
8 Introduction to Reinforcement
Learning

8.1 Reinforcement Learning

Reinforcement learning (RL) can be considered as one of the three basic machine

learning paradigms, alongside supervised learning (e.g., regression and classifica-

tion) and unsupervised learning (e.g., clustering) discussed previously. The goal

of RL is for the algorithm, a software agent, to learn to make a sequence of de-

cisions, called policy, for a specific task in a given environment, for the purpose

of receiving the maximum rewards from the environment.

Different from supervised learning for either regression or classification based

on a given training dataset composed of a set of i.i.d. sample points xn labeled

by yn, (n = 1, · · · , N), RL is a learning method without any examples of op-

timal behaviors. Instead, RL learns on its own without relying on any labeled

training dataset explicitely informing the agent what the correct responses are

while interacting with the environment. On the other hand, different from the

unsupervised methods that learns passively from the given dataset, RL is a trial-

and-error learning method, in which the agent actively interacts with and learns

from the given environment.

Specifically, RL as a sequential method depends on the dynamics of the en-

vironment which is modeled by a Markov decision process (MDP), a stochatic

system of multiple states with probabilistic state transitions and rewards. If the

MDP model of the environment in terms of its the state transition and reward

probabilities is known, the agaent only needs to find the optimal policy in terms

of what action to take at each state of the MDP to achieve maximum accumu-

lated rewards as the consequence of its actions. The task in this model-based case

is called planning. On the other hand, if MDP of the environment is unknown,

the agent needs to learn the environment by repeatedly running the dynamic

process of the MDP based on some initial policy and gradually evaluate the re-

ceived rewards and improve the policy to eventually reach optimality. The task

in this model-free case is called control.

Depending on the action taken by the agent in the current state s, the system

transits to the next state s′ following certain transition probability distribution.

The RL is to choose the optial action in the current state, to maximize the

long-term expected reward, as the feedback of the environment. This is typically

carried out by dynamic programming (DP), a class of algorithms seeking to

user
Sticky Note
"Reinforcement learning is one of the three basic..."

user
Callout
Cut "discussed previously." Readers already know what's been discussed previously, and if they don't, they can find out from the table of contents.

user
Callout
This first sentence is too long to easily follow. Consider breaking it into several shorter sentences.

user
Sticky Note
Cut "while interacting with the environment."

user
Sticky Note
"unlike unsupervised methods, which learn passively from the given dataset"

user
Sticky Note
"Unlike supervised learning"

user
Sticky Note
Cut "specifically."

user
Callout
Define "sequential method."

user
Sticky Note
Typo: "stochastic"

user
Callout
"Stochastic" has been used multiple times in the previous chapters, so it shouldn't be defined here, but it should be defined the first time it's used.

user
Sticky Note
Cut "in terms of its state transition and reward probabilities"

user
Sticky Note
Typo: "agent"

user
Sticky Note
Typo: "optimal"

user
Sticky Note
Cut "as the feedback of the environment."

user
Sticky Note
"to the next state s' according to a transition probability distribution"

user
Sticky Note
"a class of algorithms that"

382 Introduction to Reinforcement Learning

simplify a complex problem by breaking it up into a set of sub-problems which

can be solved recursively.

The figure below illustrates the basic concepts of RL, where the agent makes a

decision in terms of the action at to take in the current state st by following some

policy π(a|s), while the environment makes a transition from the current state

st to the next state st+1 by following the transition probability, a conditional

probability p(s′|s, a) for the next state st+1 = s′ given the curent state st = s

and the action at taken by the agent, and provides a reward rt+1.

8.2 Markov Decision Process

Markov decision process (MDP) is the mathematical framework for reinforce-

ment learning. To understand MDP, we first consider the basice concept of

Markov process or Markov chain, a stochastic model of a system that can be

characterized by a set of states S = {s1, · · · , sN} of size |S| = N (cardinality of

S). The dynamics of the system in terms of its state transition is modeled by the

transition probability Pij = P (sj |si) from the current state st = si to the next

state st+1 = sj with i, j = 1, · · · , N . The system is assumed to be memoryless,

i.e., its future is independent of the past history ht = {st, st−1, · · · , s0}, given
the present st:

P (st+1|ht) = P (st+1|st, st−1, · · · , s0) (8.1)

For example, if the state of a helicopter is described by its linear and angular

position and velocity based on which its future position and velocity can be

completely determined, then it can be modeled by a Markov process; but if the

state is only described by its position, then its position in the past is needed for

determining its future (e.g., to find its velocity), and it is not a Markov process.

All transition probabilities can be organized as an N × N state transition

matrix:

P =

P11 · · · P1N

...
. . .

...

PN1 · · · PNN

(8.2)

As the transition probabilities from any current state si to the N possible next

states s1, · · · , sN have to sum up to 1, we have

N
∑

j=1

Pij =

N
∑

j=1

P (sj |si) = 1, (i = 1, · · · , N) (8.3)

Any matrix satisfying this property is called a stochastic matrix.

In the following, our discussion is mostly concentrated on the the general

transition from the current state st = s to the next state st+1 = s′ with transition

probability P (st+1 = s′|st = s) = Pss′ .

Example Weather in Los Angeles:

user
Callout
This is a very long sentence that would be clearer if broken up into shorter sentences.

user
Callout
"Markov decision process" is a countable noun (that is, there are multiple different Markov decision processes), which means that it either needs to be "a Markov decision process," or else it needs to be pluralized. The easiest way to rewrite the first sentence would probably be, "Markov decision processes (MDPs) are the mathematical framework for reinforcement learning."

user
Sticky Note
Typo: "basic"

user
Sticky Note
"concept of a Markov process or a Markov chain"

user
Sticky Note
"position and velocity, and its future position and velocity are completely determined by its present state, then..."

user
Sticky Note
"then its position in the past is needed to determine its velocity and therefore its future state, so it is not a Markov process"

user
Callout
The composition of this matrix should be explained, Pij is the probability of transitioning from state i to state j.

user
Callout
This example needs significantly more description. What are the states? Where do the transition probabilities come from? Without the story behind the example, this is just a matrix of abstract numbers that do not help readers to understand the concept.

8.2 Markov Decision Process 383

P =

0.7 0.2 0.1

0.4 0.3 0.3

0.5 0.2 0.3

 (8.4)

We next consider a Markov reward process (MRP), represented by a tuple

〈S, P,R, γ〉 of four elements for the states, state transition probabilities, rewards,

and the discount factor. Here the reward R can be considered as a feedback signal

to the agent at each time step of the sequence of state transitions, indicating how

well it is doing with respect to the overall task. The reward can be negative, as a

penalty, for situations to be avoided. The performance of the agent is measured

by the sum of rewards accumulated over all time steps of the Markov process,

weighted by the discount factor γ ∈ [0, 1] that discounts future rewards. If γ is

close to 0, then the immediate reward is emphasized (short-sighted or greedy),

but if γ is close to 1, then rewards in the future steps will be almost as valuable

as immediate ones (far-sighted).

The sequence of state transitions of an MRP from an initial state s0 to a

terminal state sT is called an episode, and the number of time steps T is called

horizon, which can be either finite or infinite.

Both the reward r and the next state s′ resulting from arriving at the current

state s are considered as random variables with joint probability p(s′, r|s) =

P (st+1 = s′, rt+1 = r|st = s), based on which both the state transition proba-

bility and state reward probability can be found by marginalization:

p(s′|s) = P (st+1 = s′|st = s) =
∑

r∈R
p(s′, r|s), P (r|s) =

∑

s′∈S
p(s′, r|s)

(8.5)

Note that conventionally the reward r received after arriving at state st is denoted

by rt+1, instead of rt. The index s
′ ∈ S for the summation over all states will be

abbreviated to s′ in the subsequent discussion. The expectation of the reward at

s is

r(s) = E[rr+1|st = s] =
∑

r

rP (r|s) =
∑

r

r
∑

s′

P (s′, r|s) (8.6)

We define the return Gt at each step s = st as the accumlate reward, the sum

of the immediate reward after arriving at the current state s = st and all delayed

rewards in the future states upto a terminal state sT with reward rT at the end

of the episode, discounted by γ:

Gt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT =

T−t−1
∑

k=0

γkrt+k+1 (8.7)

We further define the state value function v(s) at state s = st as the expectation

of the return, which can be further expressed recursively in terms of the values

user
Sticky Note
"the reward R is a feedback signal..."

user
Callout
This makes it sound like the reward is greedy, but actually it's the algorithm that's greedy.

user
Sticky Note
"is called the horizon"

user
Sticky Note
"state s are random variables"

user
Sticky Note
Cut "note that."

user
Sticky Note
Typo: "accumulated"

user
Sticky Note
"The return Gt at each step s = st is the accumulated reward..."

user
Sticky Note
"The state value function v(s) at state s = st is the expectation..."

user
Sticky Note
Cut "further."

