
1 Solving Equations

In this chapter we consider the methods for solving a set of M simultaneous

equations of N variables:







f1(x!,) = f1(x) = 0

· · · · · · · · ·
fM (x1, · · · , xN)) = fM (x) = 0

(1.1)

wherex = [x1, · · · , xN]T ∈ R
N is an N-D column vector, a point in the N-D

vector space R
N spanned by {x1, · · · , xN}. We further define f = [f1, · · · , fM]T

as an M-D column vector, and represent this equation system more concisely as

f(x) = 0.

Geometrically, a function f(x) defined over this space RN is a hypersurface

in the N+1 dimensional space, of which the N+1st dimension represents the

function value y = f(x) corresponding to a point x in the N-D space. The roots

or zeros of function f(x), i.e., the solutions of equation f(x) = 0, are all the

points on a hypercurve in the N-D space, as the intersection of the hypersurface

y = f(x) and the hyperplane y = 0, if they do intersect.

In general, no closed-form solution exists for a nonlinear equation system and

the number of solutions is unknown. We therefore have to rely on numerical

methods to find iteratively one or more such solutions if they do exist from an

initial guess of the solution.

For example, in the special case of M = N = 2, functions f1(x1, x2) and

f2(x1, x2) are two surfaces defined over the 2-D space spanned by x1 and x2,

and the roots of each of the two functions are on a curve as the intersection

of the corresponding surface and the 2-D space. The solutions of the system

composed of the two equations f1 = 0 and f2 = 0 are the intersection of these

two curves, if they do intersect, otherwise no solution exists.

Example: Consider a simultaneous equation system:

{

f1(x, y) = x2 + y2 − 2 = 0

f2(x, y) = x+ y − C = 0

The first function f1(x, y) is a parabolic cone centrally symmetric to the ver-

tical axis, and its roots form a circle x2 + y2 = 2 on the x-y plane centered at

the origin (0, 0) with radius 1; the second function f2(x, y) is a plane through

user
Callout
This chapter would benefit from an introduction, explaining what a system of equations is, what it means to solve one, why (in broad terms) it's important to know this for ML, and what concrete skills and knowledge the reader will gain from the chapter.

user
Callout
add space

user
Callout
Readers will probably understand what a column vector is, but "N-D" should be defined as N-dimensional.

user
Callout
If readers are unfamiliar with linear algebra, they may need the concept of functions on vectors explained.

user
Callout
"Hypersurface" should be defined.

user
Callout
Keep notation consistent—y is an outcome variable, and entries in a vector are xi.

user
Callout
Some students have trouble understanding the geometric applications of vectors and vector functions until they fully understand what a function of a vector is. Consider defining vector functions mathematically as well as geometrically. (E.g., a vector is a set of variables, and a function of the vector is a mathematical expression that assigns each combination of values of those variables to an outcome value. Then give an example!)

user
Callout
The concept of a function of a vector should be explained before the concept of a system of equations of vectors.

user
Callout
This paragraph belongs at the end of the section.

4 Solving Equations

the origin, and its roots form a straight line y = C − x on the x-y plane. The

solutions of the equation system are where the two curves intersect:

• If C = 0, there are two solutions (1, −1) and (−1, 1);
• If C = 2, there is only one solution (1, 1);

• If C = 3, the two curves do not intersect, i.e., no solution exists.

1.1 Linear Equation Systems

Consider a linear equation system of M equations and N variables:










∑N
j=1 a1jxj − b1 = 0

· · ·
∑N
j=1 aMjxj − bM = 0

(1.2)

which can be expressed in vector form:

f(x) = Ax− b = 0 (1.3)

where

A =







a11 · · · a1N
...

. . .
...

aM1 · · · aMN






, x =







x1
...

xN






, b =







b1
...

bM






(1.4)

In general, the existence and uniqueness of the solution x can be determined by

the fundamental theorem of linear algebra, (see Table 3 in Section A.19), based

on the rank R of the coefficient matrix A and whether the system is underde-

termined (underconstrained) if M < N , or overdetermined (overcostrained) if

M > N .

Specially if R = M = N , A is full rank square matrix and its inverse A−1

exists. Then the system has a unique solution x = A−1b.

But if M > N = R and b is not in the column space of A, the system

is overconstrained without a solution. In this case we can still find an optimal

approximated solution. We first define the residual of the system as r = b−Ax,

and then define the sum-of-squares error (SSE) as:

ε(x) =
1

2
||r||2 =

1

2
rT r =

1

2
(b−Ax)T (b−Ax)

=
1

2

(

bTb− xTATb− bTAx+ xTATAx
)

(1.5)

To find the optimal solution x∗ that minimizes ε, we set its derivative with

respect to x to zero (see section A.18 for differentiation with respect to a vector

variable):

d

dx
ε(x) =

1

2

d

dx
||r||2 =

1

2

d

dx

(

bTb− xTATb− bTAx+ xTATAx
)

= −ATb+ATAx = 0 (1.6)

user
Sticky Note
"This can be expressed in vector form:"

user
Sticky Note
"If R = M = N,"

user
Sticky Note
"is a full"

user
Sticky Note
Paragraph break here.

user
Callout
Before getting into the math, describe in plain language what you're going to do: create an equation that, when minimized, will provide values for the parameters that result in the minimum difference between b and Ax (since, in the true answer, we would expect that difference to be 0).

1.1 Linear Equation Systems 5

Solving this matrix equation we get

x =
(

ATA
)−1

ATb = A−b (1.7)

where A− =
(

ATA
)−1

AT is the pseudo-inverse (Section A.15) of the non-

square matrix A.

If the M equations are barely independent, is the N × N matrix ATA it

still has a full rank R = N and is invertible, but it is a near-singular matrix.

In this case some of its eigenvalues is very close to zero, and correspondingly

some of the eigenvalues of its inverse (ATA)−1 may be huge. Consequently the

system becomes ill-conditioned or ill-posed, in the sense that a small change in

the system (in either A or b) due to noise may cause a large change in the

solution x.

This ill-posted problem can be addressed by regularization, by which the solu-

tion x is under control so that it will not take unreasonably high values. Specif-

ically we construct an objective function that contains a penalty term for large

x, as well as the error term ε = ||r||2/2:

J(x) =
1

2
||r||2 + λ

2
||x||2 (1.8)

By minimizing J(x), we can obtain a solution x of small norm ||x|| as well as

low error ε(x). Same as before, the solution x can be obtained by setting the

derivative of J(x) to zero

d

dx
J(x) = −ATb+ATAx+ λx = 0 (1.9)

and solving the resulting equation to get:

x = (ATA+ λI)−1ATb (1.10)

We see that even if ATA is near singular, matrix ATA + λI is not due to the

additional term λI.

By adjusting the hyperparameter λ, we can make a proper tradeoff between

accuracy and stability.

• Small λ: the solution is more accurate but less stable as it is more prone to

noise, i.e., the variance error may be large. This is called overfitting;

• Large λ: the solution is less accurate but more stable as it is less affacted by

noise. This is called underfitting.

The issue of overfitting versus underfitting is of central importance in machine

learning in general, and will be more formally addressed while discussing varioius

regression and classification algorithms in some later Chapters.

user
Callout
I'm not familiar with the term "barely independent." If it's a technical term, it should be defined; if not, consider rephrasing to make your meaning clearer.

user
Sticky Note
"some of its eigenvalues are"

user
Sticky Note
"The system is ill-conditioned, or ill-posed, which means that"

user
Sticky Note
Italicize "ill-conditioned" and "ill-posed"

user
Sticky Note
ill-posed

user
Sticky Note
in which

user
Sticky Note
"is controlled"

user
Callout
"Specifically" is not necessary here.

user
Callout
"Objective function" should be defined.

user
Callout
"Hyperparameter" should be defined.

user
Sticky Note
"Just as before"

user
Callout
Before discussing what the solution is, describe in plain language what lambda is. (This would be a good place to define "hyperparameter.")

user
Sticky Note
"affected"

user
Sticky Note
"various"

6 Solving Equations

Figure 1.1 Bisection Search

1.2 The Bisection and Secant methods

Here we consider a set of methods that find the solution x∗ of a single-variable

nonlinear equation f(x) = 0, by searching iteratively through a neighborhood of

the domain, in which x∗ is known to be located.

The bisection search

This method requires two initial guesses x0 < x1 satisfying f(x0)f(x1) < 0.

As f(x0) and f(x1) are on opposite sides of the x-axis y = 0, the solution x∗

at which f(x∗) = 0 must reside somewhere in between of these two guesses, i.e.,

x0 < x∗ < x1.

Given such two end points x0 and x1, we find another point x2 in between

and use it to replace one of the end points at which the function value f(x)

has the same sign as that of f(x2). The new search interval is a = x2 − x0 if

f(x2)f(x1) > 0, or b = x1−x2 if f(x0)f(x2) > 0, either of which is smaller than

the previous interval a+ b = x1− x0. This process is then carried out iteratively

until the solution is eventually approached, with a guaranteed convergence.

While any point between the two end points can be chosen for the next it-

eration, we want to avoid the worst possible case in which the solution always

happens to be in the larger of the two sections a and b. We can therefore choose

the middle point between the two end points, i.e., x2 = (x0 + x1)/2, so that

a = b = (x1 − x0)/2, i.e., the new search interval is always halved in each step

of the iteration:

xn+1 =
xn + xn−1

2
(1.11)

Here, without loss of generality, we have assumed f(xn−1)f(xn+1) > 0 and xn−1

is replaced by xn+1.

