector w*:

CRLB(t) = %\/ CZ (w*l) + (11)*)' (61)

19

The error functions are compared with the CRLB in Figure 4.

6 T T T
natural GD =02
0 50 100 150 200 250 300 350 400 450 500
iteration
6 T T T T
natural GD oc=04
T GD 1
g CRLB
200~ L o b
0 | | | 1 "—’T\:;"Y”_‘—‘
0 50 100 150 200 250 300 350 400 450 500
iteration
15 T T T T T
natural GD o=1
10 === GD i
g CRLB
(]
5 —— 3 4
0 Il S S ——— e |

Il Il Il I
0 50 100 150 200 250 300 350 400 450 500
iteration

Figure 4: Performance of the GD and the natural GD at different noise levels o = 0.2,0.4, 1.

It is shown in Figure 4 that the natural GD algorithm reaches CRLB at different noise levels
while the GD algorithm reaches the CRLB only at the noise level o = 0.2. The robustness
of the natural gradient descent against the additive noise in the training examples is clearly
shown by this example.

6.2 Multi-layer perceptron

Let us reconsider the simple committee machine with 2-dimensional input and 2-hidden neurons
given in Section 5. The problem is to train the following multi-layer perceptron:

y = p(wiz) + p(w;) (62)
based on the examples {(x, z;),t = 1,- -+, T} generated by the following stochastic committee
machine:

2= p(wi @) + p(ws @) + & (63)
with Gaussian noise & ~ N(0,0?) and Gaussian input &; ~ N(0,I). Assume ||w}| = 1. We

can reparameterize the weight vector to decrease the dimension of the parameter space from 4

to 2:
w, = | CSl) e feosed) |y
sin(«;) sin(a))

20

The parameter space is {8 = (a;, a2)}. Assume the true parameters are o = 0 and o} = 3T.

Due to the symmetry, both 87 = (0, %ﬂ) and 65 = (3%,0) are true parameters. Let 6; and 6
be generated by the GD algorithm and the natural GD algorithm respectively. The errors are
measured by

er = min{||0; — 61]. [0, — 6]},
e; = min{||0; — 67,116} — 651}

In this simulation, we first start the GD algorithm with the initial vector 8y = (0.1,0.2) for
80 iterations, then we start the natural GD algorithm using the estimates of the parameters
obtained by the GD algorithm at the 80-th iteration as the initial for the natural GD algorithm.
The noise level is o = 0.05. N independent runs are conducted to obtain &,(j) and €}(j) for
g =1,--- N. Averaging these errors, we obtain

The averaging errors g; and ¢/; for the two algorithms are compared with the CRLB in Figure 5
for N = 10. The search-then-converge learning schedule (60) is used in the GD algorithm while
the learning rate for the natural GD algorithm is simply the annealing rate % The CRLB is
given in Section 4.5 by Theorem 2.

1

10" ¢
-—-—-- GD
10° E
natural GD
CRLB
2107t .
(]
TN AP AN,
™ \m“\!p‘ﬁ‘\/ EaaNY ,ﬂ/f‘m\wh/\vu/“/wH‘J .
> "y
10 °F B
10’3 I I I I I
0 100 200 300 400 500 600
iteration

Figure 5: The GD vs. the natural GD

7 Conclusions

The natural gradient descent learning rule is statistically efficient. It can be used to train
any adaptive system. But the complexity of this learning rule depends on the architecture of

21

the learning machine. The main difficulty in implementing this learning rule is to compute
the inverse of the Fisher information matrix of a large size. For a multi-layer perceptron, we
have shown an efficient scheme to represent the Fisher information matrix based on which the
space for storing this large matrix is reduced to O(n) from O(n?). We have also shown an
algorithm to compute the inverse of the Fisher information matrix. Its time complexity is of
order O(n?) when the input dimension n is much larger than the number of hidden neurons
while the complexity of conventional algorithms for the same purpose is of order O(n?). An
intermediate result is an explicit CRLB formula for a committee machine.

The simulation results have confirmed the fast convergence and statistical efficiency of the
natural gradient descent learning rule. It is also verified that this learning rule is robust against
the additive noise in the training examples.