384 Introduction to Reinforcement Learning

v(s′) of all possible next states s′ = st+1:

v(s) = E[Gt|st = s] = E[rt+1 + γrt+2 + γ2rt+3 + · · · |st = s]

= E[rt+1 + γ(rt+2 + γrt+3 + · · ·)|st = s]

= E[rt+1|s = st] + γE[Gt+1|st+1 = s′, st = s]

= r(s) + γ
∑

s′

P (s′|s)v(s′) (8.8)

where r(s) is given in Eq. (8.6). The value of a terminal state sT at the end of

an episode is zero, as there will be no next state and thereby no more future

reward.

This equation is called the Bellman equation, by which the value v(s) at current

state s is expressed recursively in terms of the immediate reward r(s) and the

values v(s′) of all possible next states, without explicitely invoking all future

rewards. Based on this bootstrap idea of the Bellman equation, a multi-step MRP

problem can be expressed recursively as a subproblem concerning only a single

state transition from s to s′, as a backward induction to find current state value

from all future ones. For this reason, the Bellman equation plays an essential role

in future discussion of some important algorithms in reinforcement learning.

The Bellman equation in Eq. (8.8) holds for all states s1, · · · , sN , and the

resulting N equations can be expressed in vector form as:

v =

v(s1)
...

v(sN)

=

r(s1)
...

r(sN)

+ γ

P (s1|s1) · · · P (sN |s1)
...

. . .
...

P (s1|sN) · · · P (sN |sN)

v(s1)
...

v(sN)

= r+ γPv (8.9)

where P is called the stochastic matrix. Solving this linear equation system of

size N we find

v = (I− γP)−1r (8.10)

Such a solution exists as matrix I − γP is invertible. This can be shown by

noting that all eigenvalues of the stochastic matrix P are not greater than 1:

|λ| ≤ 1 (Section A.9), and all eigenvalues of γP are smaller than 1: γλ < 1,

i.e., the eigenvalue of I − γP is greater than zero: 1 − γλ > 0. Consequently

the determinant det(I − γP) of this coefficient matrix, as the product of all its

nonzero eigenvalues, is non-zero and therefore matrix det(I− γP) is invertible.

Alternatively, the Bellman equation in Eq. (8.8) can also be solved iteratively

by the general method of dynamic programming (DP), which solves a multi-

stage planning problem by a backward induction and find the value function

recursively. We first rewrite the Bellman equation as

v = r+ γPv = B(v) (8.11)

where B(v) = r + γPv is defined as a vector-valued function (an operator)

user
Sticky Note
"and therefore no more..."

user
Callout
This sentence is mostly restating the sentence that came before the equation, which undercuts the importance of the new information being conveyed: that the equation allows the value to be calculated without explicitly using future rewards.

user
Callout
P has already been defined.

user
Callout
We already know that the system is of size N.

user
Sticky Note
Insert comma between "exists" and "as."

user
Callout
"Dynamic programming" has already been defined.

user
Sticky Note
"by backward induction and finds the value"

user
Sticky Note
"is a vector-valued function"

8.2 Markov Decision Process 385

applied to the vector argument v. Now the Bellman equation can be solved

iteratively from an arbitrary initial value, such as v0 = 0:

vn+1 = B(vn) = r+ γPvn (8.12)

This iteration will always converge to the root of the equation, the fixed point

of function B(v), as it is a contraction mapping first introduced in Section 1.3,

that satisfies:

||B(vi)−B(vj)|| = ||r+ γPvi − (r+ γPvj) || = γ||P(vi − vj)||
≤ γ||P|| ||vi − vj || = γ||vi − vj || < ||vi − vj || (8.13)

That B(v) is a contraction can also be proven by showing the norm of its Jaco-

bian matrix, its derivative with respect to its vector argument v, is smaller than

1. We first find the Jacobian matrix

JB =
d

dv
B(v) =

d

dv
(r+ γBv) = γP (8.14)

and then find its p-norm with p = ∞ (equivalent to p = 1, 2), the maximum

absolute row sum:

||JB ||p=∞ = ||γP||∞ = γ||P||∞ = γ max
1≤i≤N

N
∑

j=1

|Pij | = γ < 1 (8.15)

The last equality is due to Eq. (8.3), i.e., ||P||∞ = 1.

In summary, the Bellman equation in Eq. (8.8) can be solved by either of the

two methods in Eqs. (8.10) and (8.12), so long as γ < 1. When the size of state

space |S| = N is large, the complexity O(N3) is too high then the iterative

method may be more efficient.

Based on the definition of MRP, we further define Markov decision process

(MDP) as an MRP with certain decision-making rule called policy, denoted by

π, following the policy the agent takes one of the actions a ∈ A(s) available at

each state s to control the state transition of the process. An MDP can therefore

be described by a tuple < S,P,R,A, γ >, of which A is the set of all actions.

The policy π can be either stochastic denoted by π(a|s) = P (at = a|st = s) as

the conditional probability of taking action a in state s, or deterministic denoted

by a = π(s). A policy is soft if any of the actions available at a state is possible

to be taken, i.e., π(a|s) > 0 for all a ∈ A(s) and all s ∈ S. In particular, a policy

is ǫ-soft if π(a|s) ≥ ǫ/|A(s)| for some small value of ǫ.

As there are |A(sn)| possible actions to take in state sn ∈ S, the total number

of policies is |A(s1)| · · · |A(sN)| = ΠNn=1|A(sn)|. If the number of available actions

|A| is the same for all |S| states, then the total number of policies is |A||S|.
Following a given policy from an initial state s0 will result a sequence of state

transitions called a trajectory of the episode:

s0
a0−→ s1

a1−→ s2
a2−→ s3 · · · sT (8.16)

of which the state visited at the t-th step denoted by st can be any of the N

user
Callout
"Fixed point" and "contraction function" have already been defined, and should not be italicized.

user
Sticky Note
"the complexity O(N3) is high enough that the iterative method..."

user
Sticky Note
"A Markov decision process is an MRP..."

user
Sticky Note
"with a decision-making rule called a policy..."

user
Callout
This is a run-on sentence. End the first sentence after "denoted by pi," and make everything after that its own sentence.

user
Sticky Note
"where A is..."

user
Callout
This sentence is confusingly worded. It would probably be clearer if broken into several shorter sentences.

user
Callout
If an action can't be taken at state s, how is it "available" at that state? The definition of "available" needs to be made explicit.

user
Callout
Clarify that this is the number of deterministic policies for an MDP. There are potentially infinite possible probabilistic policies.

user
Sticky Note
"will result in"

user
Callout
This explanation would benefit from a concrete real-world example to illustrate the differences between actions, states, state transitions, and policies.

386 Introduction to Reinforcement Learning

states in S = {s1, · · · , sN} of the MDP, not to be confused with the t-th state in

S. Note that in an episode some of the states in S may be visited multiple times,

while some others may never be visited. Also note that due to the random nature

of the MDP, following the same policy may not result in the same trajectory.

Along the trajectory of an episode, an accumulation of discounted rewards

from all states visited will be received. Our goal is to find the optimal policy as

a sequence of actions a0, a1, a2, · · · for a given MDP model of the environment

in terms of its state transition dynamics and rewards, so that the value v(s0) at

the start state s0, the expectation of the sum of all discounted future rewards, is

maximized. This optimization problem can be solved by the method of dynamic

programming, and such a process is called planning.