For example, we assume the root is located at x∗ = 2.2 between the two initial

values are x0 = 0 and x1 = 8, then we get

user
Callout
Inconsistent capitalization. This should be either "The Bisection and Secant Methods" or "The bisection and secant methods."

user
Callout
The shift from linear equation systems to nonlinear ones is big, and it's easy to miss in this introduction. Adding some introductory text about nonlinear equations and why the problem of solving them is different than solving linear equation systems would help to ground the reader in what they're about to learn.

user
Callout
Starting out with a brief, broad description of what the bisection method does would help readers to understand the more detailed explanation.

user
Callout
This explanation would be clearer if it broke down the method into smaller steps: Start with two end points; find the midpoint; check the sign of the midpoint; replace the endpoint with the same sign as the midpoint with the midpoint.

user
Callout
Define "convergence."

user
Callout
The method will be clearer if the final version of the algorithm is described, so instead of "another point," we find the midpoint. Then in the next paragraph, you can explain why the midpoint is used.

1.2 The Bisection and Secant methods 7

Figure 1.2

n 0 1 2 3 4 5 6 7 8

xn 0 8 4 2 3 2.5 2.25 2.125 · · ·
|en| 2.2 5.8 1.8 0.2 0.8 0.3 0.05 0.075 · · ·

(1.12)

Note that the error |en| = |xn − x∗| does not necessarily always reduce mono-

tonically. However, as in each iteration the search interval is always halved, the

worst possible error is also halved:

|en+1| = |xn+1 − x∗| ≤
|xn − xn−1|

2
=
|x0 − x1|

2n
≈ |en|

2
(1.13)

i.e., the convergence of the iteration is linear (of order p = 1) and the rate of

convergence is 1/2:

lim
n→∞

|en+1|
|en|p

= lim
n→∞

|en+1|
|en|

≤ µ =
1

2
(1.14)

Compared to other methods to be considered later, the bisection method con-

verges rather slowly, but one of the advantages of the bisection method is that

no derivative of the given function is needed. This means the given function f(x)

does not need to be differentiable.

The Secant method

Same as in the bisection method, here again we assume there are two initial

values x0 and x1 available, but they do not have to satisfy f(x0)f(x1) < 0. Here

the iteration is based on the zero-crossing of the secant line passing through the

two points f(x0) and f(x1), instead of their middle point. The equation for the

secant is:
y − f(x0)
x− x0

=
f(x1)− f(x0)

x1 − x0
(1.15)

At the zero crossing, y = 0 and the equation above can be solved for x, the

position of the zero-crossing:

x = x0 −
x1 − x0

f(x1)− f(x0)
f(x0) = x0 −

f(x0)

f̂ ′(x0)
(1.16)

where f̂ ′(x0) is the finite difference that approximates the derivative f ′(x0):

f̂ ′(x0) =
f(x1)− f(x0)

x1 − x0
=

∆f(x0)

∆x0

∆x0→0
=⇒ f ′(x0) (1.17)

The new value x obtained above, as a better estimate of the root than either x0
or x1, is used to replace one of them:

user
Callout
This figure would be clearer if the endpoints and midpoints used by the search were labeled.

user
Callout
"Order" and "rate" of convergence should be defined.

user
Sticky Note
"As in the bisection method"

user
Sticky Note
Cut "here again"

user
Callout
This is confusingly worded. Instead of relying on the algorithm description from the bisection method, describe the steps of the secant method.

user
Callout
Undergraduate students are used to seeing equations for lines in point-slope format. Consider first defining the equation for the secant with y alone on the left side, and then explaining the traditional representation.

user
Callout
Why is the new value of x a better estimate of the root? This is the heart of the method, and won't be obvious to an undergraduate reader. An explanation, after the algorithm has been outlined, would help the reader to understand why the method works.

8 Solving Equations

• If f(x0)f(x1) < 0, then xi (i = 0, 1) satisfying f(xi)f(x) > 0 is replaced by

x2 = x (same as the bisection method);

• If f(x0)f(x1) > 0, then xi (i = 0, 1) with greater |f(xi)| is replaced by x2 = x.

This process is then carried out iteratively to approach the root:

xn+1 = xn −
f(xn)

f̂ ′(xn)
(1.18)

In case f(xn) = f(xn−1), the approximated derivative is zero f̂ ′(xn) = 0, and

xn+1 cannot be found. In such a case, a root may exist between xn and xn−1.

Therefore the way to resolve this problem is to combine the bisection search with

the secant method so that when f̂ ′ = 0, the algorithm will switch to bisection

search. This is Dekker’s method:

xn+1 =

{

xn − f(xn)/f̂ ′(xn) if f(xn) 6= f(xn−1)

(xn + xn−1)/2 otherwise
(1.19)

We now consider the order of convergence of the secant method. Let x∗ be the

root at which f(x∗) = 0. The error of xn+1 is:

en+1 = xn+1 − x∗ = xn −
xn − xn−1

f(xn)− f(xn−1)
f(xn)− x∗

=
(xn−1 − x∗)f(xn)− (xn − x∗)f(xn−1)

f(xn)− f(xn−1)
=
en−1f(xn)− enf(xn−1)

f(xn)− f(xn−1)
(1.20)

Consider the Taylor expansion of f(xn):

f(xn) = f(x∗+en) = f(x∗)+f ′(x∗)en+
1

2
f ′′(x∗)e2n+O(e

3
n) = f ′(x∗)en+

1

2
f ′′(x∗)e2n+O(e

3
n)

(1.21)

(as f(x∗) = 0) and similarly

f(xn−1) = f ′(x∗)en−1 +
1

2
f ′′(x∗)e2n−1 +O(e3n−1) (1.22)

Substituting these into the expression for en+1 above we get

en+1 =
en−1[f

′(x∗)en + 1
2f

′′(x∗)e2n +O(e3n)]− en[f ′(x∗)en−1 +
1
2f

′′(x∗)e2n−1 +O(e3n−1)]

[f ′(x∗)en + 1
2f

′′(x∗)e2n +O(e3n)]− [f ′(x∗)en−1 +
1
2f

′′(x∗)e2n−1 +O(e3n−1)]

=
en−1enf

′′(x∗)(en − en−1)/2 +O(e4n−1)

(en − en−1)f ′(x∗) + (e2n − e2n+1)f
′′(x∗)/2 +O(e3n−1)

=
en−1enf

′′(x∗)/2 +O(e3n−1)

f ′(x∗) + (en + en+1)f ′′(x∗)/2 +O(e2n−1)

=
en−1enf

′′(x∗)/2 +O(e3n−1)

f ′(x∗) +O(en) +O(e2n−1)
(1.23)

When n → ∞, the lowest order terms in both the numerator and denominator

user
Callout
These calculations are lengthy and complex, and may be intimidating to an undergraduate who is unfamiliar with orders of convergence and with the styles of proof used in academic articles. Consider moving the calculations to an appendix, and just providing the readers with the order and rate of convergence.

user
Callout
This would be clearer to an undergraduate reader if instead of "x_i (i = 0, 1) satisfying f(x_i)f(x) > 0" were instead written in plain language describing which endpoint is replaced.

1.2 The Bisection and Secant methods 9

become the dominant terms as all other higher order terms approach to zero,

and we have

en+1 =
en−1enf

′′(x∗)

2f ′(x∗)
= C enen−1 (1.24)

where we have defined a constant C = f ′′(x∗)/2f ′(x∗). To find the order of

convergence, we need to find p in

|en+1| ≤ |C| |en−1| |en| = µ|en|p (1.25)

Solving this equation for |en| we get

|en| =
(|C|
µ
|en−1|

)1/(p−1)

=

(|C|
µ

)1/(p−1)

|en−1|1/(p−1) (1.26)

On the other hand, when n→∞ we also have

|en| = µ|en−1|p (1.27)

Equating the right-hand sides of the two equations above we get

(|C|
µ

)1/(p−1)

|en−1|1/(p−1) = µ|en−1|p (1.28)

which requires the following two equations to hold:

p =
1

p− 1
, µ =

(|C|
µ

)1/(p−1)

=

(|C|
µ

)p

(1.29)

These two equations can be solved separately to get

p =
1 +
√
5

2
= 1.618, µ = |C|p/(p+1) = C(

√
5−1)/2 = |C|0.618 (1.30)

i.e.,

|en+1| = µ|en|p = |C|0.618|en|1.618 =

∣

∣

∣

∣

f ′′(x)

2f ′(x)

∣

∣

∣

∣

0.618

|en|1.618 (1.31)

or

lim
n→∞

|en+1|
|en|1.618

= µ = |C|0.618 (1.32)

We see that the rate of convergence for the secant method is µ = |C|0.618 and the

order of convergence is p = 1.618, which is better than the linear convergence of

the bisection search (which does not use the information of the specific function

f(x)), but worse than quadratic convergence of the Newton-Raphson method

based on the function derivative f ′(x) instead of the approximation f̂ ′(x), to be

considered in the next section.

The inverse quadratic interpolation

Similar to the secant method that approximates the given function f(x) by a

straight line that goes through two consecutive points {xn, f(xn)} and {xn−1, f(xn−1)},
the inverse quadratic interpolation method approximates the function by a quadratic

user
Callout
The Newton-Raphson method hasn't been introduced yet, so mentioning it here is confusing to the reader. Save the comparison of this new method's convergence for after you've introduced it.

user
Sticky Note
"the root of a given function"

10 Solving Equations

curve that goes through three consecutive points {xi, f(xi)), (i = n, n−1, n−
2)}. As the function may be better approximated by a quadratic curve rather

than a straight line, the iteration is likely to converge more quickly.

