Newton-Raphson Method (Univariate)

In general, if more information can be assumed available, a more effective and efficient method can be expected. The Newton-Raphson method is yet another way to solve the general equation #tex2html_wrap_inline2962#, which requires more information (derivative #tex2html_wrap_inline2964#) and converges more quickly (quadratic) than the methods previously discussed.

Specifically, we first consider the Taylor series expansion of the function #tex2html_wrap_inline2966# at any #tex2html_wrap_inline2968# as an initial guess of the root:

#math305#   #tex2html_wrap_indisplay6576# (44)
If #tex2html_wrap_inline2970# is linear, i.e., its slope #tex2html_wrap_inline2972# is a constant for any #tex2html_wrap_inline2974#, then the second and all higher order terms are all zero, and the equation becomes
#math306#   #tex2html_wrap_indisplay6581# (45)
solving which we get the root #tex2html_wrap_inline2976#:
#math307#   #tex2html_wrap_indisplay6584# (46)
where #math308##tex2html_wrap_inline2978# is the step or increment we need to take to go from the initial guess #tex2html_wrap_inline2980# to the root #tex2html_wrap_inline2982#:
#math309#   #tex2html_wrap_indisplay6589# (47)

If #tex2html_wrap_inline2992# is nonlinear, the sum of the first two terms of the Taylor series is its approximation, and the result in Eq. (#NR1linear#919>) is only an approximation of the root, which can be further improved iteratively to move from the initial guess #tex2html_wrap_inline2994# towards the root #tex2html_wrap_inline2996#, as illustrated in the figure below:

#math310#   #tex2html_wrap_indisplay6594# (48)

<#6595#>Figure<#6595#> 1.10: <#6596#>Newton-Raphson Method<#6596#>
[width=70mm]<#927#>figures/NewtonRaphson.eps<#927#>

The Newton-Raphson method can be considered as the fixed-point iteration #math311##tex2html_wrap_inline2998# based on

#math312#   #tex2html_wrap_indisplay6600# (49)
based on the assumption that #tex2html_wrap_inline3000#. The root #tex2html_wrap_inline3002# at which #tex2html_wrap_inline3004# is also the fixed point of #tex2html_wrap_inline3006#, i.e., #tex2html_wrap_inline3008#. For the iteration to converge, #tex2html_wrap_inline3010# needs to be a contraction with #tex2html_wrap_inline3012#. Consider
#math313#   #tex2html_wrap_indisplay6609# (50)
At the root #tex2html_wrap_inline3014# where #tex2html_wrap_inline3016#, if #tex2html_wrap_inline3018#, then #tex2html_wrap_inline3020#, i.e., #tex2html_wrap_inline3022# is a contraction and the iteration #math314##tex2html_wrap_inline3024# converges quadratically when #tex2html_wrap_inline3026# is close enough to #tex2html_wrap_inline3028#.

Here are some additional considerations of the Newton-Raphson methods:

The Newton-Raphson method converges quadratically:

#math317#   #tex2html_wrap_indisplay6636# (52)
as shown in Appendix 2 of this chapter, i.e., it converges more quickly than both the bisection method (#tex2html_wrap_inline3054#) and the secant method (#tex2html_wrap_inline3056#).

<#962#>Example:<#962#>

#math318#   #tex2html_wrap_indisplay6640# (53)
Obviously this equation has a repeated root #tex2html_wrap_inline3058# as well as a single root #tex2html_wrap_inline3060#. We have
#math319#   #tex2html_wrap_indisplay6644# (54)
Note that at the root #tex2html_wrap_inline3062# we have #math320##tex2html_wrap_inline3064#. We further find:
#math321#   #tex2html_wrap_indisplay6648# (55)
and
#math322#
#tex2html_wrap_indisplay6650# #tex2html_wrap_indisplay6651# #tex2html_wrap_indisplay6652#  
  #tex2html_wrap_indisplay6653# #tex2html_wrap_indisplay6654#  
We therefore have
#math323#   #tex2html_wrap_indisplay6656# (56)
We see that the iteration converges quadratically to the single root #tex2html_wrap_inline3066#, but only linearly to the repeated root #tex2html_wrap_inline3068#.

