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Natural Gradient Descent for TrainingMulti-Layer PerceptronsHoward Hua Yang and Shun-ichi AmariLab. for Information Representation, FRP, RIKENHirosawa 2-1, Wako-shi, Saitama 351-01, JAPANFAX: +81 48462 4633E-mails: hhy@koala.riken.go.jp, amari@zoo.riken.go.jpSubmitted to IEEE Tr. on Neural NetworksMay 16, 1996AbstractThe main di�culty in implementing the natural gradient learning rule is to computethe inverse of the Fisher information matrix when the input dimension is large. We havefound a new scheme to represent the Fisher information matrix. Based on this scheme, wehave designed an algorithm to compute the inverse of the Fisher information matrix. Whenthe input dimension n is much larger than the number of hidden neurons, the complexityof this algorithm is of order O(n2) while the complexity of conventional algorithms for thesame purpose is of order O(n3). The simulation has con�rmed the e�cience and robustnessof the natural gradient learning rule.1 IntroductionInversion of the Fisher information matrix is required to obtain the Cramer-Rao lower boundwhich is fundamental for analyzing the performance of an unbiased estimator. It is also neededin the natural gradient learning framework [2, 3] to design statistically e�cient learning al-gorithms for parameter estimation in general and for training neural networks in particular.In this paper, we assume a stochastic model for multi-layer perceptrons. Considering the pa-rameter space as a Riemannian space with the Fisher information matrix as its metric, weapply the natural gradient learning rule to train a multi-layer perceptron. The main di�cultyencountered is to compute the inverse of the Fisher information matrix of a large size whenthe input dimension is large. By exploring the structure of the Fisher information matrix andits inverse, we shall design a fast algorithm with lower complexity to implement the naturalgradient learning algorithm.The outline of the paper is as follows. The natural gradient descent method and relatedproblems for training a multi-layer perceptron are described in Section 2. The Fisher informa-tion matrix and the scheme to represent this matrix are given in Section 3. The main focusof this paper is to present a fast algorithm to compute the inverse of the Fisher informationmatrix. Several issues related to this are discussed in Section 4: a group structure for the blocksin the Fisher information matrix is found in Section 4.1. Based on this �nding the inverse ofthe Fisher information matrix is computed in Section 4.2-4.3; the complexity of our algorithmin computing the inverse of the Fisher information matrix is analyzed in Section 4.4; by the1



result on the group structure of the Fisher information matrix, the Cramer-Rao lower boundfor the committee machine is explicitly given in Section 4.5. The natural gradient vector �eldis compared with the ordinary vector �eld in Section 5 via an example to illustrate the e�ectsof the natural gradient learning in training multi-layer perceptrons. The e�ectiveness of thenatural gradient is further demonstrated by some simulation results in Section 6.2 Natural Gradient Descent Method and Its E�ciency2.1 Model of a stochastic multi-layer perceptronAssume the following model of a stochastic multi-layer perceptron:z = mXi=1 ai'(wTi x+ bi) + � (1)where (�)T denotes the transpose, � � N(0; �2) is a Gaussian random variable, and '(x)is a di�erentiable output function of hidden neurons such as hyperbolic tangent. Assumethat the multi-layer network has a n-dimensional input, m hidden neurons, a one dimensionaloutput, and m � n. Denote a = (a1; � � � ; am)T the weight vector of the output neuron,wi = (w1i; � � � ; wni)T the weight vector of the i-th hidden neuron, and b = (b1; � � � ; bm)T is thevector of thresholds for the hidden neurons. Let W = [w1; � � � ;wm] be a matrix formed bycolumn weight vectors wi, then (1) can be rewritten asz = aT'(W Tx+ b) + �:Here, the scalar function ' operates on each component of the vector W Tx + b and thisconvention will be used throughout this paper. By this convention, the column vector['(wT1 x+ b1); � � � ; '(wTmx+ bm)]Tis written as '(W Tx+ b) and the row vector['(wT1 x+ b1); � � � ; '(wTmx+ bm)]is written as '(xTW + bT ).In this paper, we consider the realizable learning problem. Let� = (wT1 ; � � � ;wTm;aT ; bT )Tdenote the parameter vector for the student network and�� = (w�T1 ; � � � ;w�Tm ;a�T ; b�T )Tfor the teacher network.The problem is to estimate �� based on training examplesDT = f(xt; zt); t = 1; � � � ; Tg:The training examples as well as the future examples for evaluating the generalization errorare generated by two steps. First, xt is randomly generated subject to an unknown probability2



density function p(x). Second, the corresponding output is generated by the teacher networkas zt = a�T'(W �Txt + b�) + �twhere �t � N(0; �2). Note the variance of the additive noise �t is the same as the variance ofthe additive noise � in the stochastic perceptron model.The input-output pairs f(xt; zt); t > Tg are the future examples. De�ne the generalizationerror Eg(�;��) = E�� [(z � aT'(W Tx+ b))2]where the expectation E�� [�] is taken with respect to the joint probability density functionp(x; z;��).The purpose of learning is to minimize the generalization error but it cannot be easilyevaluated in practice. Instead of the generalization error, we use the training errorEtr(�;DT ) = 1T TXt=1fzt � aT'(W Txt + b)g2to derive a learning algorithm. Minimizing the training error is not equivalent to minimizingthe generalization error in general (see, for example, Amari and Murata, 1993)[4]. Some aux-iliary methods such as early stopping and regularization are necessary to avoid overtraining orover�tting (see, for example, Ripley, 1996 [10]; Amari et al, 1997 [5]). The overtraining problemis important but it will not be discussed here. We shall only focus the learning algorithm forminimizing the training error.2.2 Fisher information matrixThe joint probability density function (pdf) of the input and the output isp(x; z;W ;a; b) = p(zjx;W ;a; b)p(x)where p(zjx;W ;a; b) is the conditional pdf of z when x is input. The loss function is de�nedas the negative log-likelihood functionL(x; z;�) = � log p(x; z;�) = l(zjx;�)� log p(x)where l(zjx;�) = � log p(zjx;�) = 12�2 (z � aT'(W Tx+ b))2is also a loss function equivalent to L(x; z;�) since p(x) does not depend on �. Hence, giventhe training set DT , minimizing the loss function L(x; z;�) is equivalent to minimizing thetraining error.Since @L@� = @l@� , the Fisher information matrix is de�ned byG = G(�) = E�[@L@� (@L@� )T ] = E�[ @l@� ( @l@� )T ] (2)where E�[�] denotes the expectation with respect to p(x; z;�).The inverse of the Fisher information matrix is often used in performance analysis, becausethe Cramer-Rao states that an unbiased estimator b� of the true parameter �� satis�esE�� [kb� � ��k2] � Tr(G�1(��))3