In general, any function y = f(x) can be approximated by a quadratic function

q(x) based on three points at y0 = f(x0), y1 = f(x1), and y2 = f(x2) by the

Lagrange interpolation:

y = q(x) =
(x− x1)(x− x2)
(x0 − x1)(x0 − x2)

y0+
(x− x0)(x − x2)
(x1 − x0)(x1 − x2)

y1+
(x − y0)(x − x1)
(x2 − x0)(x2 − x1)

y2

(1.33)

However, here we use the interpolation x = q−1(y) to approximate the inverse

(horizontal) function x = f−1(y):

x = q−1(y) =
(y − y1)(y − y2)
(y0 − y1)(y0 − y2)

x0+
(y − y0)(y − y2)
(y1 − y0)(y1 − y2)

x1+
(y − y0)(y − y1)
(y2 − y0)(y2 − y1)

x2

(1.34)

Obviously when y = 0, the corresponding x is the zero-crossing of x = q−1(y):

x3 = q−1(y)
∣

∣

y=0
=

y1y2
(y0 − y1)(y0 − y2)

x0+
y0y2

(y1 − y0)(y1 − y2)
x1+

y0y1
(y2 − y0)(y2 − y1)

x2

(1.35)

which can be used as an estimate of the root x∗ of y = f(x). This expression

can then be converted into an iteration by which the next root estimate xn+1 is

computed based on the previous three estimates at xn, xn−1, and xn−2.

1.3 Fixed point iteration

We first consider the special case of solving the equation f(x) = 0 when M =

N = 1. To find a solution x∗ that satisfies the quation f(x) = 0, we can first

convert it into an equivalent equation g(x) = x, in the sense that an x satisfying

one of the equations will also satisfy the other, and then carry out an iteration

xn+1 = g(xn) from some initial value x0. If the iteration converges at a point

x∗, i.e., g(x∗) = x∗, then we also have f(x∗) = 0, i.e., x∗ is a solution of the

equation f(x) = 0. Consider the following examples:

Example 1

To solve the equation

f(x) = log(x)− 0.5 = 0

we can first construct another function

g(x) = x− f(x) = x− log(x) + 0.5

so that the equation g(x) = x is indeed equivalent to the given equation f(x) = 0.

We then carry out the iteration xn+1 = g(xn) from some initial value, such as

x0 = 0.5, and get:

user
Callout
This won't necessarily be obvious to undergraduate readers. Cut "obviously."

user
Callout
"Horizontal function" is an unusual term. If this is meant to be a reference to the horizontal line test for an invertible function, that should be explained in greater detail.

user
Sticky Note
"called the Lagrange interpolation"

user
Callout
It's clearer to describe the algorithm step-by-step. First determine the initial three root estimates (how?); then estimate the root using the inverse Langrange function on those three values; then subsitute the new root estimate for the oldest of the three points; iterate until convergence.

user
Callout
You're defining "equivalent" as it applies to equations, so the word should italicized. The definition would also be clearer as its own sentence: "we can first convert it into an equivalent equation g(x)=x. An equivalent equation is..."

user
Callout
Line breaks before and after examples, and/or boxes around them, will make the text easier to read.

user
Sticky Note
"is equivalent"

user
Callout
This would be clearer if phrased in the order in which the actions take place: We set x_0 = 0.5, and then iterate.

1.3 Fixed point iteration 11

n xn g(xn) f(xn)

0 0.50000 1.69315 −1.19315
1 1.69315 1.66656 0.02659

2 1.66656 1.65580 0.01076

3 1.65580 1.65152 0.00428

4 1.65152 1.64982 0.00169

5 1.64982 1.64915 0.00067

6 1.64916 1.64889 0.00026

7 1.64889 1.64879 0.00010

8 1.64879 1.64875 0.00004

9 1.64875 1.64873 0.00002

10 1.64873 1.64873 0.00001

11 1.64873 1.64872 0.00000

12 1.64872 1.64872 0.00000

We see that the iteration converges to x∗ = lim
n→∞

g(xn) = 1.64872 satisfying

g(x∗) = x∗ − f(x∗) = x∗, and, equivalently, x∗ is also the solution of the given

equation f(x) = 0.5− log(x) = 0:

0.5− log(1.64872) = 0, i.e., e0.5 =
√
e = 1.64872

Alternatively, we could construct a different function also equivalent to f(x) = 0:

g(x) = x+ f(x) = x+ log(x)− 0.5

But this iteration no longer converges. Why does it not work?

Example 2

f(x) = ex − 1/x = 0

We first convert this equation into an equivalent form

g(x) = x = e−x

and then carry out the iteration:

xn+1 = g(xn) = e−xn n→∞
=⇒ x∗ = 0.5671

which is the root of the given equation f(x) = ex − 1/x = 0, i.e., e−0.5671 =

0.5671.

Alternatively, the given equation can also be converted into a different form

g(x) = x = − ln(x). However, the iteration based on this function no longer

converges.

Why does this iterative method work in some cases but fails in others? To

answer these questions we need to understand the theory behind the method,

the fixed point of a contraction function.

user
Callout
This table should be numbered.

user
Callout
The placement of this example makes it seem like it's going to answer the question posed in the previous line. Since it doesn't (and also doesn't provide any other new information) consider cutting this example and going directly to the answer.

user
Sticky Note
"fail"

12 Solving Equations

If a single variable function g(x) satisfies

|g(x1)− g(x2)| ≤ k|x1 − x2|, k ≥ 0 (1.36)

it is Lipschitz continuous, and k is a Lipschitz constant. Specially, if k = 1,

then g(x) is a non-expansive function, if 0 ≤ k < 1, then g(x) is a contraction

function or simply a contraction. These concepts can be generated to functions

of multivariables x = [x1, · · · , xN]T ∈ RN (a point in an N-D metric space V):

gn(x) = gn(x1, · · · , xN), (n = 1, · · · , N) (1.37)

which can also be expressed in vector form:

g(x) = [g1(x), · · · , gN(x)]T (1.38)

Definition: In a metric space V with certain distance d(x, y) defined between

any two points x, y ∈ V , a function g : V → V is a contraction if

d(g(x), g(y)) ≤ k d(x, y) (1.39)

The smallest k value that satisfies the above is called the (best) Lipschitz con-

stant.

Intuitively, a contraction reduces the distance between points in the space,

i.e., it brings them closer together. A function g(x) may not be a contraction

through out its entire domain, but it can be a contraction in the neighborhood

of a certain point x∗ ∈ V , in which any x is sufficiently close to x∗ so that

d(g(x),g(x∗)) ≤ k d(x,x∗), 0 ≤ k < 1, when d(x,x∗) < ǫ > 0 (1.40)

Definition: A fixed point x∗ of a function g(x) is a point in its domain that

is mapped to itself:

x∗ = g(x∗) (1.41)

We immediately have

g(g(x∗)) = g2(x∗) = x∗, · · · · · · ,g(g(g(· · · g(x∗) · · ·))) = gn(x∗) = x∗ (1.42)

A fixed point x∗ is an attractive fixed point if any point x in its neighborhood

converges to x∗, i.e., lim
n→∞

gn(x) = x∗.

Fixed Point Theorem : Let g(x) be a contraction function satisfying

d(g(x)− g(y)) ≤ k d(x− y) (0 ≤ k < 1) (1.43)

then there exists a unique fixed point x∗ = g(x∗), which can be found by an

iteration from an arbitrary initial point x0:

lim
n→∞

xn = lim
n→∞

g(xn−1) = lim
n→∞

g2(xn−2) = · · · = lim
n→∞

gn(x0) = x∗ (1.44)

Proof

user
Callout
Cut "specially."

user
Sticky Note
"can be applied to"

user
Callout
"Multivariables" is an unusual term that is not defined in the text. Substitute "vectors."

user
Callout
The definition of a function on a vector should be placed before the first time functions of vectors are discussed, earlier in the chapter.

user
Sticky Note
"with the distance"

user
Callout
"Best" is part of the term and should not be in parentheses.

user
Callout
Overly formal language. Also, undergraduate readers may not immediately make this leap. An explanation of what's happening (the function can be applied to its own output any number of times, and will have the same result) will make things clearer. Since it's novel notation, gn(x) should also be explicitly defined.

user
Callout
If this is a definition of "neighborhood," the term should be italicized, and the definition should be rephrased to make that clearer.

user
Callout
What is sigma in this expression?

user
Callout
This definition would be better placed at the beginning of the chapter, so that readers understand why the method is called "fixed point interation."

user
Callout
This proof is long, complex, and unnecessary to understand why some fixed-point iterations don't converge. Consider moving to an appendix.

1.3 Fixed point iteration 13

Here the distance d(x−y) is specifically defined as the p-norm (section A.16)

of the vector x− y:

d(x, y) = ||x− y||p =
(

N
∑

n=1

(xn − yn)p
)1/p

(1.45)

where p ≥ 1, e.g., p = 1, 2,∞. Also, for conveninece, we can drop p so that

d(x, y) = ||x− y||.

• We first prove constructively the existence of a fixed point. As g(x) is a

contraction, we have

||xn+1−xn|| = ||g(xn)−g(xn−1)|| ≤ k||xn−xn−1|| ≤ k2||xn−1−xn−2|| ≤ · · · ≤ kn||x1−x0||
(1.46)

As 0 ≤ k < 1, we have lim
n→∞

||xn+1 − xn|| = 0. This is a Cauchy sequence

(Section A.1) that converges to some point lim
n→∞

xn = x∗ also in the space.

