Appendix 3: Proofs of the Fixed Point and Contraction Mapping Theorems

<#2005#>Proof of the fixed point theorem:<#2005#>

Here the distance #math480##tex2html_wrap_inline3450# is specifically defined as the <#2008#>p-norm<#2008#> (section #vectorNorms#2009>) of the vector #math481##tex2html_wrap_inline3452#:

#math482#   #tex2html_wrap_indisplay7050# (114)
where #tex2html_wrap_inline3454#, e.g., #math483##tex2html_wrap_inline3456#. For convenience, we can drop #tex2html_wrap_inline3458# so that #math484##tex2html_wrap_inline3460#.

QED

<#2095#>Proof of the Contraction Mapping theorem:<#2095#>

Consider the Taylor expansion (Section #TalorSeries#2096>) of the function #math495##tex2html_wrap_inline3484# in the neighborhood of #tex2html_wrap_inline3486#:

#math496#   #tex2html_wrap_indisplay7075# (118)
where #math497##tex2html_wrap_inline3488# is the remainder composed of second and higher order terms of #math498##tex2html_wrap_inline3490#. Subtracting #math499##tex2html_wrap_inline3492# and taking any p-norm on both sides, we get
#math500#   #tex2html_wrap_indisplay7080# (119)
When #math501##tex2html_wrap_inline3494#, the second and higher order terms of #tex2html_wrap_inline3496# disappear and #math502##tex2html_wrap_inline3498#, we have
#math503#   #tex2html_wrap_indisplay7085# (120)
The inequality is due to the <#2162#>Cauchy-Schwarz inequality<#2162#> (Section #innerProductSpace#2163>) if #math504##tex2html_wrap_inline3500#, the function #math505##tex2html_wrap_inline3502# is a contraction at #tex2html_wrap_inline3504#.

QED