Appendix 1: Order of Convergence of the Secant Method

Let #tex2html_wrap_inline3392# be the root at which #tex2html_wrap_inline3394#. The error of #tex2html_wrap_inline3396# is:


#math451#
#tex2html_wrap_indisplay6946# #tex2html_wrap_indisplay6947# #tex2html_wrap_indisplay6948#  
  #tex2html_wrap_indisplay6949# #tex2html_wrap_indisplay6950#  
  #tex2html_wrap_indisplay6951# #tex2html_wrap_indisplay6952# (91)
Consider the Taylor expansion of #tex2html_wrap_inline3398# around the root at which as #tex2html_wrap_inline3400#:
#math452#
#tex2html_wrap_indisplay6956# #tex2html_wrap_indisplay6957# #tex2html_wrap_indisplay6958#  
  #tex2html_wrap_indisplay6959# #tex2html_wrap_indisplay6960# (92)
Similarly we also have
#math453#   #tex2html_wrap_indisplay6962# (93)
Substituting these into the expression for #tex2html_wrap_inline3402# above we get
#math454#
#tex2html_wrap_indisplay6965# #tex2html_wrap_indisplay6966# #tex2html_wrap_indisplay6967#  
  #tex2html_wrap_indisplay6968# #tex2html_wrap_indisplay6969#  
  #tex2html_wrap_indisplay6970# #tex2html_wrap_indisplay6971#  
  #tex2html_wrap_indisplay6972# #tex2html_wrap_indisplay6973# (94)
When #math455##tex2html_wrap_inline3404#, the lowest order terms in both the numerator and denominator become the dominant terms as all other higher order terms approach to zero, and we have
#math456#   #tex2html_wrap_indisplay6976# (95)
where we have defined a constant #math457##tex2html_wrap_inline3406#. To find the order of convergence, we need to find #tex2html_wrap_inline3408# in
#math458#   #tex2html_wrap_indisplay6980# (96)
Solving this equation for #tex2html_wrap_inline3410# we get
#math459#   #tex2html_wrap_indisplay6983# (97)
On the other hand, when #math460##tex2html_wrap_inline3412# we also have
#math461#   #tex2html_wrap_indisplay6986# (98)
Equating the right-hand sides of the two equations above we get
#math462#   #tex2html_wrap_indisplay6988# (99)
which requires the following two equations to hold:
#math463#   #tex2html_wrap_indisplay6990# (100)
These two equations can be solved separately to get
#math464#   #tex2html_wrap_indisplay6992# (101)
i.e.,
#math465#   #tex2html_wrap_indisplay6994# (102)
or
#math466#   #tex2html_wrap_indisplay6996# (103)
We see that the secant method has an order of convergence #tex2html_wrap_inline3414# with rate of convergence #math467##tex2html_wrap_inline3416#.