We further have

g(x∗) = g(lim
n→∞

xn) = lim
n→∞

g(xn) = lim
n→∞

xn+1 = x∗ (1.47)

i.e., the limit of the Cauchy sequence lim
n→∞

xn = x∗ is a fixed point.

• We next prove the uniqueness of the fixed point. Let x∗
1 and x∗

2 be two fixed

points of g(x), then we have

||g(x∗
1)− g(x∗

2)|| ≤ k||x∗
1 − x∗

2|| = k||g(x∗
1)− g(x∗

2)|| (1.48)

For any k 6= 0, the above holds only if ||x∗
1 − x∗

2|| = ||g(x∗
1)− f(x∗

2)|| = 0,

i.e., x∗
1 = x∗

2 is the unique fixed point.

QED

Theorem: Let x∗ = g(x∗) be a fixed point of a differentiable function g(x),

i.e, ∂gi/∂xj exists for any 1 ≤ i, j ≤ N . If the norm of the Jacobian matrix is

smaller than 1, ||Jg(x
∗)|| < 1, then g(x) is a contraction at x∗.

The Jacobian matrix of g(x) is defined as

g′(x) = Jg(x) =







∂g1
∂x1

· · · ∂g1
∂xN

...
. . .

...
∂gN
∂x1

· · · ∂gN
∂xN






(1.49)

Proof:

Consider the Taylor expansion (Section A.22) of the function g(x) in the

neighborhood of x∗:

g(x) = g(x∗)+g′(x∗)(x−x∗)+R(x−x∗) = g(x∗)+Jg(x
∗)(x−x∗)+R(x−x∗)

(1.50)

where R(x−x∗) is the remainder composed of second and higher order terms of

δ = x− x∗. Subtracting g(x∗) and taking any p-norm on both sides, we get

||g(x) − g(x∗)||p = ||Jg(x
∗)(x − x∗) +R(x− x∗)||p (1.51)

user
Callout
Similarly, this proof is complex and not necessary to understand the point. Explaining the conditions under which g(x) is a contraction and moving the proof to an appendix would be clearer.

14 Solving Equations

When x → x∗, the second and higher order terms of x− x∗ disappear and

R(x− x∗)→ 0, we have

||g(x)− g(x∗)||p = ||Jg(x
∗)(x− x∗)||p ≤ ||Jg(x

∗)||p · ||x− x∗||p, (1.52)

The inequality is due to the Cauchy-Schwarz inequality (Section A.1) if ||Jg(x
∗)|| <

1, the function g(x) is a contraction at x∗.
QED

In particular, for a single-variable function in an N = 1 dimensional space, we

have

g(x)− g(x∗) = g′(x∗)(x − x∗) + 1

2
g′′(x∗)(x− x∗)2 +R(x− x∗) (1.53)

and

|g(x)− g(x∗)| ≤ |g′(x∗)(x − x∗)| ≤ |g′(x∗)| |(x− x∗)| (1.54)

If |g′(x)| < 1, then g(x) is a contraction at x∗.
Now we understand why in the examples of the previous section the iteration

leads to convergence in some cases but divergence in other cases: if |g′(x)| < 1,

the iteration will converge to the root x∗ of f(x) = 0, but if |g′(x)| > 1, it never

will never converge.

The iterative process xn+1 = g(xn) for finding the fixed point of a single-

variable function g(x) can be shown graphically as the intersections of the func-

tion y = g(x) and the identity function y = x, as shown below. The iteration

converges in the first two cases as |g′(x)| < 1, but it diverges in the last two

cases as |g′(x)| > 1.

We next find the order of convergence of the fixed point iteration. Consider

lim
n→∞

|en+1|
|en|

= lim
n→∞

|xn+1 − x∗|
|xn − x∗|

= lim
n→∞

|g(xn)− g(x∗)|
|xn − x∗|

= |g′(x∗)| = µ < 1

(1.55)

We see that in general the fixed point iteration converges linearly. However, if

the iteration function g(x) has zero derivative at the fixed point g′(x∗) = 0, we

have

g(x)−g(x∗) = g′(x∗)(x−x∗)+1

2
g′′(x∗)(x−x∗)2+R(x−x∗) = 1

2
g′′(x∗)(x−x∗)2+R(x−x∗)

(1.56)

and the iteration converges quadratically:

lim
n→∞

|en+1|
|en|2

= lim
n→∞

|xn+1 − x∗|
|xn − x∗|2

= lim
n→∞

|g(xn)− g(x∗)|
|xn − x∗|2

=
1

2
|g′′(x∗)| = constant

(1.57)

Moreover, if g′′(x∗) = 0, then the iteration converges cubically.

Consider a specific iteration function in the form of g(x) = x−f(x)φ(x), which
is equivalent to f(x) = 0, as if x∗ is the root of f(x) satisfying f(x∗) = 0, it also

satisfies g(x∗) = x∗, which is indeed a fixed point of g(x). The derivative of this

function is

g′(x) = (x− f(x)φ(x))′ = 1− f ′(x)φ(x) − f(x)φ′(x) = 1− f ′(x)φ(x) (1.58)

user
Callout
Do you ever prove that g(x) is a contraction at x* if and only if |g'(x)| < 1?

user
Callout
If this is referring to an unincluded figure, reference the specific figure number.

user
Callout
Cut "Consider," and move this above expression 1.55.

user
Callout
 What is φ(x) in this context?

user
Sticky Note
"The function g(x) is equivalent to f(x) = 0, because if x*"

user
Sticky Note
Cut "indeed."

user
Callout
Rather than going through all of the math, it would be clearer to spend the end of this section explaining the conditions under which fixed-point iteration has various rates of convergence, and why that matters.

1.3 Fixed point iteration 15

If f ′(x) 6= 0, we can define φ(x) = 1/f ′(x) so that g′(x) = 1 − f ′(x)/f ′(x) = 0,

then the convergence becomes quadratic. This is actually the Newton-Raphson

method discussed in the following section.

Example 1

Find the solution of the following equation:

f(x) = x3 − x− 2 = 0

This equation can converted into an equivalent form of g(x) = x in two different

ways:

g1(x) = x = 3
√
x+ 2, and g2(x) = x = x3 − 2

In the figure below, the two functions g1(x) (left) and g2(x) (right) together with

f(x) and the identity function are plotted:

The iteration based on g1(x) converges to the solution x∗ = 1.5214 for any ini-

tial guess −∞ < x0 <∞, as g1(x) is a contraction. However, the iteration based

on g2(x) does not converge to x∗ as it is not a contraction in the neighborhood

of x∗. In fact, the iteration will diverge towards either −∞ if x0 < x∗ or ∞ if

x0 > x∗.

Example 2

To solve the following equation

f(x) = x3 − 3x+ 1 = 0

we first convert it into the form of g(x) = x in two different ways:

g1(x) = x = 3
√
3x− 1, g2(x) = x =

1

3
(x3 − 1)

As can be seen in the plots, this equation has three solutions,

x1 = −1.8794, x2 = 0.3473, x3 = 1.5321

of which x1 and x3 can be obtained by the iteration based on g1(x) and x2 can

be obtained by the iteration based on g2(x). But neither of them can find all

three roots.

• As shown in the plot on the left, |g′1(x)| < 1 for all −∞ < x < ∞ except

in the neighborhood of x2 = 0.3473, i.e., g1(x) is a contraction mapping

everywhere except around x2. Therefore the iteration starting from any

initial guess x0 will converge to either x1 = −1.8749 if x0 < x2, or x3 =

1.5321 if x0 > x2.

xn+1 = g1(xn)
n→∞
=⇒

{

x1 = −1.8749 x0 < x2
x3 = 1.5321 x0 > x2

However, as g1(x) is not a contraction mapping around x = x2, the iteration

will never converge to x2.

user
Callout
Save this observation for after the Newton-Raphson method has been introduced.

user
Callout
This section ends with a lot of examples, and doesn't explain clearly what they're illustrating. Is it differing rates of convergence? Circumstances under which the method doesn't converge? Or how to use the method? Choose one or two examples that demonstrate the relevant principle, and explain what they are demonstrating. (If you're trying to demonstrate how to use the method, or the circumstances under which it doesn't converge, those examples would be better placed earlier, when those concepts are introduced.)

16 Solving Equations

• As shown in the plot on the right, |g′2(x)| > 1 for all −∞ < x < ∞ except

in the neighborhood of x2, i.e., g2(x) is not a contraction mapping around

either x1 or x3. Therefore the iteration based on g2(x) will not converge to

either x1 or x3, but it may converge to x2, if the initial guess x0 is in the

range x1 < x0 < x3. However, if x0 is outside this range the iteration will

diverge toward either −∞ if x0 < x1 of ∞ if x0 > x3.

xn+1 = g2(xn)
n→∞
=⇒







−∞ x0 < x1
x2 = 0.3473 x1 < x0 < x3
∞ x0 > x3

n xn f(xn)

1 −2.0408275e+ 00 −1.3775173e+ 00

2 −1.9240239e+ 00 −3.5041089e− 01

3 −1.8919392e+ 00 −9.6254050e− 02

4 −1.8829328e+ 00 −2.7019276e− 02

5 −1.8803890e+ 00 −7.6311660e− 03

6 −1.8796694e+ 00 −2.1590449e− 03

7 −1.8794656e+ 00 −6.1114717e− 04

8 −1.8794080e+ 00 −1.7301761e− 04

9 −1.8793916e+ 00 −4.8983741e− 05

10 −1.8793870e+ 00 −1.3868146e− 05

11 −1.8793857e+ 00 −3.9263250e− 06

12 −1.8793853e+ 00 −1.1116151e− 06

Example 3

f(x) = sin(x)− x3 = 0

This equation can be converted into the form g(x) = x in different ways:

•
g0(x) = x = 3

√

sin(x), g′0(x) =
cos(x)

3 sin(x)2/3

n xn f(xn)

0 2.000000e+ 00 −7.0907
1 9.688027e− 01 −0.085089
2 9.375886e− 01 −0.018075
3 9.306842e− 01 −0.0041048
4 9.291018e− 01 −0.00094611
5 9.287364e− 01 −0.00021881
6 9.286518e− 01 −5.0647e− 05

7 9.286322e− 01 −1.1725e− 05

8 9.286277e− 01 −2.7144e− 06

1.3 Fixed point iteration 17

•

g1(x) = x = sin(x)/x2, g′1(x) =
cos(x)

x2
− 2 sin(x)

x3

•
g2(x) = x+ sin(x)− x3, g′2(x) = cos(x)− 3 x2 + 1

•

g3(x) = x− sin(x) − x3
cos(x) − 3x2

, g′3(x) = −
(6x+ sin(x))(sin(x) − x3)

(cos(x) − 3x2)2

n xn f(xn)

0 2.000000e+ 00 −7.0907
1 1.428913e+ 00 −1.9276
2 1.106787e+ 00 −0.46152
3 9.637850e− 01 −0.073886
4 9.304466e− 01 −0.0036294
5 9.286316e− 01 −1.0509e− 05

6 9.286263e− 01 −8.9029e− 11

Example 4

f(x) = ex − 1

x

•
g0(x) = x = e−x, g′0(x) = e−x

The iteration from any initial guess x0 > 0 will converge to x∗ = g1(x
∗) =

0.56714.

•
g1(x) = x = − log(x), g′1(x) = 1/x

Around x = x∗ = 0.56714, g′1(x) = 1/x > 1, the iteration does not

converge.

•

g2(x) = x− ex − 1/x

ex + 1/x2
, g′2(x) =

(ex − 1/x)(ex − 2/x3)

(ex + 1/x2)2

Example 5

Consider a 3-variable linear vector function f(x) of arguments x = [x, y, z]T :

f(x) = 0,







f1(x) = 6x+ 3y + 2z − 18 = 0

f2(x) = 2x+ 7y + 3z − 25 = 0

f3(x) = x+ 3y + 5z − 22 = 0

18 Solving Equations

from which the g-function can be obtained:

g(x) = x,







g1(x) = x = −(3y + 2z − 18)/6

g2(x) = y = −(2x+ 3z − 25)/7

g3(x) = z = −(x+ 3y − 22)/5

The Jacobian g(x) of this linear system is a constant matrix

Jg =





0 −1/2 −1/3
−2/7 0 −3/7
−1/5 −3/5 0





with the induced p=2 norm (maximum singular value) ||Jg|| = 0.851 < 1. Con-

sequently, the iteration xn+1 = g(xn) converges from an initial guess x0 =

[1, 1, 1]T to the solution x = [1, 2, 3]T .

Alternatively, the g-function can also be obtained as

g′(x) = x,







g′1(x) = x = −(3y + 5z − 22)

g′2(x) = y = −(2x+ 3z − 25)/7

g′3(x) = z = −(6x+ 3y − 18)/2

The Jacobian is

Jg′ =





0 −3 −5
−2/7 0 −3/7
−3 −3/2 0





with the induced p=2 norm ||Jg|| = 5.917 > 1. The iteration does not converge.

Example 6

Consider a 3-variable nonlinear function f(x) of arguments x = [x, y, z]T :

f(x) = 0,







f1(x) = x2 − 2x+ y2 − z + 1 = 0

f2(x) = xy2 − x− 3y + yz + 2 = 0

f3(x) = xz2 − 3z + yz2 + xy = 0

The g-function can be obtained as

g(x) = x,







g1(x) = x = (x2 + y2 − z + 1)/2

g2(x) = y = (xy2 − x+ yz + 2)/3

g3(x) = z = (xz2 + yz2 + xy)/3

With x0 = [0, 0, 0]T and after n > 170 iterations xn+1 = g(xn) converges to

xn = [1.098933, 0.367621, 0.144932]T , with error ||f(xn)|| < 10−7. However, the

iteration may not converge from other possible initial guesses.

By Aitken’s method, the iteration xn+1 = g(xn) can be accelerated based on

two consecutive points x0 and x1, as shown in the figure below.

The secant line of g(x) that goes through the two points P0 = (x0, g(x0) = x1)

and P1 = (x1, g(x1) = x2) is represented by the equation in terms of its slope:

y − g(x0)
x− x0

=
g(x1)− g(x0)
x1 − x0

(1.59)

user
Callout
Aitken's method is a significant new concept that should have its own headed subsection. As it is currently worded, it reads as though this is part of Example 6.

user
Callout
The concept of accelerating iteration should be explicitly defined.

1.3 Fixed point iteration 19

Solving for y, we get

y = g(x0) + (x− x0)
g(x1)− g(x0)
x1 − x0

= x1 + (x − x0)
x2 − x1
x1 − x0

(1.60)

To accelerate, instead of moving from x0 to x1, we move to the point x at which

this secant line intersects with the identity function y = x. We can therefore

replace y in the equation above by x and solve the resulting equation

x = x1 + (x− x0)
x2 − x1
x1 − x0

(1.61)

to get

x =
x1(x1 − x0)− x0(x2 − x1)

(x1 − x0)− (x2 − x1)
= x0 −

(x1 − x0)2
x2 − 2x1 + x0

= x0 −
(∆x0)

2

∆2x0
(1.62)

where ∆x0 and ∆2x0 are respectively the first and second order differences de-

fined below:

∆x0 = x1 − x0, ∆x1 = x2 − x1 (1.63)

∆2x0 = ∆x1 −∆x0 = (x2 − x1)− (x1 − x0) = x2 − 2x1 + x0 (1.64)

This result can then be converted into an iterative process







xn+1 = g(xn)

xn+2 = g(xn+1)

xn+3 = xn − (xn+1 − xn)2/(xn+2 − 2xn+1 + xn)

(1.65)

Given xn, we skip xn+1 = g(xn) and xn+2 = g(xn+1) but directly move to xn+3

computed based on xn+1 and xn+2, thereby making a greater step towards the

solution.

Example

Solve x3−3x+1 = 0. Construct g(x) = (3x−1)1/3. It takes 18 iterations for the
regular fixed point algorithm with initial guess x0 = 1, to get x18 = 1.5320887

that satisfies |f(xn)| < 10−6, but it only three iterations for Aitken’s method to

converge to the same result:

user
Callout
Unclear. What do you mean by "moving from x_0 to x_1"?

user
Callout
How does this accelerate convergence, if x_n+1 and x_n+2 still have to be computed each time? This section needs more explanation.

user
Callout
This example would benefit from actually working through a couple of iterations of each method.

20 Solving Equations

n xn f(xn)

0 1.0000 −1.0000
1 1.259921 −7.797631e− 01

2 1.406056 −4.384047e− 01

3 1.476396 −2.110206e− 01

4 1.507985 −9.476760e− 02

5 1.521751 −4.129594e− 02

6 1.527672 1.776362e− 02

7 1.530205 −7.598914e− 03

8 1.531286 3.242990e− 03

9 1.531747 −1.382619e− 03

10 1.531943 −5.892137e− 04

11 1.532027 −2.510521e− 04

12 1.532062 −1.069599e− 04

13 1.532078 −4.556840e− 05

14 1.532084 −1.941335e− 05

15 1.532087 −8.270551e− 06

16 1.532088 −3.523444e− 06

17 1.532089 −1.501066e− 06

18 1.532089 −6.394874e− 07

n xn f(xn)

0 1.0000 −1.0000
1 1.5937361 2.668730e− 01

2 1.5323992 1.254749e− 03

3 1.5320889 3.421160e− 08

1.4 Newton-Raphson Method (Univariate)

To solve equation f(x) = 0, we first consider the Taylor series expansion of f(x)

at any point x0:

f(x) = f(x0)+f
′(x0)(x−x0)+

1

2!
f ′′(x)(x−x0)2+ · · ·+

1

n!
f (n)(x0)(x−x0)n+ · · ·

(1.66)

If f(x) is linear, i.e., its slope f ′(x) is a constant for any x, then the second and

higher order terms are all zero, and the equation f(x) = 0 becomes

f(x) = f(x0) + f ′(x)(x − x0) = 0 (1.67)

Solving this equation we get the root x∗ at which f(x∗) = 0:

x∗ = x = x0 −
f(x0)

f ′(x0)
= x0 +∆x0 (1.68)

20 Solving Equations

n xn f(xn)

0 1.0000 −1.0000
1 1.259921 −7.797631e− 01

2 1.406056 −4.384047e− 01

3 1.476396 −2.110206e− 01

4 1.507985 −9.476760e− 02

5 1.521751 −4.129594e− 02

6 1.527672 1.776362e− 02

7 1.530205 −7.598914e− 03

8 1.531286 3.242990e− 03

9 1.531747 −1.382619e− 03

10 1.531943 −5.892137e− 04

11 1.532027 −2.510521e− 04

12 1.532062 −1.069599e− 04

13 1.532078 −4.556840e− 05

14 1.532084 −1.941335e− 05

15 1.532087 −8.270551e− 06

16 1.532088 −3.523444e− 06

17 1.532089 −1.501066e− 06

18 1.532089 −6.394874e− 07

n xn f(xn)

0 1.0000 −1.0000
1 1.5937361 2.668730e− 01

2 1.5323992 1.254749e− 03

3 1.5320889 3.421160e− 08

1.4 Newton-Raphson Method (Univariate)

To solve equation f(x) = 0, we first consider the Taylor series expansion of f(x)

at any point x0:

f(x) = f(x0)+f
′(x0)(x−x0)+

1

2!
f ′′(x)(x−x0)2+ · · ·+

1

n!
f (n)(x0)(x−x0)n+ · · ·

(1.66)

If f(x) is linear, i.e., its slope f ′(x) is a constant for any x, then the second and

higher order terms are all zero, and the equation f(x) = 0 becomes

f(x) = f(x0) + f ′(x)(x − x0) = 0 (1.67)

Solving this equation we get the root x∗ at which f(x∗) = 0:

x∗ = x = x0 −
f(x0)

f ′(x0)
= x0 +∆x0 (1.68)

user
Callout
An introduction explaining what the Newton-Raphson method is would make this section a lot easier to understand.

user
Callout
This will be clearer if first the revised Taylor series expansion is given, and then the equation is set to 0.