8 Appendix
Appendix 1 Proof of Lemma 1:

Let u; = w;/w; and extend it to {uq,---,u,} an orthogonal basis of R”. The random input
x is decomposed as

n
r = Z (JjUj
Jj=1

where ¢; = " u;. Because of z ~ N (0,), ¢; are i.i.d. with N(0,1). Noticing

n n
zx’ = c%uuf{ + Z cjcl(ujuT + ulu;p) + Z cjckuju;f,
J=2 jik=2
[Cj] =0 and E[Cjck} = 0k, we have

E
B((¢'(w]x + b))z’]

B[(¢' (wicr + b)) luru] + Bl(¢' (wic1 + b;))*er] T Elej](ujuf +uiuj)
+ E[(¢ (wicr + :))°] k= Elcjcr]ujuf
E[(¢' (wic1 + b)) *cHluru] + E[(¢' (wicr + b:))*] Sjop uju]
= dg(’wi, bz)ululT +d; (wi, bz) 2?22 u]uf
Since {u;} are orthogonal,

Z uZuZT =1 — ululT.
k=2
Therefore,
E[(¢ (w! e + b)) xa”] = di(wi, b)) T + (do(wi, b;) — dy (wi, b;))urul .
Q.E.D.

Appendix 2 Proof of Lemma 2:

Here we use the notations introduced before Lemma 2.

Since u; = v; for j > m, we have z; = z} for j > m, and Ez;z}] = E[z;z;] = §;; for
1,7 > m.

When k # I, E[z;z)] = E[vizzlw)] = viu, = 0. Since z; and) are Gaussian, zj and
z) are independent when k # [. Therefore, {z},---,z],} and {Zy41, -, 2, } are independent.

Applying this result, we simplify the following

22

&

[0 (wi + b)) (w] @ + bj)zx’]

Bl (wiu] +0;) ¢ (wju] @+ b;) (2] ziw) (= wjvf)]

Bl (wiz} + bi)‘Pl(“’jm; +0;) (T ket + 20 ket T g1 2okt T ZZk:erl)ml-’"’;g“l”Z]
= chzl cé’juw{ + 5 Z?,k:m+1 6l,kulv;€ 4+ Term1 + Term?2

n T m Ik T
= Cij Zk:m—l—l UrUg + Zl,k:l Cile'Uk + Terml1 + Term?2

where ¢;; and (’Z“ are defined by (35) and (36). Here,
Terml = 377" 375, 1 El@' (wimi + bi) @' (wjz); + bj)m: zr]wul and
Term2 = Y1, 1 Sorey Bl (with + bi)g' (wial; + by Juvf,
are zero due to three reasons: 1) z; = Y7, rlszl for 1 < 1 < m, 2) {z},---,2/,} and

{Zm+1, -,z } are independent and 3) E[zg] = 0. Flnally, we obtain (33).
By the definition V = (U "), so Y%, upv} =UV" =TI and

Z upul =T — Zukvk

k=m+1

Q.E.D.
Appendix 3 Proof of Lemma 3:

Again, we shall apply the properties that {z},---, 2.} and {x,,4+1, -+, z,} are independent to
simplify A; 41 for 1 <7 <m:

Aimi1 = E[(w]z+b)zp@ W +b")]

m n
= B[y (w;x} + bl)(z Thvg + Z zvg) (e(wr) +b1), -+, pwmal, + b))
k=1 k=m+1

m
"(wizy) Z zpop(e(unz) +b), -, p(wmzy, + b))

+E[p (wiz] + b;) Z vk (e(wiz] +b1), -+, (wmal, + b)) (64)
k=m+1

The first term on the right hand side (RHS) of the above equation (64) becomes
m m
(Z Ci'cl'ukv B Zcfmvk)
i=1 i=1

where c] are defined by (42). Since E[zi] = 0, the second term on the RHS of (64) is zero.