where Tr(�) denotes the trace of a matrix.For the on-line estimator b�t based on the independent examples f(xs; zs); s = 1; � � � ; tg, thenegative log-likelihood function isL1;t = L(x1; � � � ;xt; z1; � � � ; zt;�) = � log p(x1; � � � ;xt; z1; � � � ; zt;�) = tXs=1L(xs; zs;�):Since E�[@L@� (xs; zs;�)(@L@� (x� ; z� ;�))T ] = �s;�G(�)due to the independence of the examples,Gt(�) = E�[@L1;t@� (@L1;t@� )T ] = tG(�):So when the examples f(xs; zs); s = 1; 2 � � � ; g are independently drawn according to the prob-ability law p(x; z;��), the Cramer-Rao inequality for the on-line estimator isE�� [kb�t � ��k2] � 1tTr(G�1(��)) (3)2.3 Natural gradient learningLet � = f�g be the parameter space. The divergence between two points �1 and �2, or twodistributions, p(x; z;�1) and p(x; z;�2), is given by the Kullback-Leibler divergenceD(�1;�2) = KL[p(x; z;�1)kp(x; z;�2)]:When the two points are in�nitesimally close, we have the quadratic formD(�;� + d�) = 12d�TG(�)d� (4)where G(�) is the Fisher information matrix. This is regarded as the square of the lengthof d�. Since G(�) depends on �, the parameter space is regarded as a Riemannian space inwhich the local distance is de�ned by (4). Here, the Fisher information matrix G(�) plays therole of the Riemannian metric tensor. See (Amari, 1985)[1] and (Murray and Rice, 1993)[9] forinformation geometry.The natural gradient descent method proposed by Amari [3, 2] makes use of the Riemannianmetric given by the Fisher information matrix to optimize the learning dynamics such that theCramer-Rao lower bound is achieved asymptotically. The idea is to convert the covariantgradient @l@� into contravariant form G�1 @l@� . It is shown by Amari [2] that the steepest descentdirection of a function C(�) in the Riemannian space � is� erC(�) = �G�1(�)rC(�):The on-line learning algorithms corresponding to @l@� and G�1(�) @l@� are, respectively, theordinary gradient descent algorithm:�t+1 = �t � �t @l@� (ztjxt;�t) (5)and the natural gradient descent algorithm:�t+1 = �t � �0t G�1(�t) @l@� (ztjxt;�t) (6)4



where � and �0 are learning rates.It is proved in [2] that the natural gradient learning is Fisher e�cient. When the negativelog-likelihood function is taken as the loss function, the natural gradient descent algorithm (6)gives an e�cient on-line estimator, i.e., the asymptotic variance of �t driven by (6) satis�esE�� [(�t � ��)(�t � ��)T ] � 1tG�1(��) (7)which gives the mean square errorE�� [k�t � ��k2] � 1tTr(G�1(��)): (8)However, the algorithm (5) does not attain this limit.Remark 1 The equilibrium points are the same for the averaged versions of the dynamics (5)and (6), but the inverse of the Fisher information matrix optimizes the learning dynamics. Thelocal minima problem still exists in the natural gradient learning.Remark 2 The natural gradient learning algorithm is e�cient, but its complexity is generallyhigh due to the computation of the matrix inverse. In later sections, we shall explore the struc-ture of the Fisher information matrix for a multi-layer perceptron and design a low complexityalgorithm to compute G�1(�). The dimension of G(�) is (nm + 2m) � (nm + 2m), the timecomplexity of computing G�1(�) by generally accepted algorithms is O(n3) which is too highfor the on-line natural gradient learning algorithm. Our method reduces the time complexity toO(n2).3 Fisher Information Matrix of A Multi-Layer Perceptron3.1 Likelihood function of the stochastic multi-layer perceptronIn previous sections, we did not give any speci�c assumption about the input. To compute anexplicit expression of the Fisher information matrix, we now assume that the input x is subjectto the standard Gaussian distribution N(0; I), where I is the identity matrix.From l(zjx;�) = 12�2 (z �Pmi=1 ai'(wTi x+ bi))2, we obtain@l@wij = � 1�2 (z � mXk=1 ak'(wTkx+ bk))ai'0(wTi x+ bi)xj (9)@l@ai = � 1�2 (z � mXk=1 ak'(wTkx+ bk))'(wTi x+ bi) (10)@l@bi = � 1�2 (z � mXk=1 ak'(wTkx+ bk))ai'0(wTi x+ bi) (11)When (x; z) is the input-output pair of the stochastic multi-layer perceptron, the equations(9)-(11) become @l@wij = � ��2ai'0(wTi x+ bi)xj (12)@l@ai = � ��2'(wTi x+ bi) (13)@l@bi = � ��2 ai'0(wTi x+ bi); (14)5



and in vector forms @l@wi = � ��2 ai'0(wTi x+ bi)x; i = 1; � � � ;m (15)@l@a = � ��2'(W Tx+ b) (16)@l@b = � ��2 fa� '0(W Tx+ b)g (17)where � denotes the Hadmard product which is the componentwise product of vectors ormatrices. The above three vector forms can be written as one:@l@� = � ��2 264 (a� '0(W Tx+ b))
 x'(W Tx+ b)a� '0(W Tx+ b) 375 (18)where 
 denotes the Kronecker product. For two matrices A = (aij) and B = (bij), A
B isde�ned as a larger matrix consisting of the block matrices [aijB]. For two column vectors aand b, a
 b gives the higher-dimensional column vector [a1bT ; � � � ; anbT ]T .3.2 Blocks in the Fisher information matrixThe parameter � consists of m+ 2 blocks� = [wT1 ; � � � ;wTm;aT ; bT ]Twhere the �rst m blocks wi's are n-dimensional and the last two blocks a and b are m-dimensional. From (18), the Fisher information matrixG(�) = 1�2A(�) is of (n+2)m�(n+2)mdimensions. Here, the matrixA(�) does not depend on �2. It is partitioned into (m+2)�(m+2)blocks of sub-matrices corresponding to the partition of �. We denote each sub-matrix by Aij .The Fisher information matrix is written asG(�) = 1�2 [Aij ](m+2)�(m+2): (19)The partition diagram for the matrix A(�) is given below:
A(�) = 8>>>>>>>><>>>>>>>>:

wT1 � � � wTm aT bTw1 A1;1 � � � A1;m A1;m+1 A1;m+2... ... ... ... ... ...wm Am;1 � � � Am;m Am;m+1 Am;m+2a Am+1;1 � � � Am+1;m Am+1;m+1 Am+1;m+2b Am+2;1 � � � Am+2;m Am+2;m+1 Am+2;m+2 (20)where Aij = aiajE['0(wTi x+ bi)'0(wTj x+ bj)xxT ], for 1 � i; j � m,Ai;m+1 = aiE['0(wTi x+ bi)x'(xTW + b)] andAm+1;i = ATi;m+1 for 1 � i � m,Am+1;m+1 = E['(W Tx+ b)'(xTW + b)],Ai;m+2 = E[ai'0(wTi x+ bi)x(aT � '0(xTW + bT ))] andAm+2;i = ATi;m+2 for 1 � i � m,Am+1;m+2 = ATm+2;m+1 = E['(W Tx+ b)(aT � '0(xTW + bT ))],Am+2;m+2 = (aaT )�E['0(W Tx+ b)'0(xTW + bT )].6



Here, E[�] denotes the expectation with respect to p(x). From the above expressions, weknow that A(�) = [Aij] does not depend on �2. The explicit forms of these matrix blocks inthe Fisher information matrix are characterized by the three lemmas in the next section.Remark 3 Since the loss function l(zjx;�) contains the unknown parameter �2, we shoulduse the following modi�ed loss function in practice:l1(zjx;�) = 12(z � aT'(W Tx+ b))2:Modifying the learning rule (5), we have the following on-line algorithm:�t+1 = �t � �t @l1@� (ztjxt;�t): (21)SinceG�1(�) @l@� = A�1(�)@l1@� , the learning rule (6) is exactly the same as the following learningrule: �t+1 = �t � �0t A�1(�t)@l1@� (ztjxt;�t): (22)3.3 Representation of blocks in the Fisher information matrixLemma 1 For i = 1; � � � ;m, the diagonal blocks are given byAii = a2i [d1(wi; bi)I + fd2(wi; bi)� d1(wi; bi)guiuTi ] (23)where wi = kwik denoting the Euclidean norm of wi ;ui = wi=wi;d1(w; b) = 1p2� Z 1�1('0(wx+ b))2e�x22 dx > 0; (24)d2(w; b) = 1p2� Z 1�1('0(wx+ b))2x2e�x22 dx > 0: (25)When ai 6= 0, the inverse of the matrix Aii is given byA�1ii = 1a2i [ 1d1(wi; bi)I + f 1d2(wi; bi) � 1d1(wi; bi)guiuTi ]; i = 1; � � � ;m: (26)The proof of Lemma 1 is given in Appendix 1.In particular, for a single-layer stochastic perceptronz = '(wTx+ b) + �;the expressions (23) and (26) give the Fisher information matrix:G(w) = 1�2 [d1(w; b)I + fd2(w; b)� d1(w; b)guiuTi ] (27)and its inverse formulaG�1(w) = �2[ 1d1(w; b)I + f 1d2(w; b) � 1d1(w; b)guiuTi ]: (28)When b = 0, the above formula is found by Amari in [3].7



To obtain the explicit forms of the other blocks Aij in G, we need to introduce two basesin <n which possess certain properties. Except for a set in <n with zero Lebesgue measure,the vectors fu1; � � � ;umg are linearly independent. It is easy to supplement n � m vectorsum+1; � � � ;un to them, such that they together form a basis in <n, fu1; � � � ;um;um+1; � � � ;ung,having the following properties:for j > m, uj ? L(u1; � � � ;um) (29)uTj uk = �j;k (delta notation), for j; k = m+ 1; � � � ; n, (30)where L(u1; � � � ;um) is the vector space spanned by fu1; � � � ;umg.Let U = [u1 � � �un] and V = (U�1)T = [v1 � � � vn]. The identityV TU = UTV = Iimplies vTj uk = uTj vk = �j;k: (31)Hence, fv1; � � � ;vng is the orthogonal conjugate basis of fu1; � � � ;ung.From (29), (30) and (31), we can easily prove thatuj = vj for j > m.The random input x is represented in dual ways byx = nXi=1 xiui = nXi=1 x0iviwhere (x1; � � � ; xn) and (x01; � � � ; x0n) are coordinates of x on the bases (u1; � � � ;un) and (v1; � � � ;vn)respectively. It follows from (31) thatxi = vTi x = xTvi and x0i = uTi x = xTui: (32)In this paper, a m�n matrix is denoted by (aij)m�n. The subscript m�n may be omittedwhen the dimension of the matrix can be determined by the context. De�ne a n � n matrixR = (rij) = (uTi uj). Let R�1 = (rij). Noticing that R = (uTi uj) = UTU and V = (U�1)T ,we have R�1 = U�1(U�1)T = V TV , i.e., rij = vTi vj. Due to the properties (29) and (30),R = " (rij)m�m 00 I #n�n ; and R�1 = " (rij)m�m 00 I #n�nwhere 0 and I are zero and identity matrices respectively with proper dimensions admissi-ble in the above partitions of R and R�1. By the de�nition of R, we have x0j = uTj x =uTj Pnk=1 xkuk =Pnk=1 rjkxk and xj =Pnk=1 rjkx0k. Therefore, for 1 � j � m, x0j =Pmk=1 rjkxkand xj = Pmk=1 rjkx0k, and for j = m+ 1; � � � ; n, xj = x0j. With the above notations, we havean expression of the matrix Aij for 1 � i 6= j � m in the following lemma.Lemma 2 For 1 � i; j � m, Aij = aiaj(cij
0 + mXl;k=1 clkijulvTk ) (33)8