1.4 Newton-Raphson Method (Univariate) 21

where ∆x0 = −f(x0)/f ′(x0) is the step we need to take to go from the initial

point x0 to the root x∗:

∆x0 = − f(x0)
f ′(x0)

{

< 0 if f(x0) and f
′(x0) are of the same sign

> 0 if f(x0) and f
′(x0) are of different signs

(1.69)

If f(x) is nonlinear, the sum of the first two terms of the Taylor expansion is

only an approximation of f(x), and the resulting x found above can be treated

as an approximation of the root, which can be improved iteratively to move from

the initial point x0 towards the root, as illustrated in the figure below:

xn+1 = xn +∆xn = xn −
f(xn)

f ′(xn)
, n = 0, 1, 2, · · · (1.70)

The Newton-Raphson method can be considered as the fixed point iteration

xn+1 = g(xn) based on

g(x) = x− f(x)/f ′(x) (1.71)

The root x∗ at which f(x∗) = 0 is also the fixed point of g(x), i.e., g(x∗) = x∗.
For the iteration to converge, g(x) needs to be a contraction with |g′(x)| < 1.

Consider

g′(x) =

(

x− f(x)

f ′(x)

)′
= 1− (f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
=
f(x)f ′′(x)

(f ′(x))2
(1.72)

We make the following comments:

• At the root x = x∗ where f(x∗) = 0, if f ′(x∗) 6= 0, then g′(x∗) = 0 <

1, i.e., g(x) is a contraction and the iteration xn+1 = g(xn) converges

quadratically when xn is close to x∗.

• If f ′(xn) = 0 (the tangent is horizontal), the iteration cannot proceed, but we

can modify xn by adding a small value ǫ to xn so that f ′(x+ ǫ) 6= 0.

• It is difficult to know the number of roots of a nonlinear equation (unlike the

case of a linear equation), which can vary from zero (e.g., f(x) = x2 + 1)

to infinity (e.g., f(x) = cos(x)). One can try different initial guesses in the

range of interest to see if different roots can be found.

• Sometime a parameter δ can be used to control the step size of the iteration:

xn+1 = xn − δ
f(xn)

f ′(xn)
(1.73)

– If δ < 1, the iteration is de-accelerated. Although the convergence be-

comes slower, this may be desirable if the function f(x) is not smooth

with many local variations.

– If δ > 1, the iteration is accelerated. The convergence may or may not be

accelerated. Due to the greater step size, the root may be skipped and

missed. Sometimes the convergence may become significantly slowed

or even oscillate around the true root, such as the example shown in

the figure below with δ = 2.

user
Callout
I think that what you mean by this is that the Newton-Raphson method works iteratively in the same way that the previous two methods do, with the new point at each iteration chosen by the expression given above. But that is not clear. Give an algorithmic explanation of how the method works.

user
Callout
Overly formal language.

user
Callout
These bullet points would be better organized into paragraphs that explain each point and why it's important.

user
Callout
The initial explanation of what the Newton-Raphson method is used a specifically linear equation. If it's going to be applied to non-linear cases, it needs to be addressed in detail how that does or does not change the equation and the algorithm.

user
Callout
Acceleration of iteration should be defined, especially with regards to how it is distinct from acceleration of convergence.

22 Solving Equations

The order of convergence of the Newton-Raphson iteration can be found based

on the Taylor expansion of f(x) at the neighborhood of the root x∗ = xn + en:

0 = f(x∗) = f(xn) + f ′(xn)en +
f ′′(xn)

2
e2n +O(e3n) (1.74)

where en = x∗ − xn is the error at the nth step. Substituting the Newton-

Raphson’s iteration

xn+1 = xn −
f(xn)

f ′(xn)
, i.e. f(xn) = f ′(xn)(xn − xn+1) (1.75)

into the equation above, we get

0 = f ′(xn)(xn − xn+1) + f ′(xn)(x
∗ − xn) +

f ′′(xn)

2
e2n +O(e3n)

= f ′(xn)(x
∗ − xn+1) +

f ′′(x)

2
e2n +O(e3n)

= f ′(xn)en+1 +
f ′′(xn)

2
e2n +O(e3n) (1.76)

i.e.

en+1 = − f
′′(xn)

2f ′(xn)
e2n +O(e3n) (1.77)

When n→∞ all the higher order terms disappear, and the above can be written

as

lim
n→∞

|en+1|
|en|2

≤ |f
′′(x∗)|

2|f ′(x∗)| = µ (1.78)

Alternatively, we can get the Taylor expansion in terms of g(x):

xn+1 = x∗ − en+1 = g(xn) = g(x∗ − en) = g(x∗)− g′(x∗)en +
g′′(x∗)

2
e2n +O(e3n)

(1.79)

Subtracting g(x∗) = x∗ from both sides we get:

en+1 = g′(x∗)en −
g′′(x∗)

2
e2n +O(e3n) (1.80)

Now we find g′(x) and g′′(x):

g′(x) =

(

x− f(x)

f ′(x)

)′
= 1− (f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
=
f(x)f ′′(x)

(f ′(x))2
(1.81)

and

g′′(x) =

(

f(x)f ′′(x)

(f ′(x))2

)′
=

(f ′(x)f ′′(x) + f(x)f ′′′(x))(f ′(x))2 − f(x)f ′′(x)2f ′(x)f ′′(x)

(f ′(x))4

=
(f ′(x))3f ′′(x)

(f ′(x))4
=
f ′′(x)

f ′(x)
(1.82)

Evaluating these at x = x∗ at which f(x∗) = 0, and substituting them back

user
Callout
This is a long and complicated derivation that is unnecessary to understand the Newton-Raphson method. Consider moving it to an appendix and just telling the reader what the order of convergence is.

user
Callout
What is O(e3n) in this context?

1.4 Newton-Raphson Method (Univariate) 23

into the expression for en+1 above, the linear term is zero as g′(x∗) = 0, i.e., the

convergence is quadratic, and we get the same result:

lim
n→∞

|en+1|
|en|2

≤ |f
′′(x∗)|

2|f ′(x∗)| =
|g′′(x∗)|

2
(1.83)

We see that, if f ′(x∗) 6= 0, then the order of convergence of the Newton-

Raphson method is p = 2, and the rate of convergence is µ = |f ′′(x)|/2|f ′(x)|.
However, if f ′(x∗) = 0, the convergence is linear rather than quadratic, as shown

in the example below.

Example: Consider solving the equation

f(x) = x3 − 4x2 + 5x− 2 = (x− 1)2(x− 2) = 0 (1.84)

which has a repeated root x = 1 as well as a single root x = 2. We have

f ′(x) = 3x2 − 8x+ 5 = (3x− 5)(x− 1), f ′′(x) = 6x− 8 (1.85)

Note that at the root x∗ = 1 we have f ′(x∗) = f ′(1) = 0. We further find:

g(x) = x− f(x)

f ′(x)
= x− (x− 1)2(x− 2)

(3x− 5)(x− 1)
= x− (x− 1)(x− 2)

3x− 5
(1.86)

and

g′(x) =
f(x)f ′′(x)

(f ′(x))2
=

(x− 1)2(x− 2)(6x− 8)

(3x− 5)2(x− 1)2

=
(x − 2)(6x− 8)

(3x− 5)2
=

{

1/2 x = 1

0 x = 2

We therefore have

en+1 = g′(x)en −
1

2
g′′(x)e2n +O(e3n)

n→∞
=⇒

{

en/2 x = 1

−g′′(x)e2n/2 x = 2
(1.87)

We see the iteration converges quadratically to the single root x = 2, but only

linearly to the repeated root x = 1.

We consider in general a function with a repeated root at x = a of multiplicity

k:

f(x) = (x− a)kh(x) (1.88)

its derivative is

f ′(x) = k(x−a)k−1h(x)+(x−a)kh′(x) = (x−a)k−1[kh(x)+(x−a)h′(x)] (1.89)

As f ′(a) = 0, the convergence of the Newton-Raphson method to x = a is linear,

rather than quadratic.

In such case, we can accelerate the iteration by using a step size δ = k > 1:

g(x) = x− k f(x)

f ′(x)
(1.90)

24 Solving Equations

and

g′(x) = 1− k (f ′(x))2 − f(x)f ′′(x)

(f ′(x))2
= 1− k + k

f(x)f ′′(x)

(f ′(x))2
(1.91)

Now we show that this g′(x) is zero at the repeated root x = a, therefore the

convergence to this root is still quadratic.