In an MDP, both the next state s′ and reward r are assumed to be random

variables with joint probability p(s′, r|s, a) = P (st+1 = s′, rt+1 = r|st = s, at =

a) conditioned on the action a and the previous state s. The state transition

probability becomes

p(s′|s, a) = P (st+1 = s′|st = s, at = a) =
∑

r∈R
p(s′, r|s, a) (8.17)

and the expected reward r received after arriving at the current is

r(s, a) = E[rt+1|st = s, at = a] =
∑

r

r p(r|s, a) =
∑

r

r
∑

s′

p(s′, r|s, a) (8.18)

Following a specific random policy π(a|s), the agent takes an action a ∈ A(s) to
transit from the current state st = s to the next state st+1 = s′ with probability

pπ(s
′|s) = P (st+1 = s′|st = s) =

∑

a∈A(s)

π(a|s) p(s′|s, a) (8.19)

satisfying
∑

s′ Pπ(s
′|s) = 1 and the reward in state s:

rπ(s) = Eπ[rt+1|st = s] =
∑

a∈A(s)

π(a|s) r(s, a) (8.20)

where Eπ denotes the expectation with respect to a certain policy π(a|s). The
summation over all available actions a ∈ A(s) in state s will be abbreviated to

a in the following.

We further define two important functions with respect to a given policy π of

an MDP:

• The state value function vπ(s) is the expected return at each state s of the

MDP while following policy π, similar to the value function of an MRP as

v(s) in Eq. (8.8), but now treated as a function of action a as well as state

user
Callout
It might be better simply to use different notation for the t-th state visited.

user
Callout
Clarify that you're referring to stochastic MDPs.

user
Callout
Rewrite for active voice: "Along the trajectory of an episode, an MDP will accumulate discounted rewards from all states visited."

user
Callout
We already know what a policy is and what an MDP model is. This sentence is much clearer if those definitions are cut: "Our goal is to find the optimal policy for a given MDP such that the v(s0) is maximized."

user
Callout
Define v(s0) before you state the goal: "The value v(s0) at the start state is the expected value of the sum of those accumulated rewards."

user
Callout
"Planning" has already been defined.

user
Sticky Note
"and reward r are random variables"

user
Sticky Note
"at the current state"

user
Sticky Note
"The state transition probability is"

user
Sticky Note
"denotes the expected reward"

user
Callout
Overly formal/academic language. This could be more directly stated: "There are two important functions with respect to a given policy pi of an MDP."

user
Callout
This sentence would be clearer if broken into several smaller sentences.

8.2 Markov Decision Process 387

s:

vπ(s) = Eπ[Gt|st = s]

=
∑

a

π(a|s)
(

r(s, a) + γ
∑

s′

P (s′|s, a) vπ(s′)
)

=
∑

a

π(a|s) qπ(s, a) (8.21)

where qπ(s, a) is defined below.

• The state-action value function qπ(s, a) is the expected return of taking a

specific action a (irrelevant to policy π) in state s, and then following π in

all subsequent states:

qπ(s, a) = Eπ [Gt|st = s, at = a]

= r(s, a) + γ
∑

s′

P (s′|s, a) vπ(s′)

= r(s, a) + γ
∑

s′

P (s′|s, a)
∑

a′

π(a′|s′) qπ(s′, a′)) (8.22)

where vπ(s
′) is recursively represented as a weighted sum of qπ(s

′, a′) based
on Eq. (8.21).

The state-action value qπ(s, a) plays a more important role than vπ(s) as it

allows the freedom of taking any action independent of a given policy π, thereby

allowing the opportunity to improve an existing policy, e.g., by taking a greedy

action to maximize the value qπ(s, a). The state-action value function qπ(s, a)

is often abbreviated as the action value ore Q-value for convenience in future

discussions.

As a function of the state-action pair (s, a), the state action value qπ(s, a) can

be represented as a table of |S| rows each for one of the states s, and |A| columns

each for one of the actions a. The Q-value for each state-action pair stored in the

table can be updated iteratively by various algorithms for learning the Q-values.

In particular, if the policy is deterministic with π(a|s) = 1 and a = π(s), then

we have

Pπ(s
′|s) = P (s′|s, a), rπ(s) = r(s, a) (8.23)

and the Bellman equations in Eqs. (8.21) and (8.22) become the same:

vπ(s) = r(s, a) + γ
∑

s′

P (s′|s, a) vπ(s′) = qπ(s, π(s)) (8.24)

same as the Bellman equation of an MRP in Eq. (8.8), and can be solved itera-

tively if γ < 1, same as in Eq. (8.12).

The figure above illustrates the Bellman equations in Eqs. (8.21) and (8.22),

showing the bootstrapping of the state value function in the dashed box on the

left, and that of the action value function in dashed box on the right. Specifically

user
Sticky Note
"regardless of policy pi"

user
Sticky Note
Typo: "or"

user
Callout
"Greedy" has already been defined.

user
Callout
Sometimes you hyphenate "state-action" and sometimes you don't. Either is fine, but it should be consistent.

user
Line

user
Sticky Note
"table of |S| rows, each associated with a state s, and |A| columns, each associated with an action a."

user
Sticky Note
"This is the same as the Bellman equation..."

user
Sticky Note
"just as in Eq 8.12" or simply "as in Eq 8.12"

user
Sticky Note
Cut "specifically."

388 Introduction to Reinforcement Learning

here the word bootstrapping means the iterative method that updates the esti-

mated value at a state s based on the estimated value of the next state s′. After
taking oen of the actions a ∈ A(s) available in state s based on policy π(a|s), an
immediate reward r(s, a) is received. However, which state the MDP will transit

into as the next state s′ is random depending on P (s′|s, a) of the environment

but independent of the policy. This uncertanty is represented graphically by a

dashed circle called a chance node associated with the action value qπ(s, a) as the

sum of the immediate reward r(s, a) and the expected value of the next state,

the weighted average of values v(s′) of all possible state s′ ∈ S.

8.3 Model-Based Planning

Given a complete MDP model in terms of p(s′, r|s, a) of the environment, the

goal of model-based planning is to find the optimal policy π∗ that achieves the

maximum value:

v∗(s) = max
π

vπ(s), π∗(s) = argmax
π

vπ(s) ≥ π ∀π (8.25)

based on the partial order that compares different policies according to the cor-

responding values:

If vπ1(s) ≥ vπ2(s) ≥ · · · vπk
(s), ∀s ∈ S

Then π1 ≥ π2 ≥ · · · ≥ πk (8.26)

The problem of policy optimization can be addressed based on two subproblems:

policy evaluation to measure how good a policy is, and policy improvement to

get a better policy for higher values.

One way to solve this optimization problem is to use brute-force search to

enumerate all |A(s)| available policies at each of the N = |S| states s ∈ S. If we
assume the numbers of avilable actions in all states are the same for simplicity,

i.e., A(s1) = · · · = A(sN) = A, then the computational complexity of this

method is O(|A||S|), likely to be too high for such a brute-force search to be

practical if N is large.

A more efficient and therefore more practical way to optimize the policy is to do

it iteratively. Consider a simpler task of improving upon an existing deterministic

policy π at a single transition step from the current state s to a next state s′.
Instead of taking the action a = π(s) dictated by the policy, we can improve

it by taking the greedy action that maximizes the action value function in Eq.

(8.22), while subsequent steps still follow the old policy π. Now we get a new

policy:

π′(s) = argmax
a

qπ(s, a) = argmax
a

[

r(s, a) + γ
∑

s′

P (s′|s, a)vπ(s′)
]

(8.27)

user
Callout
This description of "bootstrapping" doesn't make it clear why this method is a bootstrapping method and others aren't. Defining bootstrapping when it's first used will clear this up.

user
Sticky Note
Typo: "one"

user
Callout
This sentence is confusing. The point you're trying to make is that once the policy has decided on an action, there's still uncertainty about the next state, but that's not immediately clear from the language.

user
Sticky Note
Typo: "uncertainty"

user
Callout
"Of the environment" doesn't add much information and makes the sentence harder to understand.

user
Callout
"Greedy" has already been defined.

user
Sticky Note
"a better policy with higher values"

user
Sticky Note
Typo: "available"

user
Callout
Why do you define |S| as a separate variable N, when you don't define |A| as a separate variable?

8.3 Model-Based Planning 389

so that the action value is higher than that of the old one:

qπ(s, π
′(s)) = max

a
qπ(s, a) = max

a

[

r(s, a) + γ
∑

s′

P (s′|s, a)vπ(s′)
]

≥ qπ(s, π(s)) = vπ(s)

(8.28)

where the last equality is due to Eq. (8.24) for a deterministic policy.