Denote
pu’) =a" 0 ¢ (u") = [ar, -, am¢ (um))-
Similar to the derivation of Aj; 41, we obtain the expression (64) for A; 9.
It is easy to obtain A, 11m+41 = (bij)mxm where

bij = Blp(w] @+ b)p(w] @ + bj)] = Elp(wa; + b)p(w;z + b;)].

bi; are functions of b;, b;, w;, w;, and r; since E[z;z
obtain (45) and (46).
Q.E.D.

x;]] =1y for 1 < 4,5 < m. Similarly, we

23

Appendix 4 Proof of Lemma 4:

For A = [ag, (a;;)] € M, define

m
¢(A) = agQo + Z aijuiv;-r.
iji=1

To show that ¢ : M — M is one-to-one, we assume B = [by, (bij)] € M and (A) = ¢(B),

ie.,

m m
apfly + Z aijuz'v;-p = by + Z bijuiv]T.
T _
j —
aij = bi; after applying the property (31). Therefore, 1) is a one-to-one mapping from M to
M. Let C = 9)(A) and C' = ¢)(B), then

Since Qqu;v 0 for 1 < 4,7 < m, from the above equation we first obtain ag = by then

m
! T T
CC' = agby€Q)y + E aijblkuiv]- ujvy,
i’jylykzl

m m
E : T E : T
= agbgﬂg + aijblkéj,luivk = aob()Qo + aijbjkuivk
1,5,0, k=1 i,5,k=1

m
agboQ + Y diguivg, (65)
ik=1

where (dij) = (aij)(bij). So CC" = ¢([agbo, (ai;)(bij)]), ie.,
Y(A)Y(B) = p(Ax B).
Hence, 1 is an isomorphic mapping between M and M, and M is a sub-group of Gl(n,R).

For any element in M with the form C = aoQ + 374 aijuiv;-p = 9([ao, (ai;)]), to obtain

the inverse of C, we first compute the inverse in M

~ 1
1 1
A = [;0, (aij)]
then the inverse in M

- 1 moo
Cl=ypA) =—Qy+) a”uiv]-T
a0 ij=1
by the relation (p(A))~' = (A1), where (a¥) = (a;;) "
Q.E.D.
Appendix 5 Proof of Lemma 5:

It follows from Lemma 4:

M C M(Gl(n,R).

Let A € M and det(A) # 0. From A = agQo + Z%:l aijuiv]T, we have

Auy = aguy for k=m+1,---,n, and

Auy = [ul,---,um][alk,---,amk]T fork=1,---,m.

24

So Altpi1, -+, Up] = ao[Umi1,- -, U] and Aluy, -+, upy] = (w1, - -, u,|B where B = (a;j).
Hence,

B 0
AU:A[ula"'aumaum‘Fl’.”’un]:U[0 GUI].

Therefore, det(B)ag ™ = det(AU) # 0 which implies det(B) # 0 and ag # 0. So A € M.
Q.E.D.

References

[1] S. Amari. Differential-Geometrical Methods in Statistics, Lecture Notes in Statistics vol.28.
Springer, 1985.

[2] S. Amari. Natural gradient works efficiently in learning. Accepted by Neural Computation,
1997.

[3] S. Amari. Neural learning in structured parameter spaces — natural Riemannian gradient.
In Advances in Neural Information Processing Systems, 9, MIT Press: Cambridge, MA.
(to appear), 1997.

[4] S. Amari and N. Murata. Statistical theory of learning curves under entropic loss criterion.
Neural Computation, 5:140 153, 1993.

[5] S. Amari, N. Murata, K.-R. Miller, M. Finke, and H. H. Yang. Asymptotic statistical
theory of overtraining and cross-validation. IEEE Trans. on Neural Networks, page to
appear, 1997.

[6] J.-F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE Trans. on
Signal Processing, 44(12):3017 3030, December 1996.

[7] C. Darken and J. Moody. Towards faster stochastic gradient search. In Advances in
Neural Information Processing Systems, 4, eds. Moody, Hanson, and Lippmann, Morgan
Kaufmann, San Mateo, pages 1009-1016, 1992.

[8] R. A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural
Networks, 1:295 307, 1988.

[9] M. K. Murray and J. W. Rice. Differential Geometry and Statistics . New York: Chapman
& Hall, 1993.

[10] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,
1996.

[11] G. W. Stewart. Introduction to Matriz Computations. New York: Academic Press, 1973.

[12] A. Stuart and J. K. Ord. Kendall’s Advanced Theory of Statistics. Edward Arnold, 1994.

25

https://www.researchgate.net/publication/2577260