We substitute f(x) = (x− a)kh(x), f ′(x) = k(x− a)k−1[kh+ (x− a)h′], and

f ′′(x) = [(x− a)k−1[kh+ (x− a)h′]]′

= 1− k + k (k − 1)(x− a)k−2[kh+ (x− a)h′]
+(x− a)k−1[(k + 1)h′ + (x− a)h′′] (1.92)

into the expression for g′(x) above to get (after some algebra):

g′(x) = 1− k + k
f(x)f ′′(x)

(f ′(x))2

= 1− k + k
h(k − 1)(kh+ (x− a)h′) + h(x − a)((k + 1)h′ + (x− a)h′)

(kh+ (x− a)h′)2 (1.93)

At x = a, we get

g′(x)

∣

∣

∣

∣

x=a

= 1− k + k
(k − 1)kh2

(kh)2
= 0 (1.94)

i.e., the convergence to the repeated root at x = a is no longer linear but

quadratic.

The difficulty, however, is that the multiplicity k of a root is unknown ahead

of time. If δ > 1 is used blindly some root may be skipped, and the iteration

may oscillate around the real root.

Example: Consider solving f(x) = x3 − 4x2 + 5x− 2 = (x − 1)2(x − 2) = 0,

with a double root x = 1 and a single root x = 2. In the following, we compare

the performance of both g1(x) = x− f(x)/f ′(x) and g2(x) = x− 2f(x)/f ′(x).

• First use an initial guess x0 = 0.3.

– When g1(x) is used, the convergence is linear around the double root

x = 1. It takes 16 iterations to get x16 = 0.999983 with |e16| < 10−9:

1.4 Newton-Raphson Method (Univariate) 25

n xn f(xn) f ′(xn)

0 0.300000 −0.833000 2.870000

1 0.590244 −0.236698 1.323212

2 0.769125 −0.065609 0.621659

3 0.874665 −0.017678 0.297797

4 0.934027 −0.004640 0.145004

5 0.966023 −0.001194 0.071417

6 0.982737 −0.000303 0.035420

7 0.991296 −0.000076 0.017636

8 0.995629 −0.000019 0.008799

9 0.997810 −0.000005 0.004395

10 0.998904 −0.000001 0.002196

11 0.999452 −0.000000 0.001098

12 0.999726 −0.000000 0.000549

13 0.999863 −0.000000 0.000274

14 0.999931 −0.000000 0.000137

15 0.999966 −0.000000 0.000069

16 0.999983 −0.000000

– When g2(x) is used, the convergence is quadratic around the double root

x = 1. It takes only 3 iterations to get x3 = 0.999982 with |e3| < 10−9:

n xn f(xn) f ′(xn)

0 0.300000 −0.833000 2.870000

1 0.880488 −0.015990 0.281874

2 0.993944 −0.000037 0.012222

3 0.999982 −0.000000

• Next use a different initial guess x0 = 4.

– If g1 is used, it takes 7 iterations to get x7 = 2.0 with |e7| < 10−9, the

convergence is quadratic.

n xn f(xn) f ′(xn)

1 x = 3.00000 4.00000 8.00000

2 x = 2.50000 1.12500 3.75000

3 x = 2.20000 0.28800 1.92000

4 x = 2.05000 0.05513 1.20750

5 x = 2.00435 0.00439 1.01745

6 x = 2.00004 0.00004 1.00015

7 x = 2.00000 0.00000 1.00000

8 x = 2.00000 0.00000

26 Solving Equations

– If g2 is used, oscillation happens as shown in the figure below. However,

if a better initial guess x0 = 3.5 is used instead of x0 = 4, it takes

only one step to get x1 = 2.0 with |e1| < 10−9, the convergence is

significantly accelerated.

n xn f(xn) f ′(xn)

1 3.00000 4.00000 8.00000

2 2.00000 0.00000

1.5 Newton-Raphson Method (Multivariate)

The Newton-Raphson method discussed above for solving a single-variable equa-

tion f(x) = 0 can be generalized to the case of multivariate equation systems

containing M equations of N variables in x = [x1, · · · , xN]T :

f(x) =







f1(x)
...

fM (x)






=







f1(x1, · · · , xN)
...

fM (x1, · · · , xN)






=







0
...

0






= 0 (1.95)

To solve the equation system, we first consider the Taylor series expansion of each

of theM functions in the neighborhood of the initial point x0 = [x01, · · · , x0N]T :

fm(x) = fm(x0)+

N
∑

n=1

∂fm(x0)

∂xn
(xn−x0n)+rm(||x−x0||2), (m = 1, · · · ,M)

(1.96)

where rm(||x− x0||2) represents the second and higher order terms in the series

beyond the linear term, which can be neglected if ||x − x0|| is small. These M

equations can be expressed in matrix form







f1(x)
...

fM (x)






=







f1(x0)
...

fM (x0)






+









∂f1(x0)
∂x1

· · · ∂f1(x0)
∂xN

...
. . .

...
∂fM (x0)
∂x1

· · · ∂fM (x0)
∂xN















x1 − x01
...

xN − x0N






+







r1
...

rM







(1.97)

or more concisely

f(x) = f(x0)+J(x0) (x−x0)+ r ≈ f(x0)+J(x0) (x−x0) = f0+J0 ∆x (1.98)

where ∆x = x−x0, and f0 = f(x0) and J0 = J(x0) are respectively the function

f(x) and its Jacobian matrix Jf (x) both evaluated at x0. We further consider

solving the equation system f(x) = 0 in the following two cases:

• M = N : The number of equations is the same as the number of unknowns,

the Jacobian J(x) is a square matrix and its inverse J−1 exists in general.

In the special case where f(x) is linear, the Taylor series contains only the

first two terms while all higher order terms are zero, and the approximation

user
Callout
These bullet points are very long. They might be better organized as subsections of some kind.

1.5 Newton-Raphson Method (Multivariate) 27

in Eq. (1.98) becomes exact. To find the root x∗ satisfying f(x∗) = 0, we

set f(x) in Eq. (1.98) to zero and solve the resulting equation for x to get

x∗ = x = x0 − J−1
0 f0 = x0 −A−1f0 (1.99)

As in general f(x) is nonlinear, it can only be approximated by the first two

terms of the Taylor series, consequently the result above is only an approx-

imation of the optimal solution. But this approximation can be improved

iteratiively to approach the optimal solution x∗:

xn+1 = xn +∆xn = xn − J−1
n fn (1.100)

where we have defined ∆xn = −J−1
n fn as the increment, which can also

be denoted by dn = ∆xn to represent the search or Newton direction. The

iteration moves xn in the N-D space spanned by {x1, · · · , xN} from some

initial guess x0 along such a path that all function values fm(x), m =

1, · · · ,M) are reduced. Same as in the univariate case, a scaling factor δn
can be used to control the step size of the iteration

xn+1 = xn + δn∆xn = xn − δn J−1
n fn (1.101)

When δ < 1, the step size becomes smaller and the convergence of the

iteration is slower, however, we will have a better chance not to skip a

solution, which may happen if f(x) is not smooth and the step size is too

big.

The algorithm is listed below:

– Select x0

– Obtain f0 = f(x0) and J0

– Obtain J−1
0

– n = 0

– While ||xn+1 − xn|| > tol do

◦ xn+1 = xn − J−1
n fn

◦ Find fn+1 and Jn+1

◦ n = n+ 1

• M > N : There are more equations than unknowns, i.e., equation f(x) = 0

is an over-constrained system, and the Jacobian J(x) is an M × N non-

square matrix without an inverse, i.e., no solution exists for the equation

f(x) = 0 in general. But we can still seek to find an optimal solution x∗

that minimizes the following sum-of-squares error:

ε(x) =
1

2
||f(x)||2 =

1

2
f(x)T f(x) =

1

2

M
∑

m=1

f2
m(x) (1.102)

The gradient vector of ε(x) is:

gε(x) =
d

dx
ε(x) =

d

dx

(

1

2

M
∑

m=1

f2
m(x)

)

=

M
∑

m=1

d

dx
fm(x) fm(x) (1.103)

user
Sticky Note
"Taylor series, so"

user
Sticky Note
typo in "iteratively"

user
Sticky Note
"As in the univariate case"

user
Sticky Note
"iteration is slower, but we will"

user
Callout
Smoothness of functions should be defined.

user
Callout
Gradient is a key term, and should be italicized.

user
Callout
Having a step by step description of the algorithm is very helpful! This, or something like it, should exist for every method and method variation that you describe.

user
Callout
tol should be defined somewhere as meaning "tolerance."

28 Solving Equations

The nth component of gε(x) is

∂ε(x)

∂xn
=

M
∑

m=1

∂fm(x)

∂xn
fm(x) =

M
∑

m=1

Jmn fm(x) (n = 1, · · · , N) (1.104)

where Jmn = ∂fm(x)/∂xn is the component in the mth row and nth column

of the Jacobian matrix Jf (x) of f(x). Now the gradient can be written as

gε(x) = JTf (x) f(x) (1.105)

If f(x) is linear and can therefore be represented as the sum of the first two

terms of its Taylor series in Eq. (1.98), then the gradient is:

gε(x) = JT (x) f(x) = JT (x0) [f(x0)+J(x0)∆x] = JT0 (f0+J0∆x) (1.106)

where x0 is any chosen initial guess. If we assume x is the optimal solution

at which ε(x) is minimized and gε(x) is zero:

gε(x) = JT0 (f0 + J0∆x) = 0 (1.107)

then the increment ∆x can be found by solving the equation

∆x = −(JT0 J0)
−1JT0 f0 = −J−

0 f0 (1.108)

Here J−
0 = (JT0 J0)

−1JT0 is the pseudo-inverse (Section A.15) of the non-

square matrix J0. Now the optimal solution can be found as:

x∗ = x0 +∆x = x0 − J−
0 f0 (1.109)

However, as f(x) is nonlinear in general, the sum of the first two terms of its

Taylor series is only an approximation. Consequently the result x = x0+∆x

above is not the optimal solution, but an estimate which can be improved

by carrying out this step iteratively:

xn+1 = xn +∆xn = xn − J−
n fn (1.110)

This iteration will converge to x∗ at which gε(x
∗) = 0, and the squared

error ε(x) is minimized.