While it is obvious that this greedy method will result in a higher return for

the single state transition from s to s′, we can further prove the following policy

improvement theorem stating that following this greedy method in all subsequent

states, we will get a new policy π′ that achieves higher values than the those of

the old one π at all states:

vπ′(s) ≥ vπ(s), ∀s ∈ S (8.29)

The proof is by recursively applying the greedy method to replace the old

policy π(s) by the new one π′(s) for a higher value for each of the subsequent

steps one at a time:

vπ(s) ≤ qπ(s, π′(s)) = max
a

qπ(s, a) = max
a

[

r(s, a) + γ
∑

s′

P (s′|s, a)vπ(s′)
]

= r(s, π′(s)) + γ
∑

s′

P (s′|s, π′(s))vπ(s
′)

≤ r(s, π′(s)) + γ
∑

s′

P (s′|s, π′(s))max
a′

qπ(s
′, a′)

= r(s, π′(s)) + γ
∑

s′

P (s′|s, π′(s))

[

r(s′, π′(s)) + γ
∑

s′′

P (s′′|s′, π′(s′))vπ(s
′′)

]

= r(s, π′(s)) + γr(s′, π′(s)) + γ
∑

s′

P (s′|s, π′(s))

[

γ
∑

s′′

P (s′′|s′, π′(s′))vπ(s
′′)

]

≤ · · ·
= r(s, π′(s)) + γr(s′, π′(s′)) + γ2r(s′′, π′(s′′) + · · ·
= vπ′(s) (8.30)

i.e., π′(s) ≥ π(s).
The optimal state value v∗(s) and action value q∗(s, a) can therefore be achieved

by replacing the weighted average over all possible actions at each state (s and

s′) in the Bellman equations in Eqs. (8.21) and (8.22) by their maximum:

v∗(s) = max
a

q∗(s, a) = max
a

(

r(s, a) + γ
∑

s′

P (s′|s, a)v∗(s′)
)

(8.31)

and

q∗(s, a) = r(s, a) + γ
∑

s′

P (s′|s, a)v∗(s′) = r(s, a) + γ
∑

s′

P (s′|s, a)max
a′

q∗(s′, a′)

(8.32)

user
Sticky Note
"higher values than those of the old policy pi"

user
Sticky Note
"We prove this by recursively..."

390 Introduction to Reinforcement Learning

Eqs. (8.31) and (8.32) are the Bellman optimality equations, which should hold

for all N states in S = {s1, · · · , sN} and can be written in vector form:

v∗ = max
a

(ra + γPav
∗) (8.33)

where

v∗ =

v∗(s1)
...

v∗(sN)

, ra =

r(s1, a)
...

r(sN , a)

, Pa =

P (s1|s1, a) · · · P (sN |s1, a)
...

. . .
...

P (s1|sN , a) · · · P (sN |sN , a)

(8.34)

This nonlinear equation system can be solved iteratively to for v∗:

v∗
n+1 = max

a
(ra + γPav

∗
n) = B(vn) (8.35)

This iteration is to be used for policy evaluation in the algorithm value iteration

below for finding the optimal policy. This iteration will converge as function

B(v) is a contraction mapping with γ < 1:

||B(vi)−B(vj)|| = ||max
ai

(rai + γPaivi)−max
aj

(

raj + γPajvj
)

||

≤ ||max
ai

(rai + γPaivi − rai − γPaivj) ||

= max
ai

γ||Pai(vi − vj)|| ≤ max
ai

γ||Pai || ||vi − vj ||

= γ||vi − vj || < ||vi − vj || (8.36)

where ||P|| = ||P||∞ = 1 is the p-norm (p =∞) of a stochastic matrix, which is

known to be 1.

Given the complete information of the MDP model in terms of p(s′, r|s, a), we
can find the optimal policy π∗ using either policy iteration (PI) or value iteration

(VI) based on the DP method.

• Policy Iteration

Carry out the following two processes iteratively from some arbibrary

initial policy π until convergence when π no longer changes:

– Policy evaluation:

Given a deterministic policy π, Eq. (8.21) becomes the Bellman equa-

tion in Eq. (8.24), a linear equation system of N = |S| equations of

N unknowns vπ(s1), · · · , vπ(sN), which can be solved iteratively as

in Eq. (8.12) to find values at all states:

vπn+1(s) = r(s, π(s)) + γ
∑

s′ P (s
′|s, π(s))vπn(s′) ∀s ∈ S

– Policy improvement:

Given vπ(s) based on policy π, get a better policy π′ by the greedy

method as in Eq. (8.27):

π′(s) = argmaxa [r(s, a) + γ
∑

s′ P (s
′|s, π(s))vπ(s′)] ∀s ∈ S

We see that in each round of the policy iteration, two intertwined and

interacting processes, the policy evaluation and policy improvement, are

carried out alternatively, one depending on the other, and one completing

user
Sticky Note
"can be solved iteratively for v*"

user
Sticky Note
"This iteration is used for policy evaluation in the value iteration algorithm below"

user
Sticky Note
"will converge, as"

8.3 Model-Based Planning 391

before the other starts. The value functions vπ(s) at all states are sysmeti-

caly evaluated before they are updated, and the policy π(a|s) at all states is
updated before it is evaluated. While these two processes chase each other

as moving target iteratively and eventually converge to the optimal policy

π∗ achieving the optimal value v∗. This approach is said to be synchronous,

as shown here:

πo
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ · · · I−→ π∗ E−→ vπ∗ = v∗ (8.37)

The pseudo code for the algorithm is listed below:

Initialize:

v(s) ∈ R, v(s) = 0 if s is terminal node, π(s) ∈ A(s), ∀s ∈ S;
Set tolerence tol (small positive value);

repeat

Policy Evaluation (find v(s) ∀s ∈ S):
repeat

δ = 0

for ∀s ∈ S:
v′(s) = r(s, π(s))+γ

∑

s′ P (s
′|s, π(s))v(s′)

δ = max(δ, |v(s)− v′(s)|)
until δ < tol

Ploicy Improvement (by taking greedy action):

Done = T

for each s ∈ S
π′(s) = argmaxa [r(s, a) + γ

∑

s′ P (s
′|s, π(s))v(s′)]

if π′(s) 6= π(s), Done = F

end for

until done

• Value Iteration:

One drawback of the policy iteration method is the high computational

complexity of the inner iteration for policy evaluation inside the outer it-

eration for policy evaluation. To speed up this process, we could terminate

the inner iteration early before convergence. In the extreme case, we simply

combine policy evaluation and improvement into a single step, resulting in

the following value iteration contains two steps:

– Find the optimal values:

Based on some initial value v0(s), solve the Bellman optimality equa-

tion in Eq. (8.31) by iteration in Eq. (8.35):

vn+1(s) = max
a

[

r(s, a) + γ
∑

s′

P (s′|s, a)vn(s′)
]

∀s ∈ S (8.38)

– Find the optimal policy:

user
Sticky Note
"These two processes chase each other as a moving target..."

user
Sticky Note
Typo: "Policy"

user
Callout
This sentence is overly long and awkwardly worded. Everything after the first "inner iteration" can be cut, and it will make the sentence clearer.

user
Sticky Note
"we can terminate"

user
Sticky Note
"resulting in the following two-step value iteration"

392 Introduction to Reinforcement Learning

Find π∗(s) that maximizes v∗(s):

π∗(s) = argmax
a

[

r(s, a) + γ
∑

s′

P (s′|s, a)vn(s′)
]

∀s ∈ S (8.39)

Here is the pseudo code for the algorithm:

Initialize: v(s) = 0 ∀s ∈ S
repeat

δ = 0;

for each s ∈ S
v′(s) = maxa [r(s, a) + γ

∑

s′ P (s
′|s, a)v(s′)]

δ = max(δ, |v′(s)− v(s)|)
v(s) = v′(s)

end for

until δ < tol

π∗(s) = argmaxa [r(s, a) + γ
∑

s′ P (s
′|s, a)v(s′)]

In the PI method considered above, the value functions at all states are eval-

uated before the policy is updated for all states, as illustrated below:

This synchronous policy iteration can be modified so that the values at some

or even one of the states are evaluated in-place before other state values are

updated, and the policy at some or even one of the states are updated in-place

before that at other states, resulting in an asynchronous method called general

policy iteration (GPI), to be discussed in detail in the next sections on model-free

control.

