Appendix 2: Order of Convergence of the Newton-Raphson Method
The order of convergence of the Newton-Raphson iteration can be
found based on the Taylor expansion of #tex2html_wrap_inline3418# at the neighborhood
of the root #tex2html_wrap_inline3420# (Section #TalorSeries#1927>):
#math468# #tex2html_wrap_indisplay7003#
(104)
where #tex2html_wrap_inline3422# is the error at the nth step.
Substituting the Newton-Raphson's iteration
#math469# #tex2html_wrap_indisplay7006#
(105)
into the equation above, we get
#math470#
#tex2html_wrap_indisplay7008# |
#tex2html_wrap_indisplay7009# |
#tex2html_wrap_indisplay7010# |
|
|
#tex2html_wrap_indisplay7011# |
#tex2html_wrap_indisplay7012# |
|
|
#tex2html_wrap_indisplay7013# |
#tex2html_wrap_indisplay7014# |
(106) |
i.e.
#math471# #tex2html_wrap_indisplay7016#
(107)
When #math472##tex2html_wrap_inline3424# all the higher order terms disappear, and the
above can be written as
#math473# #tex2html_wrap_indisplay7019#
(108)
Alternatively, we can get the Taylor expansion in terms of #tex2html_wrap_inline3426#:
#math474# #tex2html_wrap_indisplay7022#
(109)
Subtracting #tex2html_wrap_inline3428# from both sides we get:
#math475# #tex2html_wrap_indisplay7025#
(110)
Now we find #tex2html_wrap_inline3430# and #tex2html_wrap_inline3432#:
#math476# #tex2html_wrap_indisplay7029#
(111)
and
#math477#
#tex2html_wrap_indisplay7031# |
#tex2html_wrap_indisplay7032# |
#tex2html_wrap_indisplay7033# |
|
|
#tex2html_wrap_indisplay7034# |
#tex2html_wrap_indisplay7035# |
(112) |
Evaluating these at #tex2html_wrap_inline3434# at which #tex2html_wrap_inline3436#, and substituting
them back into the expression for #tex2html_wrap_inline3438# above, we see that
the linear term is zero as #tex2html_wrap_inline3440#, and get the same result
as in Eq. (#NRconvergence1#1993>):
#math478# #tex2html_wrap_indisplay7041#
(113)
We see that if #tex2html_wrap_inline3442#, the order of convergence of the
Newton-Raphson method is #tex2html_wrap_inline3444# with the rate of convergence
#math479##tex2html_wrap_inline3446#. However, if #tex2html_wrap_inline3448#, the convergence
is linear rather than quadratic, as shown in some of the examples.