Specially, for a linear equation system f(x) = Ax− b = 0, the Jacobian

is simplely Jf (xn) = A, and the optimal solution is

xn+1 = xn−A−fn = xn−(ATA)−1AT (Axn−b) = (ATA)−1ATb = A−b
(1.111)

i.e., the optimal solution can be found from any initial guess in a single

step. This result is the same as that in Eq. (1.7).

Comparing Eqs. (1.100) and (1.110), we see that the two algorithms are es-

sentially the same, with the only difference that the regular inverse J−1 is used

when M = N , but the pseudoinverse J− is used when M > N and J−1 does not

exist.

The Newton-Raphson method assumes the availability of the analytical ex-

pressions of all partial derivatives Jmn = ∂fm(x)/∂xn (m = 1, · · · ,M, n =

user
Sticky Note
Cut "Specially."

user
Sticky Note
Typo in "simply"

1.5 Newton-Raphson Method (Multivariate) 29

1, · · · , N) in the Jacobian matrix J. However, when this is not the case, Jmn
need to be approximated by forward or central difference (secant) method:

Jmn =
∂fm(x1, · · · , xN)

∂xn
≈ fm(x1, · · · , xn + h, · · · , xN)− fm(x1, · · · , xn, · · · , xN)

h

≈ fm(x1, · · · , xn + h, · · · , xN)− fm(x1, · · · , xn − h, · · · , xN)

2h
(1.112)

where h is a small increment.

Example 1







3 x1 − cos(x2x3)− 3/2 = 0

4x21 − 625 x22 + 2x3 − 1 = 0

20 x3 + e−x1x2 + 9 = 0

J =





3 x3 sin(x2x3) x2 sin(x2x3)

8 x1 −1250 x2 2

−x2 e−x1x2 −x1 e−x1x2 20





n x error

0 (1.000000, 1.000000, 1.000000) 6.207e+ 02

1 (1.232701, 0.503132,−0.473253) 1.541e+ 02

2 (0.832592, 0.251806,−0.490636) 3.884e+ 01

3 (0.833238, 0.128406,−0.494702) 9.517e+ 00

4 (0.833275, 0.069082,−0.497147) 2.200e+ 00

5 (0.833281, 0.043585,−0.498206) 4.063e− 01

6 (0.833282, 0.036117,−0.498517) 3.486e− 02

7 (0.833282, 0.035343,−0.498549) 3.741e− 04

8 (0.833282, 0.035335,−0.498549) 4.498e− 08

9 (0.833282, 0.035335,−0.498549) 5.551e− 16

Example 2

f(x) = 0,







f1(x) = x21 − 2x1 + x22 − x3 + 1 = 0

f2(x) = x1x
2
2 − x1 − 3x2 + x2x3 + 2 = 0

f3(x) = x1x
2
3 − 3x3 + x2x

2
3 + x1x2 = 0

J =





2x1 − 2 2x2 −1
x22 − 1 2x1x2 − 3 + x3 x2
x23 + x2 x23 + x1 2x1x3 − 3 + 2x2x3





30 Solving Equations

With x0 = [1, 2, 3]T , we get a root:

n x error

0 (1.00000, 2.00000, 3.00000) 2.064e+ 01

1 (0.10256, 1.64103, 2.56410) 4.303e+ 00

2 (1.52062, 1.41113, 0.19859) 2.689e+ 00

3 (1.94123, 0.77134, 0.89465) 1.217e+ 00

4 (1.06737, 1.19117, 0.48353) 1.144e+ 00

5 (1.26825, 0.95182, 0.88028) 3.323e− 01

6 (0.95899, 1.03384, 0.96813) 1.171e− 01

7 (1.00171, 1.00007, 0.99718) 4.162e− 03

8 (1.00000, 1.00000, 1.00000) 6.701e− 06

With x0 = [0, 0, 0]T , we get another root:

n x error

0 (0.00000, 0.00000, 0.00000) 2.236e+ 00

1 (0.50000, 0.50000, 0.00000) 5.728e− 01

2 (0.83951, 0.47531, 0.13580) 1.175e− 01

3 (0.98582, 0.41849, 0.15069) 2.639e− 02

4 (1.05417, 0.38715, 0.14717) 6.088e− 03

5 (1.08565, 0.37339, 0.14558) 1.264e− 03

6 (1.09693, 0.36849, 0.14503) 1.618e− 04

7 (1.09888, 0.36764, 0.14494) 4.817e− 06

Broyden’s method

In the Newton-Raphson method, two main operations are carried out in each

iteration: (a) evaluate the Jacobian matrix Jf (xn) and (b) obtain its inverse

J−1
f (xn). To avoid these expensive computation for these operations, we can con-

sider using Broyden’s method, one of the quasi-Newton methods, which approxi-

mates the inverse of the Jacobian J−1
n+1 = J−1(xn+1) from the J−1

n = J−1(xn) in

the previous iteration step, so that it can be updated iteratively from the initial

J−1
0 = J−1(x0).

We first consider in the single-variable case how to estimate the next derivative

f ′
n+1 = f ′(xn+1) from the current f ′

n = f ′(xn) by the secant method:

f ′
n+1 ≈ f̂ ′

n+1 =
fn+1 − fn
xn+1 − xn

=
δfn
δxn

=
f̂ ′
nδxn − f̂ ′

nδxn + δfn
δxn

= f̂ ′
n +

δfn − f̂ ′
nδxn

δxn
= f̂ ′

n + δ̂f ′
n (1.113)

where

• δfn = fn+1− fn is the true increment of the function over the interval δxn =

xn+1 − xn;

user
Callout
This is a nice, concise explanation of the bones of the method, and it should be used earlier when the basic method is being described to the reader.

user
Sticky Note
"To avoid the expensive computation for these operations, we can use Broyden's method"

user
Callout
"Quasi-Newton method" should be explicitly defined.

1.5 Newton-Raphson Method (Multivariate) 31

• f̂ ′
nδxn is the estimated increment of the function based on the previous derivate

f̂ ′
n;

• δ̂f ′
n is the estimated increment of the derivative:

δ̂f ′
n =

δfn − f̂ ′
nδxn

δxn
(1.114)

The equation above indicates that the derivative f ′
n+1 in the (n+ 1)th step can

be estimated by adding the estimated increment δ̂f ′
n to the derivative f̂ ′n in the

current nth step.

Having obtained f̂ ′
n+1, we can use the same iteration in the Newton-Raphson

method to find xn+1:

xn+1 = xn −
f(xn)

f̂ ′
n

(1.115)

This method for single-variable case can be generalized to multiple variable

case for solving f(x) = 0. Following the way we estimate the increment of the

derivative of a single-variable function in Eq. (1.114), here we can estimate the

increment of the Jacobian of a multi-variable function:

δĴn =
(δfn − Ĵnδxn) δx

T
n

δxTn δxn
=

(δfn − Ĵnδxn)δx
T
n

||δxn||2
(1.116)

where δxn = xn+1 − xn and δfn = fn+1 − fn = f(xn+1) − f(xn). Now in each

iteration, we can update the estimated Jacobian as well as the estimated root:

Ĵn+1 = Ĵn + δĴn, xn+1 = xn + δxn = xn − Ĵ−1
n f(xn) (1.117)

The algorithm can be further improved so that the inverse of the Jacobian Jn
is avoided. Specifically, consider the inverse Jacobian:

Ĵ−1
n+1 =

(

Ĵn + δĴn

)−1

=

[

Ĵn +
(δfn − Ĵnδxn)δx

T
n

||δxn||2

]−1

(1.118)

We can apply the Sherman-Morrison formula (Section A.6):

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
(1.119)

to the right-hand side of the equation above by defining

A = Ĵn, u =
δfn − Ĵnδxn
||δxn||2

, v = δxn (1.120)

and rewrite it as:

Ĵ−1
n+1 = Ĵ−1

n −
Ĵ−1
n (δfn − Ĵnδx

T
n)/||δxn||2 δxTn Ĵ−1

n

1 + δxTn Ĵ
−1
n (δfn − Ĵnδxn)/||δxn||2

= Ĵ−1
n −

(Ĵ−1
n δfn − δxn) δxTn Ĵ−1

n

δxTn Ĵ
−1
n δfn
(1.121)

We see that the next Ĵ−1
n+1 can be iteratively estimated directly from the previous

Ĵ−1
n , thereby avoiding computing the inverse of Ĵn altogether. The algorithm is

listed below:

32 Solving Equations

• Select x0

• Find f0 = f(x0), J0 = J(x0), and J−1
0

• x1 = x0 − J−1
0 f0

• n = 0

• While ||xn+1 − xn|| > tol do

– δxn = xn+1 − xn
– fn+1 = f(xn+1)

– δf = fn+1 − fn
– J−1

n = J−1
n − (δxn − J−1

n δfn)δx
T
nJ

−1
n /(δxTnJ

−1
n δfn)

– xn = xn+1, fn = fn+1

– xn+1 = xn − J−1
n fn

– n = n+ 1

	Wang Chapter 1
	Wang Chapter 1 pt 2

