In general, if more information can be assumed available,
a more effective and efficient method can be expected.
The Newton-Raphson method is yet another way to solve the
general equation #tex2html_wrap_inline2962#, which requires more information
(derivative #tex2html_wrap_inline2964#) and converges more quickly (quadratic)
than the methods previously discussed.
#math308##tex2html_wrap_inline2978# is the step or increment we
need to take to go from the initial guess #tex2html_wrap_inline2980# to the root #tex2html_wrap_inline2982#:
#math309# #tex2html_wrap_indisplay6589#
(47)
If #tex2html_wrap_inline2992# is nonlinear, the sum of the first two terms of
the Taylor series is its approximation, and the result in
Eq. (#NR1linear#919>) is only an approximation of the root,
which can be further improved iteratively to move from the
initial guess #tex2html_wrap_inline2994# towards the root #tex2html_wrap_inline2996#, as illustrated
in the figure below:
#math310# #tex2html_wrap_indisplay6594#
(48)
<#6595#>Figure<#6595#> 1.10:
<#6596#>Newton-Raphson Method<#6596#>
[width=70mm]<#927#>figures/NewtonRaphson.eps<#927#> |
The Newton-Raphson method can be considered as the fixed-point
iteration #math311##tex2html_wrap_inline2998# based on
#math312# #tex2html_wrap_indisplay6600#
(49)
based on the assumption that #tex2html_wrap_inline3000#.
The root #tex2html_wrap_inline3002# at which #tex2html_wrap_inline3004# is also the fixed point of #tex2html_wrap_inline3006#,
i.e., #tex2html_wrap_inline3008#. For the iteration to converge, #tex2html_wrap_inline3010# needs to be
a contraction with #tex2html_wrap_inline3012#. Consider
#math313# #tex2html_wrap_indisplay6609#
(50)
At the root #tex2html_wrap_inline3014# where #tex2html_wrap_inline3016#, if #tex2html_wrap_inline3018#, then
#tex2html_wrap_inline3020#, i.e., #tex2html_wrap_inline3022# is a contraction and the iteration
#math314##tex2html_wrap_inline3024# converges quadratically when #tex2html_wrap_inline3026# is close
enough to #tex2html_wrap_inline3028#.
Here are some additional considerations of the Newton-Raphson methods:
The Newton-Raphson method converges quadratically:
#math317# #tex2html_wrap_indisplay6636#
(52)
as shown in Appendix 2 of this chapter, i.e., it converges more
quickly than both the bisection method (#tex2html_wrap_inline3054#) and the secant
method (#tex2html_wrap_inline3056#).
<#962#>Example:<#962#>
#math318# #tex2html_wrap_indisplay6640#
(53)
Obviously this equation has a repeated root #tex2html_wrap_inline3058# as well as a
single root #tex2html_wrap_inline3060#. We have
#math319# #tex2html_wrap_indisplay6644#
(54)
Note that at the root #tex2html_wrap_inline3062# we have #math320##tex2html_wrap_inline3064#. We further
find:
#math321# #tex2html_wrap_indisplay6648#
(55)
and
#math322#
#tex2html_wrap_indisplay6650# |
#tex2html_wrap_indisplay6651# |
#tex2html_wrap_indisplay6652# |
|
|
#tex2html_wrap_indisplay6653# |
#tex2html_wrap_indisplay6654# |
|
We therefore have
#math323# #tex2html_wrap_indisplay6656#
(56)
We see that the iteration converges quadratically to the single
root #tex2html_wrap_inline3066#, but only linearly to the repeated root #tex2html_wrap_inline3068#.
We consider in general a function with a repeated root at #tex2html_wrap_inline3070# of
multiplicity #tex2html_wrap_inline3072#:
#math324# #tex2html_wrap_indisplay6662#
(57)
its derivative is
#math325# #tex2html_wrap_indisplay6664#
(58)
As #tex2html_wrap_inline3074#, the convergence of the Newton-Raphson method to #tex2html_wrap_inline3076# is
linear, rather than quadratic.
In such case, we can accelerate the iteration by using a step size
#tex2html_wrap_inline3078#:
#math326# #tex2html_wrap_indisplay6669#
(59)
and
#math327# #tex2html_wrap_indisplay6671#
(60)
Now we show that this #tex2html_wrap_inline3080# is zero at the repeated root #tex2html_wrap_inline3082#,
therefore the convergence to this root is still quadratic.
We substitute #math328##tex2html_wrap_inline3084#, #math329##tex2html_wrap_inline3086#, and
#math330#
|
|
#tex2html_wrap_indisplay6677# |
|
|
#tex2html_wrap_indisplay6678# |
#tex2html_wrap_indisplay6679# |
|
|
|
#tex2html_wrap_indisplay6680# |
(61) |
into the expression for #tex2html_wrap_inline3088# above to get (after some algebra):
#math331#
#tex2html_wrap_indisplay6683# |
#tex2html_wrap_indisplay6684# |
#tex2html_wrap_indisplay6685# |
|
|
#tex2html_wrap_indisplay6686# |
#tex2html_wrap_indisplay6687# |
(62) |
At #tex2html_wrap_inline3090#, we get
#math332# #tex2html_wrap_indisplay6690#
(63)
i.e., the convergence to the repeated root at #tex2html_wrap_inline3092# is no longer
linear but quadratic.
The difficulty, however, is that the multiplicity #tex2html_wrap_inline3094# of a root is
unknown ahead of time. If #tex2html_wrap_inline3096# is used blindly some root may be
skipped, and the iteration may oscillate around the real root.
<#1029#>Example:<#1029#>
#math333# #tex2html_wrap_indisplay6695#
(64)
This equation has a double root #tex2html_wrap_inline3098# and a single root #tex2html_wrap_inline3100#.
We compare the iteration based on either #math334##tex2html_wrap_inline3102#
or #math335##tex2html_wrap_inline3104#.
- First use an initial guess #tex2html_wrap_inline3106#.
- Next use a different initial guess #tex2html_wrap_inline3124#.
<#6735#>Figure<#6735#> 1.15:
<#6736#>Fixed Point Example 4<#6736#>
[width=100mm]<#1079#>figures/NRg2b.eps<#1079#> |
133