8.4 Model-Free Evaluation and Control

The previously discussed dynamic programming methods find the optimal policy

based on the assumption that the MDP model of the environment is completely

available, i.e., the dynamics of MDP in terms of its state transition and reward

mechanism are known. A given policy π can then be evaluated based the tran-

sition probabilities p(s′|s, a), and improved based on greedy action selection at

each state. Such a model-based optimization problem, called planning, involves

no learning of the environment.

Now we consider the optimization problem with an unknown MDP model of

the environment. In this model-free problem, called control, the state transition

and reward probabilities of the MDP model are unknown, the value functions

can no longer be calculated directly based on Eqs. (8.21) and (8.22) as in model-

based planning. Instead, now we need to learn the MDP model by sampling

the environment, i.e., by repeatedly running a large number of episodes of the

stochastic process of the environment while following some given policy, and

estimate the value functions as the average of the actual returns received during

the sampling process. This method is generally referred to as Monte Carlo (MC)

user
Callout
If this is referring to a figure, name the figure explicitly.

user
Callout
This sentence is repetitive and difficult to follow. Consider instead: "This synchronous policy iteration can be modified so that the values at some states are evaluated in-place before the other state values are updated. The same thing can be done for policy evaluation. This results in...""

user
Callout
Since this section immediately follows, there's no need to state what's going to be discussed in it.

user
Sticky Note
"based on the transition probabilities..."

user
Callout
"Planning" has already been defined.

user
Callout
"Control" is a modifier for "problem"—this should be, "In this model-free problem, called a control problem..."

user
Sticky Note
"so the value functions..."

user
Sticky Note
Cut "now."

user
Callout
This sentence is long. It would be clearer if broken into several shorter sentences.

user
Sticky Note
"This method is referred to as the Monte Carlo method."

8.4 Model-Free Evaluation and Control 393

method. At the same time, the given policy can also be improved to gradually

approach optimality.

This approach is called general policy iteration (GPI), as illustrated in Eq.

(8.40) below, similar to the policy iteration (PI) algorithm for model-based plan-

ning illustrated in Eq. (8.37). In general, all model-free control algorithms are

based on GPI by which the two alternating processes of policy evaluation and

policy imprvement are carried out iteratively. This GPI can also be similarly

illustrated in Fig. ?? for the GI.

πo
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ · · · I−→ π∗ E−→ qπ∗ = v∗ (8.40)

While GPI and GI illustrated in respectively in Eqs. (8.40) and (8.37) may

look similar to each other, there are some essential differences between the two,

as listed below.

• First, in model-free control the policy improvement is based on the action-

value function qπ(s, a), instead of the state value function vπ(s) in model-

based planning. This is because without the a specific MDP model the

state value function can no longer be calculated, while the action value

function can still be estimated based on the actual rewards received while

sampling the environment. Similar to how we improve the policy by taking

a greedy action to achive a higher state value in model-based planning, here

we improve the policy by taking an action different from that dictated by

the given policy π to achieve a higher action value based on some ǫ-greedy

method, as discussed below.

• Second, as estimating the action value by the MC method requires running

a large number of episodes while the sampling of the environment, the

computational complexity for policy evaluation in the model-free case is

much higher than that in model-based planning. To speed up this process in

model-free control, the iterative policy evaluation is no longer fully carried

for it to converge to the true action value of the policy. Instead, in model-

free control, the iterative update of the action value is carried out only

once, followed immediately by the next phase of policy improvement. Such

an estimated action value is innevitably very noisy, but due to the much

reduced complexity, we can afford to run a large number of sample episodes

while sampling the envirionment.

• Third, in the PI process of model-based planning, the action value is found

based on all available actions at each state (Eq. (8.22)) during policy eval-

uation, and we only need to exploit the greedy action at each state to find

the policy that achieves the maximum action value qπ(s) (Eq. (8.27)) dur-

ing policy improvement. However, here in model-free control, we have to

learn the action value qπ(s, a), as a function of action a ∈ A(s) as well as

state s by sampling the environment. Such an estimated action value based

only on some partial sample data is inevitably noisy, especially in the early

user
Sticky Note
"This approach is called general policy iteration. As illustrated in Eq 8.40, GPI is similar to the PI algorithm for model-based planning..."

user
Callout
Based on context, I think that "GI" refers to policy iteration, but previously that's been referred to as "PI"; GI has never been defined.

user
Sticky Note
"based on GPI; they iteratively carry out the two alternating processes of policy evaluation and improvement."

user
Callout
The reference to the equations is awkward and makes the sentence hard to parse. Since both equations are relatively recent, it's probably fine to leave out the reference entirely.

user
Sticky Note
Cut "as listed below."

user
Callout
It's probably not necessary to list this in bullet format.

user
Sticky Note
"without a specific MDP model"

user
Callout
"Action-value" is sometimes hyphenated and sometimes not. Either is fine, but it should be consistent.

user
Line

user
Sticky Note
Typo: "achieve"

user
Sticky Note
Cut "as discussed below."

user
Sticky Note
"while sampling the environment"

user
Sticky Note
Cut "here"

user
Sticky Note
"as a function of action a ∈ A(s) and state s"

user
Sticky Note
Cut "such"

394 Introduction to Reinforcement Learning

stage of learning when many of the states have not yet been visited yet. We

therefore need to explore all actions at each state to better learn the value

function, as well as to exploit the greedy action to improve the policy.

This issue of exploration versus exploitation can be addressed by the ǫ-greedy

method to make a proper trade-off between the exploitation of the greedy action

and the exploration of other non-greedy actions, so that the agent can be exposed

to all possible state-action pairs and gradually learn the action value function

while at the same time also improve the policy being followed. In this method,

we define ǫ ∈ [0, 1] as the probability to explore any randomly chosen action

a ∈ |A(S)| out of all actions available in state s, each with an equal probability

ǫ/|A(s)|, and 1 − ǫ is the probability of taking the greedy action as one of the

|A(s)| actions, with probability 1− ǫ + ǫ/|A(s)|.

π′(a|s) =
{

argmaxa q(s, a) Pr = 1− ǫ+ ǫ/|A(s)|
any a ∈ A(s) Pr = ǫ/|A(s)| (8.41)

For example, if |A(s)| = 4 and ǫ = 2/3, the greedy action may be chosen with

probability 1− ǫ+ ǫ/|A(s)| = 3/6, while each of the remaining three non-greedy

actions may be chosen with probability ǫ/|A(s)| = 1/6. Such a policy describes

the behavior of the agent, and is therefore called behavior policy, different from

the policy being followed.

We further note that a larger value of ǫ (close to 1) can be used to emphasize

exploration at the early stage of the iteration when many state-action pairs have

not been visited yet, while progressively smaller ǫ values (approaching to 0) can

be used to amphasize exploitation for higher values in the later stage of the

iteration when the action value function has been more reliably learned. For

example, we can let ǫk = 1/k be inversely proportional to the current number of

iterations k, so that the larger ǫ values at the early stage of the iteration allow

more sate-action pairs to be explored, while smaller ǫ values in the later stage of

the iteration encourage exploitation of the greedy actions. To the limit k → ∞
and ǫ −→ 0, the ǫ-greedy method approaches absolute greedy method.

Similar to how we proved the policy improvement theorem in Eq. (8.30) stating

that the greedy policy π′(s) achieves state value vπ′(s) no lower than vπ(s)

achieved by the original policy π, i.e., π′(s) ≥ π(s), here we can also prove the

same policy improvement theorem stating that the ǫ-greedy policy π′ achieves
action value qπ′(s, a) no lower than qπ(s, a) by the original policy π:

qπ(s, π
′(s)) =

∑

a

π′(a|s)qπ(s, a)

=
ǫ

|A(s)|
∑

a

qπ(s, a) + (1 − ǫ)max
a

qπ(s, a)

≥ ǫ

|A(s)|
∑

a

qπ(s, a) + (1 − ǫ)
∑

a

π(a|s)− ǫ/|A(s)|
1− ǫ qπ(s, a)(8.42)

where the inequality is due to the fact that the maximum value of qπ(s, a) is no

user
Callout
This sentence is very long. It would be clearer if broken into several shorter sentences.

user
Sticky Note
"as the probability of exploring"

user
Callout
It's difficult to keep track of which probability goes with which action.

user
Callout
3/6 is 1/2.

user
Sticky Note
"behavior policy, to distinguish it from the policy being followed."

user
Sticky Note
Cut "We further note that."

user
Callout
It's not clear before this that sigma can change throughout the algorithm. Having a sentence to establish that first will make this part easier to understand.

user
Sticky Note
Typo: "emphasize"

user
Sticky Note
Typo: "state-action"

user
Sticky Note
"As k approaches infinity and sigma approaches 0..."