where 
0 = nXk=m+1ukuTk = I � mXk=1ukvTk ; (34)cij = E['0(wix0i + bi)'0(wjx0j + bj)]; (35)clkij = E['0(wix0i + bi)'0(wjx0j + bj)( mXs=1 rlsx0s)x0k]: (36)The proof of Lemma 2 is given in Appendix 2.Remark 4 The vectors fum+1; � � � ;ung are only used for theoretical analysis. They are notneeded in the equation (33) because of the equation (34). To compute fv1; � � � ;vmg, we de�neU1 = [u1; � � � ;um] and V 1 = [v1; � � � ;vm]. From UTV = I, we then haveV 1 = U1(UT1U1)�1 (37)which is the generalized inverse of U1.Remark 5 When i = j, the equation (33) gives another representation for Aii which is morecomplicated than the representation (23). But the new representation for Aii is needed toderive some properties of the Fisher information matrix. To compute the inverse of Aii, weuse the equation (26). To compute the inverse of the Fisher information matrix, we also needto compute the inverse of matrices which have the same structure as Aij for i 6= j. This willbe explained later in details when we give an algorithm to compute the inverse of the Fisherinformation matrix.It follows from (32) that both xi and x0i are Gaussian random variables with a zero meanand E[xixj ] = vTi vj = rij; E[x0ix0j] = uTi uj = rij : (38)Therefore, (x01; � � � ; x0n) � N(0;R); (39)(x1; � � � ; xn) � N(0;R�1); (40)and from (35) and (36) cij is a function of bi, bj, wi, wj and rij , and clkij is a function of bi, bj ,wi, wj and (rij)m�m.Lemma 3 For 1 � i � m,Ai;m+1 = ATm+1;i = ( mXk=1 cki1vk; � � � ; mXk=1 ckimvk) (41)where ckij = E['0(wix0i + bi)'(wjx0j + bj)x0k]; 1 � i; j; k � m: (42)Ai;m+2 has the same structure as Ai;m+1:Ai;m+2 = ATm+2;i = ( mXk=1 ecki1vk; � � � ; mXk=1 eckimvk) (43)9



where eckij = aiajE['0(wix0i + bi)'0(wjx0j + bj)x0k]; 1 � i; j; k � m:Am+1;m+1 = (bij)m�m (44)with bij = E['(wix0i + bi)'(wjx0j + bj)] is a function of bi, bj, wi, wj and rij.Am+1;m+2 = ATm+2;m+1 = (ebij)m�m (45)with ebij = ajE['(wix0i + bi)'0(wjx0j + bj)].Am+2;m+2 = (b0ij)m�m (46)with b0ij = aiajE['0(wix0i + bi)'0(wjx0j + bj)].The proof of Lemma 3 is given in Appendix 3.Remark 6 When the input is Gaussian random vector, the matrix G can be calculated ana-lytically by Lemma 1-3 except for some numerical integrations for those coe�cients d1, d2 andcklij etc. When the pdf of the input is unknown, we can estimate the Fisher information ma-trix based on the empirical distribution of the input. However, this is time consuming and alsoneeds a large number of input examples. It is di�cult to implement the natural gradient descentmethod as an on-line algorithm in this way. When the pdf of the input is known but di�erentfrom the standard Gaussian distribution, either non-standard Gaussian or non-Gaussian, weneed some preprocessing procedures.3.4 PreprocessingIn the previous sections, the explicit form of G is found by assuming a standard Gaussianinput. This assumption facilitates the computation of G. In fact, the explicit form of G is stilluseful for non-Gaussian inputs if a preprocessing procedure is applied. This is equivalent toadding one preprocessing layer in front of the stochastic multi-layer perceptron de�ned by (1).Assume the sampled input xt is an i.i.d. process. When the input is not a standardGaussian process, we can use a linear or non-linear mapping to transform the input into aGaussian process.If the input is Gaussian but the covariance matrix is not an identity matrix, we can applya linear transform ut = Bxt to obtain a standard Gaussian process ut. Here, the matrix Bcan be found either by a batch algorithm or an on-line algorithm. By the batch algorithm, we�rst compute the sample covariance matrixbRx = 1T � 1 TXt=1(xt � x)(xt � x)T ;x = 1T TXt=1 xt;then compute the Cholesky factorization bRx = FF T and �nd B = F�1. We can also applythe following on-line whitening algorithm in [6]:Bt+1 = (1 + �)Bt � �utuTt Bt (47)10



where ut = Btxt and � > 0 is a learning rate.If the input is not Gaussian, we need a non-linear function to transform the input xt to aGaussian process. Let Fx(�) be the cumulative distribution function (cdf) of xt and FN (�) bethe cdf of n-dimensional Gaussian r.v., then we obtain a standard Gaussian processut = F�1N (Fx(xt)) � N(0; I):If Fx(�) is unknown, it can be approximated by the empirical distribution based on the data set.This method is applicable to the input with an arbitrary distribution but it is not applicableto on-line processing since the empirical distribution is computed by a batch algorithm. If theprobability density function (pdf) of the input can be approximated by some expansions such asthe Gram-Charlier expansion and the Edgeworth expansion [12], Fx(�) can be approximated on-line by using an adaptive algorithm to compute the moments or cumulants in these expansions.After preprocessing, we use the data set eDT = f(ut; zt); t = 1; � � � ; Tg instead of DT totrain the multi-layer perceptron.4 Inverse of Fisher Information MatrixNow we calculate the inverse of the Fisher information matrix which is needed in the naturalgradient descent method.We have already shown the explicit form (26) of the inverse of Aii for 1 � i � m. Tocalculate the entire inverse of G, we need to compute the inverse of a matrix with the similarrepresentation as Aij for 1 � i 6= j � m.To this end, let us de�neGl(m;<) = fA 2 <m�m : det(A) 6= 0g;M = fa0
0 + mXi;j=1aijuivTj : a0 6= 0;A = (aij) 2 Gl(m;<)g;M = fa0
0 + mXi;j=1aijuivTj g (the closure of M);fM = f[a0;A] : a0 6= 0;A 2 Gl(m;<)g;and recall the de�nition of 
0 = Pni;j=m+1uiuTj . The Gl(m;<) is the set of all non-singularm�m matrices. The set fM is a product space of <nf0g and Gl(m;<).4.1 A group structureDe�ne a mapping  : fM! <n�n by ( eA) = a0
0 + mXi;j=1aijuivTj 2M; for eA = [a0; (aij)] 2 fM.Then M is the image set of the mapping  .For eA = [a0;A] and eB = [b0;B] 2 fM, we de�ne a multiplication in fM byeA ? eB = [a0b0;AB]:It is easy to verify that fM is a group. For eA = [a0;A] 2 fM, its inverse element is eA�1 =[ 1a0 ;A�1]. The following lemma gives the relation between M and fM.11



