Appendix 2: Order of Convergence of the Newton-Raphson Method

The order of convergence of the Newton-Raphson iteration can be found based on the Taylor expansion of #tex2html_wrap_inline3418# at the neighborhood of the root #tex2html_wrap_inline3420# (Section #TalorSeries#1927>):

#math468#   #tex2html_wrap_indisplay7003# (104)
where #tex2html_wrap_inline3422# is the error at the nth step. Substituting the Newton-Raphson's iteration
#math469#   #tex2html_wrap_indisplay7006# (105)
into the equation above, we get
#math470#
#tex2html_wrap_indisplay7008# #tex2html_wrap_indisplay7009# #tex2html_wrap_indisplay7010#  
  #tex2html_wrap_indisplay7011# #tex2html_wrap_indisplay7012#  
  #tex2html_wrap_indisplay7013# #tex2html_wrap_indisplay7014# (106)
i.e.
#math471#   #tex2html_wrap_indisplay7016# (107)
When #math472##tex2html_wrap_inline3424# all the higher order terms disappear, and the above can be written as
#math473#   #tex2html_wrap_indisplay7019# (108)

Alternatively, we can get the Taylor expansion in terms of #tex2html_wrap_inline3426#:

#math474#   #tex2html_wrap_indisplay7022# (109)
Subtracting #tex2html_wrap_inline3428# from both sides we get:
#math475#   #tex2html_wrap_indisplay7025# (110)
Now we find #tex2html_wrap_inline3430# and #tex2html_wrap_inline3432#:
#math476#   #tex2html_wrap_indisplay7029# (111)
and
#math477#
#tex2html_wrap_indisplay7031# #tex2html_wrap_indisplay7032# #tex2html_wrap_indisplay7033#  
  #tex2html_wrap_indisplay7034# #tex2html_wrap_indisplay7035# (112)
Evaluating these at #tex2html_wrap_inline3434# at which #tex2html_wrap_inline3436#, and substituting them back into the expression for #tex2html_wrap_inline3438# above, we see that the linear term is zero as #tex2html_wrap_inline3440#, and get the same result as in Eq. (#NRconvergence1#1993>):
#math478#   #tex2html_wrap_indisplay7041# (113)
We see that if #tex2html_wrap_inline3442#, the order of convergence of the Newton-Raphson method is #tex2html_wrap_inline3444# with the rate of convergence #math479##tex2html_wrap_inline3446#. However, if #tex2html_wrap_inline3448#, the convergence is linear rather than quadratic, as shown in some of the examples.