8.4 Model-Free Evaluation and Control 395

less than the average of action values qπ(s, a) over all a ∈ A(s) weighted by some

normalized coefficients adding up to 1:

∑

a

π(a|s)− ǫ/|A(s)|
1− ǫ =

1

1− ǫ
∑

a

(

π(a|s)− ǫ

|A(s)|

)

=
1

1− ǫ(1− ǫ) = 1 (8.43)

Continuing the equation above we further get

qπ(s, π
′(s)) ≥ ǫ

|A(s)|
∑

a

qπ(s, a)−
ǫ

|A(s)|
∑

a

qπ(s, a) +
∑

a

π(a|s)qπ(s, a)

=
∑

a

π(a|s)qπ(s, a) = vπ(s) (8.44)

The iterative process of the GPI method for model-free control is illustrated

in the figure below, similar to the PI method for model-based planning based

planning illustrated in Fig. ??, but with the state value vπ(s) replaced by the

action value qπ(s, a), and the greedy method replaced by ǫ-greedy method.

Also, here the estimated action value q̃ is obtained with only one iteration for

policy evaluation, instead of a much more accurate estimate that could otherwise

be obtained if the iterative evaluation was fully carried out to its convergence (the

top line). At the same the time, based on the estimated q̃ policy improvement is

carried out by the ǫ-greedy method (the bottom line).

The main task in model-free control is to evaluate the state and action-value

functions given in Eqs. (8.21) and (8.22) while following a given policy π without

a specific MDP model. This is done by sampling of the dynamic process of the

environment, and then estimating the value functions as the average of the actual

returns received by the agent. Specifically, we run a large number of episodes (all

assumed to terminate) of the MDP model of the environment by taking actions

at = π(st) in each state st, (t = 1, · · · , T):

s0 → (a1, r1, s1)→ (a2, r2, s2)→ · · · → (aT , rT , sT) (8.45)

and estimate the value functions based on the averaged returns Gt actually

received from these episodes.

Such a sequence of states visited is called a trajectory, and the trajectories of

different episodes are in general different from each another due to the random

nature of the environment. In the following sections we will consider specific

algoithms for the implementation of the general model-free control discussed

above.

To prepare for specific discussion of the GPI methods, we first consider a gen-

eral problem of the estimation of the value of a random variable x as the running

average of its samples beging collected in real time. Speicically the average x̂n
based on previous n samples x1, · · · , xn is updated incrementally upon receiving

user
Callout
Specify the figure by number.

user
Sticky Note
"in the figure below. It is similar to the PI method..."

user
Callout
I don't understand what this sentence is saying.

user
Callout
"Trajectory" has already been defined.

user
Sticky Note
"different from each other"

user
Sticky Note
Typo: "algorithms"

user
Sticky Note
Cut "Specifically"

396 Introduction to Reinforcement Learning

a new sample xn+1:

x̂n+1 =
1

n+ 1

n+1
∑

i=1

xi =
1

n+ 1

(

xn+1 +

n
∑

i=1

xi

)

=
1

n+ 1
(xn+1 + nx̂n) = x̂n +

1

n+ 1
(xn+1 − x̂n) (8.46)

This running average can be generalized to

x̂n+1 = x̂n + α(xn+1 − x̂n) (8.47)

This equation can be interpreted as

newEstimate = oldEstimate + stepSize× (target− oldEstimate)

= oldEstimate + stepSize× error

= oldEstimate + increment (8.48)

and considered as one iterative step in the method of stochastic gradient descent

(SGD), for minimizing the squared error ε = (xn+1− x̂n)2/2 between the old av-

erage x̂n and the latest sample xn+1, and the second term is the gradient dε/dx̂n
weighted by the step size α ∈ [0, 1], which controls how samples are weighted

differently. In the extreme case when α = 1, x̂n = xn with no contribution from

any previous samples; on the other hand when α is close to 0, x̂n, the most

recent samples has little contribution. We can therefore properly adjust α to

fit our specific need. For example, if we gradually reduce α, then the estimated

average will become stabilized while enough samples have been collected. On the

other hand, if we let 0 < α < 1/(n+ 1), the more recent samples are weighted

more heavily than the earlier ones. Such a stratigy is suitable when estimating

parameters of a nonstationary system, such as an MDP with varying behaviors

when the policy is being modified continuously.

Specifically in model-free control Eq. (8.47) can be used to iteratively update

the estimated value functions while sampling the environment. Both the state

and action values as the expected return are estimated as the average of all

previous sample returns, and they are updated incrementally when a new sample

return Gn+1, the target, becomes available:

vn+1(s)⇐ vn(s) + α(Gn − vn(s))
qn+1(s, a)⇐ qn(s, q) + α(Gn − qn(s, a)) (8.49)

as we will see in the following sections.

8.4.1 Monte Carlo (MC) Algorithms

We first consider a simple problem of evaluating an existing policy π in terms of

its value function vπ(s) = E[Gt] at state s = st, the expectation of return Gt,

user
Callout
"Stochastic gradient descent" has already been defined.

user
Sticky Note
Cut "differently."

user
Callout
This makes it sound like similar things happen when alpha is large and small.

user
Sticky Note
"when enough samples have been collected."

user
Sticky Note
Typo: "strategy"

user
Sticky Note
Cut "specifically."

user
Sticky Note
Cut "as the expected return"

user
Callout
"The expectation of return Gt" makes this sentence hard to follow. Cut it or reword the sentence into two shorter sentences for more clarity.

8.4 Model-Free Evaluation and Control 397

which can be obtained in the model-based case by the Bellman equation in Eq.

(8.24):

vπ(s) = r(s, π(s)) + γ
∑

s′

p(s′|s, π(s))vπ(s′) (8.50)

based on vπ(s
′) of all possible next states each weighted by the corresponding

transition probability p(s′|s, a), which is no longer available now in the model-free

case. We can still find the value function based on the MC method by running

multiple sample episodes in the environment, and estimate vπ(s) as the average

of the actual returns Gt, which in turn can be calculated as the sum of discounted

rewards rt+1, · · · , rT from the current state s = st onward to the terminal state

sT , found at the end of the episode (assumed to have finite horizon).

This method has two versions, first-visit and every-visit, depending on whether

only the first or every visit to a state in the trajectory of an episode is counted

in calculation of the return. The pseudo code below is for first-visit version due

to the if statement, which can be removed for the every-visit version.

Input: a given policy π to be evaluated

Initialize: Gt = [] (empty lists) for all t = 0, · · · , T − 1

loop (for each episode)

run episode to the end while following π to get sample data: (s0, a0, r1), (s1, a1, r2), · · · , (sT−1, aT−1, rT
G = 0

for t = T − 1, T − 2, · · · , 0 (for each step)

G = γG+ rt+1

if St /∈ {S0, · · · , St−1} (first visit)
Gt = [Gt, G] (append G to list Gt)

V (St) = average(Gt), ∀t = 0, , · · · , T − 1

In the every-visit case, all sample returns Gt from multiple visits to state st
are used, although they may be correlated and not independent of each other,

i.e., they are not necessarily i.i.d. samples and their average may be biased.

This problem can be avoided in the first-visit case, where only the returns of

the first visit to each state are counted as independent samples drawn from the

same distribution, and their average is not biased. However, as only a fraction

of the sample points collected is used in the calculation of the returns, the cost

of this unbiased estimation is its high variance, which can be reduced only if a

large number of episodes are used to get enough samples for a more statistically

reliable average. This is the typical trade-off between variance and bias errors.