Lemma 4 The mapping  is an isomorphism between M and fM which implies that M issub-group of Gl(n;<) and for C = a0
0 +Pmi;j=1 aijuivTj 2M,C�1 = 1a0
0 + mXi;j=1aijuivTj (48)where the matrix (aij) is the inverse of the matrix (aij)�1.The proof of Lemma 4 is given in Appendix 4.Regarding the relation between M and M, we haveLemma 5 M =M\Gl(n;<) (49)The proof of Lemma 5 is given in Appendix 5.Let B[m�m] = [Bij]m�m be a matrix consisting of m � m blocks. To invert the Fisherinformation matrix, we need the following lemma regarding the inverse of a block matrixB[m�m] whose blocks belong to M.Lemma 6 If B[m�m] is a positive de�nite matrix with the blocks Bij 2 M, then the inverseB�1[m�m] has the same structure as B[m�m], namely, B�1[m�m] = [Bij ]m�m in which Bij 2M.The proof of Lemma 6 is given here since it includes procedures to compute the inverse of ablock matrix with blocks in M. These procedures will be referred to for several times in latersections.Proof of Lemma 6:We shall repeatedly apply the following 4-block matrix inverse formula in the current paper." B11 B12B21 B22 #�1 = " B11 B12B21 B22 #where B11 = B�111 +B�111 B12B�122;1B21B�111 ,B22;1 = B22 �B21B�111 B12,B22 = B�122;1, andB12 = (B21)T = �B�111 B12B�122;1:Since B[m�m] is positive de�nite, the diagonal blocks Bii in B[m�m] and B�1[m�m] are alsopositive de�nite. Let us �rst compute the inverse of [Bij]2�2. By Lemma 5, if an invertiblematrix belongs to M, it also belongs to M. So B11 2 M, and by Lemma 4 B�111 2 M. Sincethe equality (65) in Appendix 4 still holds inM, the setM is closed under the matrix product.It is easy to see that M is also closed under the operations such as the matrix summation andscaling. By Lemma 5, B22;1 2M, and so B�122;1 2M again by Lemma 4. Hence, Bij 2M fori 6= j. The proposition of Lemma 6 is proved for m = 2. Assume the proposition is true form = k � 1.Again, we apply the 4-block matrix inverse formula to the following 2� 2 block matrixB[k�k] = " B011 B012B021 B022 #12



where B011 = B[(k�1)�(k�1)]B012 = 264 B1;k...Bk�1;k 375B021 = [Bk;1; � � � ;Bk;k�1]B022 = Bkk:Because M is closed to the matrix product, summation and scaling, B022;1 = B022 �B021B0�111 B012 belongs to M by the inductive assumption that the proposition is true form = k � 1. Since B[k�k] is positive de�nite and so is B022;1 and B022 = B0�122;1. Similarly,we can prove that the blocks in B012, B021 and B011 belong toM. Therefore, we conclude thatthe proposition is also true for m = k.Q.E.D.4.2 Inverse of AijDe�ne matrices Cij = 264 c1;1ij � � � c1;mij� � � � � � � � �cm;1ij � � � cm;mij 375for 1 � i 6= j � m. Here, cklij are de�ned by (36). Applying Lemma 4-5, from Lemma 2 wehave the following theorem.Theorem 1 For 1 � i 6= j � m, Aij is invertible i� cij 6= 0 and the matrix Cij is invertible.When Aij is invertible, we have the following inverse formulaA�1ij = 1aiaj ( 1cij
0 + mXl;k=1 dlkijulvTk ) (50)where (dlkij ) = C�1ij .4.3 Inverse of the whole Fisher information matrixTo compute the inverse of the Fisher information matrix G = 1�2 [Aij ](m+2)�(m+2), we considerthe following partition of G: G = " G11 G12G21 G22 # (51)where G11 and G22 are the m � m and 2 � 2 block matrices respectively on the left-upperand right-lower corners of G. We �rst apply the 4-block matrix inverse formula to the abovepartition of G and then apply the procedures in the proof of Lemma 6 to compute the inverseof G11.
13



4.4 Complexity of computing the inverse of the Fisher information matrixThe method for computing G�1 given in the above section has low complexity when m � n.We de�ne the complexity of an algorithm by the time and space needed to run the algorithm.We count the time and space complexity by 
ops and units. A 
op is one multiplication orone addition. A unit is the memory space for a variable.One advantage of using the formulas (26) and (50) is to reduce the space complexity forstoring G. To store G directly, we need 12 (mn + 2m)(mn + 2m + 1) units. But, by usingthe representation (33), when m � n the space complexity for storing G is reduced to O(n)from O(n2) since the dual bases are shared by all blocks in G11. Here, G11 is de�ned in thepartition (51) of G.The dual bases fu1; � � � ;ung and fv1; � � � ;vng are used in the theoretical analysis. Thevectors fum+1; � � � ;ung are not needed in the representation (33) of Aij and the inverse for-mula (50). Normalizing the weight vectors fw1; � � � ;wmg, we obtain fu1; � � � ;umg with thetime complexity O(n). By the algorithm given in Remark 4, we can compute V 1 = [v1; � � � ;vm].The time complexity is also O(n).In the partition (51), the dimension of G11 is mn � mn and that of G22 is 2m � 2m.When m � n, the time complexity of computing G�1 is determined by that of computingG�111 which is computed by the procedures in the proof of Lemma 6 where the 4-block matrixinverse formula and Lemma 4-5 are repeatedly applied. In this process, G�111 is recursivelycomputed. The size of the working memory needed is still of order O(n2) since m � n. But,when m � n, the time complexity of computing G�111 is signi�cantly reduced from O(n3) byconventional methods such as the one in [11] to O(n2) by our method. In summary, we havethe following table to compare our method with the conventional methods:Table 1: The complexity of our method and the conventional methodsCost Conventional methods Our methodSpace to store G O(n2) O(n)Time to compute G�1 O(n3) O(n2)Working memory needed O(n2) O(n2)Since the explicit expressions (26) and (50) are suitable for parallel matrix computations,we can further reduce the time complexity by using a computer with distributed memorymultiprocessors.4.5 The Cramer-Rao lower bound for a committee machineFor a committee machine, we can further simplify the factor Tr(G�1(��)) in the Cramer-Raolower bound inequality (3). When ai = 1; bi = 0; i = 1; � � � ;m; the multi-layer perceptron(1) becomes a model for a committee machine. The dimension of the parameter space of thiscommittee machine is nm.The Fisher information matrix for the committee machine isG(�) = 1�2A[m�m] = 1�2 264 A11 � � � A1m� � � � � � � � �Am1 � � � Amm 375where � = (wT1 ; � � � ;wTm)T and Aij are the same as those for the multi-layer perceptron exceptai = 1. 14