We consider in general a function with a repeated root at #tex2html_wrap_inline3070# of multiplicity #tex2html_wrap_inline3072#:

#math324#   #tex2html_wrap_indisplay6662# (57)
its derivative is
#math325#   #tex2html_wrap_indisplay6664# (58)
As #tex2html_wrap_inline3074#, the convergence of the Newton-Raphson method to #tex2html_wrap_inline3076# is linear, rather than quadratic.

In such case, we can accelerate the iteration by using a step size #tex2html_wrap_inline3078#:

#math326#   #tex2html_wrap_indisplay6669# (59)
and
#math327#   #tex2html_wrap_indisplay6671# (60)
Now we show that this #tex2html_wrap_inline3080# is zero at the repeated root #tex2html_wrap_inline3082#, therefore the convergence to this root is still quadratic.

We substitute #math328##tex2html_wrap_inline3084#, #math329##tex2html_wrap_inline3086#, and

#math330#
    #tex2html_wrap_indisplay6677#  
  #tex2html_wrap_indisplay6678# #tex2html_wrap_indisplay6679#  
    #tex2html_wrap_indisplay6680# (61)
into the expression for #tex2html_wrap_inline3088# above to get (after some algebra):
#math331#
#tex2html_wrap_indisplay6683# #tex2html_wrap_indisplay6684# #tex2html_wrap_indisplay6685#  
  #tex2html_wrap_indisplay6686# #tex2html_wrap_indisplay6687# (62)
At #tex2html_wrap_inline3090#, we get
#math332#   #tex2html_wrap_indisplay6690# (63)
i.e., the convergence to the repeated root at #tex2html_wrap_inline3092# is no longer linear but quadratic.

The difficulty, however, is that the multiplicity #tex2html_wrap_inline3094# of a root is unknown ahead of time. If #tex2html_wrap_inline3096# is used blindly some root may be skipped, and the iteration may oscillate around the real root.

<#1029#>Example:<#1029#>

#math333#   #tex2html_wrap_indisplay6695# (64)
This equation has a double root #tex2html_wrap_inline3098# and a single root #tex2html_wrap_inline3100#. We compare the iteration based on either #math334##tex2html_wrap_inline3102# or #math335##tex2html_wrap_inline3104#.

  • First use an initial guess #tex2html_wrap_inline3106#.
    • When #tex2html_wrap_inline3108# is used, the convergence is linear around the double root #tex2html_wrap_inline3110#. It takes 16 iterations to get #math336##tex2html_wrap_inline3112# with #math337##tex2html_wrap_inline3114#:

      #math338#   #tex2html_wrap_indisplay6706#  

    • When #tex2html_wrap_inline3116# is used, the convergence is quadratic around the double root #tex2html_wrap_inline3118#. It takes only 3 iterations to get #tex2html_wrap_inline3120# with #tex2html_wrap_inline3122#:

      #math339#   #tex2html_wrap_indisplay6712#  

      <#6713#>Figure<#6713#> 1.12: <#6714#>Newton-Raphson Method Example 1<#6714#>
      [width=110mm]<#1049#>figures/NRg1.eps<#1049#>

  • Next use a different initial guess #tex2html_wrap_inline3124#.
    • If #tex2html_wrap_inline3126# is used, it takes 7 iterations to get #tex2html_wrap_inline3128# with #tex2html_wrap_inline3130#, the convergence is quadratic.

      #math340#   #tex2html_wrap_indisplay6721#  

      <#6722#>Figure<#6722#> 1.13: <#6723#>Newton-Raphson Method Example 2<#6723#>
      [width=110mm]<#1062#>figures/NRg3.eps<#1062#>

    • If #tex2html_wrap_inline3132# is used, oscillation happens as shown in the figure below. However, if a better initial guess #tex2html_wrap_inline3134# is used instead of #tex2html_wrap_inline3136#, it takes only one step to get #tex2html_wrap_inline3138# with #tex2html_wrap_inline3140#, the convergence is significantly accelerated.
      #math341#   #tex2html_wrap_indisplay6731#  

      <#6732#>Figure<#6732#> 1.14: <#6733#> Example 3<#6733#>
      [width=110mm]<#1073#>figures/NRg4.eps<#1073#>
      132

    <#6735#>Figure<#6735#> 1.15: <#6736#>Fixed Point Example 4<#6736#>
    [width=100mm]<#1079#>figures/NRg2b.eps<#1079#>
    133