In the code above, the function average finds the average of all elements of

a list, only when all sample returns are available at the end of each episode. A

more computationally efficient method (in terms of both space and complexity)

is to find the average incrementally as in Eq. (8.49). Based on this incremental

average, policy evaluation in terms of both the state and action values can also

be carried out by the code below:

Initialize v(s) = 0, ∀s

user
Sticky Note
"value function with the MC method"

user
Sticky Note
"and estimating v_pi(s)"

user
Callout
This sentence is hard to follow because of how long it is. Consider cutting into several shorter sentences.

user
Callout
The text runs into the margin and off the page.

user
Callout
This makes it sound like we're deciding to designate the first visits as i.i.d., when in fact the first visits are inherently i.i.d., which is why the method works. This section might also benefit from an explanation of why the first visits are i.i.d.

user
Sticky Note
"average of all elements of a list when all sample returns..."

398 Introduction to Reinforcement Learning

loop (for each episode)

run episode following π to get Gt, ∀t
for t = 0, · · · , T − 1 (for each step)

if st is visited the first time

v(st) = v(st) + α(Gt − v(st))

and

Initialize: q(s, a) = 0, ∀(s, a)
loop (for each episode)

run episode following π to get Gt, ∀t
for all (s, a) pairs visited

if (s, a) is visited the first time

q(s, a) = q(s, a) + α(Gt − q(s, a))

The if condition can be removed for every-visit version of the algorithm.

We next consider the MC algorithm for model-free control, based on the gener-

alized policy iteration of alternating and interacting policy evaluation and policy

improvement. Specifically, while sampling the environment by following an exist-

ing policy π the action value qπ(s), instead of the state value vπ(s), is gradually

learned and the policy is gradually improved at the same time. This iteration

will converge to the optimal policy at the limit when the number of iterations

goes to infinity.

The pseudo code for this lgorithm is listed below.

Input: ǫ > 0, α > 0, and a policy π

Initialize: q(s, a) = 0, ∀(s, a), π = ǫ− soft (arbitrarily)

loop (for each episode)

run episode following π to get G0, · · · , GT−1

for t = 0, · · · , T − 1

if (st, at) is visited the first time

q(st, at) = q(st, at) + α(Gt − q(st, at))
a∗ = argmaxa q(st, at)

for ∀a ∈ A(st)

π(a|st) =
{

1− ǫ+ ǫ/|A(st)| if a = a∗

ǫ/|A(st)| else

Here the ǫ-greedy policy π(a|s) is based on action value function q(s, a) (maxi-

mized by the greedy action). Through out the iteration, the policy is modified

following the action value function, while at the same time the action value func-

tion is modified based on the policy, until the process converges to the desired

optimality.

We note that the optimal policy π(s) obtained by the algorithm above is not

completely deterministic due to the ǫ-greedy approach, but it is said to be near-

deterministic as the greedy action is favored over other non-greedy actions.

user
Sticky Note
Cut "specifically."

user
Sticky Note
Typo: "algorithm"

user
Sticky Note
"is based on the action value function"

user
Callout
Italicize "near-deterministic."

8.4 Model-Free Evaluation and Control 399

8.4.2 Temporal Difference (TD) Algorithms

The temporal difference (TD) method is a combinaion of the MC method con-

sidered above and the bootstrapping DP method based on the Bellman equation.

The main difference between the TD and MC methods is the target, the return

G, in the incremental average in Eq. (8.49) for estimating either the state or

action value functions. While in the MC method the target is the actual return

Gt calculated at the end of the episode when all subsequent rewards rt+1, · · · , rT
are available, here in the TD method the target, called TD target, is the sum of

the immediate reward rt+1 and the previouosly estimated value vπ(st+1) at the

next state:

Gt = rt+1 + γvπ (st+1) (8.51)

We see that the TD method is an in-place bootstrapping method, and it makes

more efficient use of the sample data and updates more frequently the value

functions being estimated and the policy being improved at every step of an

episode, instead of at the end of the episode as in the MC method. Also, it can

be used even if the dynamic process of the environment is non-episodic with

infinite horizon.

Again, we first consider the simpler problem of policy evaluation. As in the

MC method, we estimate the value function vπ(s) as the average of the actual

returns G found by running multiple episodes while sampling the environment.

Substituting this TD target into the running average in Eq. (8.49) for the value

function above, we get

vπ(s)⇐ vπ(s) + α(G− vπ(s))
= vπ(s) + α(r + γvπ(s

′)− vπ(s)) = vπ(s) + αδ (8.52)

where δ, called the TD error, is the difference between the TD target and the

previous estimate:

δ = G− vπ(s) = r + γvπ(s
′)− vπ(s) (8.53)

and vπ(s
′) is the current estimatee of the value of the next state (bootstrapping).

It can be shown that the iteration of this TD method converges to the true value

vπ(s), if the step size is small enough.

Here is the pseudo code for policy evaluation using the TD method, based on

parameters γ and α:

Input: a given policy π to be evaluated

Initialize: v(s) for all s ∈ S arbitrarily, v(s) = 0 for terminal state s, α ∈ (0, 1]

loop (for each episode)

s = s0
while s is not terminal (for each step)

take action a = π(s), get reward r and next state s′

v(s) = v(s) + α[r + γv(s′)− v(s)]
s = s′

user
Sticky Note
"called the TD target"

user
Sticky Note
Typo: "previously"

user
Sticky Note
Cut "We see that"

user
Callout
This is a "garden path" sentence—its grammar is ambiguous, leading the reader to think that it's going to say something other than it is. In this case, it makes it sound like the "updates" is a noun, when actually it's a verb. It can be fixed by rewording: "The TD method is an in-place bootstrapping method. It makes more efficient use of the sample data, and it updates the estimates of the value functions and policy at every step of an episode, instead of at the end of the episode as in the MC method."

user
Sticky Note
Typo: "estimate"

user
Callout
The parenthetical isn't doing much here. If readers already have a deep understanding of bootstrapping, they'll likely already recognize what's happening; if they don't, it doesn't shed much light on the concept of bootstrapping or of temporal difference.

user
Sticky Note
Cut "it can be shown that."

400 Introduction to Reinforcement Learning

As the TD algorithm updates the value function at every step of the episode,

it uses the sample data more frequently and efficiently, and therefore has lower

variance error than the CM method that updates the estimated value function

at the end of each episode. On the other hand, the TD method may be biased

when compared to the first-visit MC method, due to the arbitrary initialization

of the value functions.

Based on the TD method for model-free policy evaluation, we now further

consider the TD method for model-free control to gradually learn the optimal

policy by updading the Q-values of all state-action pairs (s, a) estimated iter-

atively as the running average of the sample Q-values at each time step of an

episode while sampling the environment.

The Q-values for all state-action pairs can be stored in a state-action table

which is iteratively updated by running many episodes of the unknown MDP

by the TD method to gradually approach the maximum Q-values achievable by

taking each action at each state, i.e., the optimal action is the one with the

highest Q-value.

This method has two different flavors, the on-policy algorithm, which updates

the Q-value by following the current policy such as an ǫ-greedy policy, and the

off-policy algorithm, which updates the Q-value by taking actions different from

the current policy such as the greedy action. In particular, if the policy currently

being followed is greedy (instead of ǫ-greedy), the two algorithms are the same.

• State-Action-Reward-State-Action (SARSA)

The Q-value q(s, a) of each state-action pair (s, a) is estimated as the

running average of the return G, the sum of the immmediate reward r and

the action value q(s′, a′) of the next state based on action a′ dictated by

the current policy (e.g.,ǫ-greedy):

q(s, a)⇐ q(s, a) + α(G − q(s, a))
= q(s, a) + α(r + γq(s′, a′)− q(s, a)) (8.54)

This algorithm is called SARSA, as it updates the Q-value based on the

current state s and action a, the immediate reward r, and the next state

s′ and action a′. The pseudo code of SARSA algorithm is listed below.

Initialize: q(s, a) = 0 for all (s, a), α ∈ (0, 1], ǫ > 0, denote ǫ-greedy policy

pi(a|s) by π
loop (for each episode)

s = s0
get action a according to π based on q(s, a)

while s is not terminal (for each step)

take action a, get reward r and next state s′

get action a′ according to π based on q(s′, a)
q(s, a) = q(s, a) + α[r + γq(s′, a′)− q(s, a)]
s = s′, a = a′

user
Sticky Note
"Because the TD algorithm updates..."

user
Sticky Note
Typo: "updating"

user
Callout
These sentences would both be clearer if cut into several shorter sentences.

user
Line

user
Sticky Note
Replace the comma between "flavors" and "the" with a colon.

user
Sticky Note
Cut "in particular"

user
Callout
"Such as a sigma-greedy policy" confuses this concept somewhat. As you elaborate below, an algorithm is on-policy even if the policy it's following is greedy. Cutting this clause would make the point clearer.

user
Sticky Note
Insert comma between "policy" and "such."

user
Callout
Again, specifying "sigma-greedy" seems to confuse things more than it clarifies.