By Lemma 6, G(�)�1 = �2A�1[m�m] = �2 264 A11 � � � A1m� � � � � � � � �Am1 � � � Amm 375where Aii 2M for all i and Aij 2M for i 6= j.Note for A = a0
0 +Pmk;l=1 aklukvTl 2M,Tr(A) = a0(n�m) + Tr((akl)) = a0(n�m) + mXk=1 akkbecause of the properties (30) and (31).Let Aii = ai0
0 +Pmk;l=1 akliiukvTl , thenTr(Aii) = ai0(n�m) + mXk=1akkii :Hence, Tr(G(�)�1) = �2Tr(A�1[m�m]) = �2 mXi=1Tr(Aii) = �2(c0(�) + c1(�)n)where c1(�) = mXi=1 ai0c0(�) = mXi;k=1 akkii � c1(�)m:So we have the following theorem which gives an order estimation of the Cramer-Rao lowerbound for the committee machine.Theorem 2 Assume m� n and G(�) is non-singular around ��, then the Cramer-Rao lowerbound inequality is E�� [kb�t � ��k2] � �2t (c0 + c1n) (52)where c0 = c0(��) and c1 = c1(��) are two constants not depending on the input dimension n.It is shown in [2] that the gradient descent learning rule (6) is Fisher e�cient. In particular,for the committee machine, by Theorem 2 the natural gradient descent rule gives the meansquare error E�� [k�t � ��k2] � �2t (c0 + c1n): (53)
15



5 Natural gradient vector �eld vs. ordinary vector �eldThe behaviors of the two learning dynamics (5) and (6) are characterized, respectively, by themean vector �elds v1(�) = E�� [ @l@� (zjx;�)] = E�� [266666664 @l@w1 (zjx;�)... @l@wm (zjx;�)@l@a(zjx;�)@l@b (zjx;�)
377777775] andv2(�) = E�� [G�1(�) @l@� (zjx;�)] = G�1(�)v1(�):Again, the expectation with respect to p(x; z;��) is denoted by E�� [�] and the samples (x; z)are independently drawn from the pdf p(x; z;��) for the teacher network:z = mXj=1 a�j'(w�Tj x+ b�j) + �:From (9)-(11), we haveE�� [ @l@wi (zjx;�)] = � 1�2E�� [ mXj=1(a�j'(w�Tj x+ b�j)� aj'(wTj x+ bj))ai'0(wTi x+ bi)x];E�� [ @l@a(zjx;�)] = � 1�2E�� [ mXj=1(a�j'(w�Tj x+ b�j )� aj'(wTj x+ bj))'(W Tx+ b)];E�� [ @l@b (zjx;�)] = � 1�2E�� [ mXj=1(a�j'(w�Tj x+ b�j)� aj'(wTj x+ bj))fa� '0(W Tx+ b)g]:The above two equations are used to compute the vector �eld v1(�). Note the �2 in v1(�) andG�1(�) are canceled in computing v2(�). So the vector �eld v2(�) does not depend on thenoise level �2.The following dynamic systems:d�dt = ��v1(�) (54)d�dt = ��v2(�) = ��G�1(�)v1(�) (55)characterize the averaging behaviors of the gradient descent algorithm (5) and the naturalgradient descent algorithm (6) respectively.To show the di�erence between the two mean vector �elds v1(�) and v2(�), we consider asimple committee machine with 2-dimensional input, 2 hidden neurons, a1 = a2 = 1 and thethresholds b1 = b2 = 0, and the 2 weight vectors wi with unit length kwik = 1. The weightvectors are reparameterized by wi = " cos(�i)sin(�i) # ; i = 1; 2:16



Let '(x) = tanh(x), �2 = 1 and ��1 = 0 and ��2 = 3�4 be the parameters for the teacher.Let � = (�1; �2). We calculate the mean vector �elds v1(�1; �2) and v2(�1; �2) in the sameway of deriving (54) and (55). The two mean vector �elds are plotted in Figure 1-2.Although the gradient descent system (54) and the natural gradient descent system (55)have the same set of �xed points, they generate di�erent 
ows. The convergence of the ordinarygradient 
ow towards �� is slower than the natural gradient 
ow especially along the diagonalline in the (�1; �2)-space. On average, the learning dynamics of the natural gradient descentalgorithm is optimized to achieve the Cramer-Rao lower bound.
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Figure 2: The mean vector �eld v2(�1; �2)6 Simulation6.1 Single-layer perceptronAssume the input xt is of dimension n = 7 subject to the Gaussian distribution xt � N(0; I).The output zt are generated by the model:zt = '(w�Txt) + �twhere '(u) = 1�e�u1+e�u and �t � N(0; �2). For the single-layer perceptron, z = '(wTx), we havethe two on-line algorithms based on the gradient descent (GD) and the natural GD methodsin the following forms:wt+1 = wt + �0(t)(zt � '(wTt xt))'0(wTt xt)xt (56)wt+1 = wt + �1(t)A�1(wt)(zt � '(wTt xt))'0(wTt xt)xt (57)where A�1(w) = 1d1(w)I + ( 1d2(w) � 1d1(w) )wwTw2 ; (58)di(w) = di(w; 0); i = 1; 2;di(w; b) was de�ned previously by (24) and (25), and �i(t) are two learning rate schedulesde�ned by �i(t) = �i 1 + ci�i t1 + ci�i t+ t2 ; i = 0; 1: (59)18



Here t is the iteration index. The learning rate function �i(t) is a special form of the followingsearch-then-converge schedules proposed in [7]:�(t) = � 1 + c� t�1 + c� t� + t2� : (60)t < � is a \search phase" and t > � is a \converge phase". The learning rate functions �i(t) donot have the search phase but they start learning with a weaker converge phase when �i aresmall. When t is large, each learning rate function �i(t) decreases as cit .In this example, we choose �0 = 1:25, �1 = 0:05, c0 = 8:75, and c1 = 1. These parametersare selected by trial and error to optimize the performance of the GD and the natural GDmethods at the noise level � = 0:2. The learning rate functions �0(t) and �1(t) are comparedin Figure 3 with their asymptotic curves cit .
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Figure 3: �0(t) vs. �1(t) when �0 = 1:25, �1 = 0:05, c0 = 8:75 and c1 = 1.A 7-dimensional vector is randomly chosen asw� for the teacher network. In this simulation,we choose w� = [�1:1043; 0:4302; 1:1978; 1:5317;�2:2946;�0:7866; 0:4428]T :The training examples are the Gaussian random inputs to the teacher network and its outputsin Gaussian noise. Let wt and ewt be the weight vectors driven by the equations (56) and (57)respectively. The error functions for the GD and the natural GD algorithms are kwt � w�kand k ewt �w�k:Let w� = kw�k. From the equation (58), we obtain the Cramer-Rao Lower Bound (CRLB)for the deviation at the true weight vector w�:CRLB(t) = �pts n� 1d1(w�) + 1d2(w�) : (61)19



The error functions are compared with the CRLB in Figure 4.
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Figure 4: Performance of the GD and the natural GD at di�erent noise levels � = 0:2; 0:4; 1.It is shown in Figure 4 that the natural GD algorithm reaches CRLB at di�erent noise levelswhile the GD algorithm reaches the CRLB only at the noise level � = 0:2. The robustnessof the natural gradient descent against the additive noise in the training examples is clearlyshown by this example.
6.2 Multi-layer perceptronLet us reconsider the simple committee machine with 2-dimensional input and 2-hidden neuronsgiven in Section 5. The problem is to train the following multi-layer perceptron:y = '(wT1 x) + '(wT2 x) (62)based on the examples f(xt; zt); t = 1; � � � ; Tg generated by the following stochastic committeemachine: zt = '(w�T1 xt) + '(w�T2 xt) + �t (63)with Gaussian noise �t � N(0; �2) and Gaussian input xt � N(0; I). Assume kw�i k = 1. Wecan reparameterize the weight vector to decrease the dimension of the parameter space from 4to 2: wi = " cos(�i)sin(�i) # ; w�i = " cos(��i )sin(��i ) # ; i = 1; 2:20



The parameter space is f� = (�1; �2)g. Assume the true parameters are ��1 = 0 and ��2 = 3�4 .Due to the symmetry, both ��1 = (0; 3�4 ) and ��2 = (3�4 ; 0) are true parameters. Let �t and �0tbe generated by the GD algorithm and the natural GD algorithm respectively. The errors aremeasured by "t = minfk�t � ��1k; k�t � ��2kg;"0t = minfk�0t � ��1k; k�0t � ��2kg:In this simulation, we �rst start the GD algorithm with the initial vector �0 = (0:1; 0:2) for80 iterations, then we start the natural GD algorithm using the estimates of the parametersobtained by the GD algorithm at the 80-th iteration as the initial for the natural GD algorithm.The noise level is � = 0:05. N independent runs are conducted to obtain "t(j) and "0t(j) forj = 1; � � � ; N: Averaging these errors, we obtain"t =vuut 1N NXj=1("t(j))2; and "0t =vuut 1N NXj=1("0t(j))2:The averaging errors "t and "0t for the two algorithms are compared with the CRLB in Figure 5for N = 10. The search-then-converge learning schedule (60) is used in the GD algorithm whilethe learning rate for the natural GD algorithm is simply the annealing rate 1k . The CRLB isgiven in Section 4.5 by Theorem 2.
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Figure 5: The GD vs. the natural GD7 ConclusionsThe natural gradient descent learning rule is statistically e�cient. It can be used to trainany adaptive system. But the complexity of this learning rule depends on the architecture of21



the learning machine. The main di�culty in implementing this learning rule is to computethe inverse of the Fisher information matrix of a large size. For a multi-layer perceptron, wehave shown an e�cient scheme to represent the Fisher information matrix based on which thespace for storing this large matrix is reduced to O(n) from O(n2). We have also shown analgorithm to compute the inverse of the Fisher information matrix. Its time complexity is oforder O(n2) when the input dimension n is much larger than the number of hidden neuronswhile the complexity of conventional algorithms for the same purpose is of order O(n3). Anintermediate result is an explicit CRLB formula for a committee machine.The simulation results have con�rmed the fast convergence and statistical e�ciency of thenatural gradient descent learning rule. It is also veri�ed that this learning rule is robust againstthe additive noise in the training examples.8 AppendixAppendix 1 Proof of Lemma 1:Let u1 = wi=wi and extend it to fu1; � � � ;ung an orthogonal basis of <n. The random inputx is decomposed as x = nXj=1 cjujwhere cj = xTuj. Because of x � N(0; I), cj are i.i.d. with N(0; 1). NoticingxxT = c21u1uT1 + nXj=2 cjc1(ujuT1 + u1uTj ) + nXj;k=2 cjckujuTk ;E[cj ] = 0 and E[cjck] = �j;k, we haveE[('0(wTi x+ bi))2xxT ]= E[('0(wic1 + bi))2c21]u1uT1 +E[('0(wic1 + bi))2c1]Pnj=2E[cj ](ujuT1 + u1uTj )+E[('0(wic1 + bi))2]Pnj;k=2E[cjck]ujuTk= E[('0(wic1 + bi))2c21]u1uT1 +E[('0(wic1 + bi))2]Pnj=2ujuTj= d2(wi; bi)u1uT1 + d1(wi; bi)Pnj=2 ujuTj :Since fuig are orthogonal, nXk=2uiuTi = I � u1uT1 :Therefore, E[('0(wTi x+ bi))2xxT ] = d1(wi; bi)I + (d2(wi; bi)� d1(wi; bi))u1uT1 :Q.E.D.Appendix 2 Proof of Lemma 2:Here we use the notations introduced before Lemma 2.Since uj = vj for j > m, we have xj = x0j for j > m; and E[xix0j ] = E[xixj] = �i;j fori; j > m.When k 6= l, E[xkx0l] = E[vTkxxTul] = vTkul = 0. Since xi and x0i are Gaussian, xk andx0l are independent when k 6= l. Therefore, fx01; � � � ; x0mg and fxm+1; � � � ; xng are independent.Applying this result, we simplify the following22



E['0(wTi x+ bi)'0(wTj x+ bj)xxT ]= E['0(wiuTi x+ bi)'0(wjuTj x+ bj)(Pnl=1 xlul)(Pnk=1 x0kvTk )]= E['0(wix0i+ bi)'0(wjx0j + bj)(Pml;k=1+Pml=1Pnk=m+1+Pnl=m+1Pmk=1+Pnl;k=m+1)xlx0kulvTk ]=Pml;k=1 clkijulvTk + cijPnl;k=m+1 �l;kulvTk +Term1 + Term2= cijPnk=m+1 ukuTk +Pml;k=1 clkijulvTk +Term1 + Term2where cij and clkij are de�ned by (35) and (36). Here,Term1 =Pml=1Pnk=m+1E['0(wix0i + bi)'0(wjx0j + bj)xlxk]uluTk andTerm2 =Pnl=m+1Pmk=1E['0(wix0i + bi)'0(wjx0j + bj)xlx0k]ulvTkare zero due to three reasons: 1) xl = Pms=1 rlsx0s for 1 � l � m, 2) fx01; � � � ; x0mg andfxm+1; � � � ; xng are independent and 3) E[xk] = 0. Finally, we obtain (33).By the de�nition V = (U�1)T , so Pnk=1 ukvTk = UV T = I and
0 = nXk=m+1ukuTk = I � mXk=1ukvTk :Q.E.D.Appendix 3 Proof of Lemma 3:Again, we shall apply the properties that fx01; � � � ; x0mg and fxm+1; � � � ; xng are independent tosimplify Ai;m+1 for 1 � i � m:Ai;m+1 = E['0(wTi x+ bi)x'(xTW + bT )]= E['0(wix0i + bi)( mXk=1x0kvk + nXk=m+1 x0kvk)('(w1x01 + b1); � � � ; '(wmx0m + bm)]= E['0(wix0i) mXk=1x0kvk('(w1x01 + b1); � � � ; '(wmx0m + bm)]+E['0(wix0i + bi) nXk=m+1x0kvk('(w1x01 + b1); � � � ; '(wmx0m + bm)]: (64)The �rst term on the right hand side (RHS) of the above equation (64) becomes( mXi=1 cki1vk; � � � ; mXi=1 ckimvk)where ckij are de�ned by (42). Since E[xk] = 0, the second term on the RHS of (64) is zero.Denote e'(uT ) = aT � '0(uT ) = [a1; � � � ; am'0(um)]:Similar to the derivation of Ai;m+1, we obtain the expression (64) for Ai;m+2.It is easy to obtain Am+1;m+1 = (bij)m�m wherebij = E['(wTi x+ bi)'(wTj x+ bj)] = E['(wix0i + bi)'(wjx0j + bj)]:bij are functions of bi, bj , wi, wj , and rij since E[x0ix0j] = rij for 1 � i; j � m. Similarly, weobtain (45) and (46).Q.E.D. 23



Appendix 4 Proof of Lemma 4:For eA = [a0; (aij)] 2 fM, de�ne  ( eA) = a0
0 + mXi;j=1aijuivTj :To show that  : fM ! M is one-to-one, we assume eB = [b0; (bij)] 2 fM and  ( eA) =  ( eB),i.e., a0
0 + mXi;j=1aijuivTj = b0
0 + mXi;j=1 bijuivTj :Since 
0uivTj = 0 for 1 � i; j � m, from the above equation we �rst obtain a0 = b0 thenaij = bij after applying the property (31). Therefore,  is a one-to-one mapping from fM toM. Let C =  ( eA) and C 0 =  ( eB), thenCC 0 = a0b0
0 + mXi;j;l;k=1aijblkuivTj ulvTk= a0b0
0 + mXi;j;l;k=1aijblk�j;luivTk = a0b0
0 + mXi;j;k=1aijbjkuivTk= a0b0
0 + mXi;k=1dikuivTk ; (65)where (dij) = (aij)(bij). So CC 0 =  ([a0b0; (aij)(bij)]), i.e., ( eA) ( eB) =  ( eA ? eB):Hence,  is an isomorphic mapping between fM and M, and M is a sub-group of Gl(n;<).For any element in M with the form C = a0
0 +Pmi;j=1 aijuivTj =  ([a0; (aij)]), to obtainthe inverse of C, we �rst compute the inverse in fMeA�1 = [ 1a0 ; (aij)�1]then the inverse in M C�1 =  ( eA�1) = 1a0
0 + mXi;j=1aijuivTjby the relation ( ( eA))�1 =  ( eA�1), where (aij) = (aij)�1.Q.E.D.Appendix 5 Proof of Lemma 5:It follows from Lemma 4: M�M\Gl(n;<):Let A 2M and det(A) 6= 0. From A = a0
0 +Pmi;j=1 aijuivTj , we haveAuk = a0uk for k = m+ 1; � � � ; n; andAuk = [u1; � � � ;um][a1k; � � � ; amk]T for k = 1; � � � ;m:24



So A[um+1; � � � ;un] = a0[um+1; � � � ;un] and A[u1; � � � ;um] = [u1; � � � ;um]B where B = (aij).Hence, AU = A[u1; � � � ;um;um+1; � � � ;un] = U " B 00 a0I # :Therefore, det(B)an�m0 = det(AU) 6= 0 which implies det(B) 6= 0 and a0 6= 0. So A 2M.Q.E.D.References[1] S. Amari. Di�erential-Geometrical Methods in Statistics, Lecture Notes in Statistics vol.28.Springer, 1985.[2] S. Amari. Natural gradient works e�ciently in learning. Accepted by Neural Computation,1997.[3] S. Amari. Neural learning in structured parameter spaces { natural Riemannian gradient.In Advances in Neural Information Processing Systems, 9, MIT Press: Cambridge, MA.(to appear), 1997.[4] S. Amari and N. Murata. Statistical theory of learning curves under entropic loss criterion.Neural Computation, 5:140{153, 1993.[5] S. Amari, N. Murata, K.-R. M�uller, M. Finke, and H. H. Yang. Asymptotic statisticaltheory of overtraining and cross-validation. IEEE Trans. on Neural Networks, page toappear, 1997.[6] J.-F. Cardoso and B. Laheld. Equivariant adaptive source separation. IEEE Trans. onSignal Processing, 44(12):3017{3030, December 1996.[7] C. Darken and J. Moody. Towards faster stochastic gradient search. In Advances inNeural Information Processing Systems, 4, eds. Moody, Hanson, and Lippmann, MorganKaufmann, San Mateo, pages 1009{1016, 1992.[8] R. A. Jacobs. Increased rates of convergence through learning rate adaptation. NeuralNetworks, 1:295{307, 1988.[9] M. K. Murray and J. W. Rice. Di�erential Geometry and Statistics . New York: Chapman& Hall, 1993.[10] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press,1996.[11] G. W. Stewart. Introduction to Matrix Computations. New York: Academic Press, 1973.[12] A. Stuart and J. K. Ord. Kendall's Advanced Theory of Statistics. Edward Arnold, 1994.
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