8.4 Model-Free Evaluation and Control 401

As a variation of SARSA, the expected SARSA updates the Q-value at

state s based on the expected Q-value of the next state s′, the weighted

average of the Q-values resulting from all possible actions, instead of only

one action. Consequently, the estimated Q-values by the expected SARSA

have lower variance than SARSA, and a higher learning rate α can be used

to speed up the learning process.

q(s, a) = q(s, a) + α

(

r + γ
∑

a

π(a|s′)q(s′, a)− q(s, a)
)

(8.55)

• Q-Learning

Same as SARSA, the Q-learning algorithm also estimates the Q-value

q(s, a) of each state-action pair (s, a) as the running average of the return

G, the sum of the immmediate reward r and the action value q(s′, a′) of

the next state based on the greedy action a′ that maximizes the next state

value q(s′, a′), different from that dictated by the current policy.

q(s, a)⇐ q(s, a) + α(r + γmax
a′

Q(s′, a′)− q(s, a)) (8.56)

The pseudo code of SARSA algorithm is listed below.

Initialize: q(s, a) ∀s ∈ S, ∀a ∈ A(s) arbitrarily (q(s, a) = 0 for terminal s),

α ∈ (0, 1], ǫ > 0

loop (for each episode)

Initialize state s

while s is not terminal (for each step)

take action a according to π based on q(s, a), get reward

r and next state s′

q(s, a) = q(s, a) + α[r + γmaxa′ q(s
′, a)′ −Q(s, a)]

s = s′

Here is the comparison of the MC and TD methods in terms of their pros and

cons:

• The MC method estimates the state value vπ(st), the expected return, by the

true return Gt obtained at the end of the episode, i.e., the estimated value

is updated once every episode;

The TD method estimates vπ(st) as the sum of the immediate reward

rt+1 and the estimated state value at the next state vπ(s
′), i.e., it is a

bootstrap method, and the estimated value is updated at every step of

every spisode.

• MC can only learn episodic (terminating) environments with complete episodes;

while TD can learn continuing (non-terminating) environent of incomplete

episodes.

user
Sticky Note
"A variation of SARSA, the expected SARSA, updates..."

user
Sticky Note
"Like SARSA, the Q-learning algorithm estimates the..."

user
Sticky Note
Typo: "immediate"

user
Sticky Note
"regardless of the action dictated by the current policy."

user
Callout
This is not a pro or con of either method; it's just a statement of what they do.

user
Sticky Note
"environments"

402 Introduction to Reinforcement Learning

• MC estimates vπ(st) is based on sample returns Gt, and it is unbiased, while

TD uses the bootstrap approach to find the TD target based on sample

data that are not necessarily i.i.d., and it is more sensitive to the initial

guess of the value functions, it is more biased.

• MC is based on the sample returns Gt affected by many random events (state

transitions, actions, and rewards), and in particular the first-visit version

of the MC method only makes use of the sample data from the first visit

of a state, it does not use the available data efficiently and it has high

variance, while on the other hand the TD method is based on only one

random variable, the estimated return, and it makes more frequent and

efficient use of the sample data, it has lower variance.

• In the MC method, especially the first-visit version of it, the estimated value

functions is unbiased; on the other hand, as the TD method is based on

the bootstrap strategy and relies more strongly on the initial guess of the

value functions being estimated, it tends to be more biased.

Here is a summary of the dynamic programming (DP) method for model-

based planning, and the Monte-Carlo (MC) and time difference (TD) methods

for model-free control:

8.4.3 TD(λ) Algorithm

The MC and TD methods considered previously can be unified by the n-step

TD(λ) method that spans a spectrum of which the MC and TD methods are

two special cases at the opposite extremes.

Recall that both MC and TD algorithms updates iteratively the value functions

being estimated and the policy being improved based on Eq. (8.49), but they

estimate the target Gt in the equation differently. In an MC algorithm, the

target is the actual return Gt = rt+1 + γrt+2 + · · · + γT−t−1rT , the sum of

discounted rewards of all future steps upto the terminal state sT , available only

at the end of each episode. On the other hand, in a TD algorithm, the target

is Gt = rt+1 + γvπ(s)t+ 1) the sum of the immeidate reward rt+1 available

at each step of the episode, and the discounted value of the next state, based

on bootstrapping. We therefore see that an MC algorithm updates the value

functions and policy once every episode, while a TD algorithm updates once

every step in the spisode.

As a trade-off between the MC and TD methods, the n-step TD algorithm can

be considered a generalization of the TD method, where the target in Eq. (8.49)

is an n-step return, the sum of the discounted rewards in the n subsequent states

and the discounted value function at the following state st+n with 1 ≤ n <∞:

Gt:t+n = rt+1 + γrt+2 + · · ·+ γn−1rt+n + γnvπ(st+n) (8.57)

Specially, when

user
Sticky Note
"MC estimates v_pi(st) based on sample returns"

user
Sticky Note
"so it is more biased."

user
Callout
This is a run-on sentence. Cutting it into several sentences would fix it: "...from the first visit of a state. It does not use the available data efficiently, and it has high variance. On the other hand, the TD method is based on only one random variable, the estimated return. It makes more frequent and efficient use of the sample data, and it has lower variance

user
Sticky Note
"so it tends to be more biased."

user
Callout
Is this a figure? If so, name the figure explicitly.

user
Sticky Note
"In particular, when"

8.4 Model-Free Evaluation and Control 403

• n = 1: the 1-step return is the sum of the immediate reward and the estimated

value of the next state, the same as the TD target in the TD method:

Gt:t+1 = rt+1 + γv(st+1) (8.58)

• n = T − t: the n-step return is the sum of the discounted rewards from all

future states upto the terminal state at the end of the episode, i.e., it is the

return rt defined in Eq. (8.7), the same as in the MC method:

Gt:t+n = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT + vπ(st+n) = Gt (8.59)

where the value function of the terminal state vπ(st+n) = vπ(sT) = 0 is

zero.

• T − t < n < ∞: All states sn beyond the terminal state sT with n > T − t
remain the same as the terminal state with value v(sT) = 0 and return Gt,

same as in the MC method.

We see that all these n-step returns form a spectrum with the MC and TD

methods at the two ends.

Based on these n-step returns of different n values, the n-step TD algorithm

can be further generalized to a more computationally advantageous and therefore

more useful algorithm called TD(λ), by which the MC and TD algorithms are

again unified as two special cases at the opposite ends of a spectrum.

We first define the λ-return Gλt as the weighted average of all n-step returns

for n = 1, 2, · · · ,∞:

Gλt = (1− λ)
∞
∑

n=1

λn−1Gt:t+n (8.60)

where 0 ≤ λ < 1. Note that the weights decay exponentially, and they are

normalized due to the coefficient 1− λ:

(1− λ)
∞
∑

n=1

λn−1 = (1− λ)
∞
∑

n=0

λn =
1− λ
1− λ = 1 (8.61)

The λ-return Gλt defined above can be expressed in two summations, the sum

of the first T − t − 1 n-step returns Gt:t+1, · · · , Gt:t+T−1, and the sum of all

subsequent n-step returns Gt:T = · · · = Gt:∞ = Gt:

Gλt = (1− λ)
T−t−1
∑

n=1

λn−1Gt:t+n + (1 − λ)
∞
∑

n=T−t
λn−1Gt

= (1− λ)
T−t−1
∑

n=1

λn−1Gt:t+n + λT−t−1Gt, (0 ≤ t ≤ T) (8.62)

where the coefficient of Gt in the second term is the sum of coefficients in the

second summation:

(1− λ)
∞
∑

n=T−t
λn−1 = (1− λ)

∞
∑

m=0

λmλT−t−1 = λT−t−1 (8.63)

user
Sticky Note
"up to"

user
Sticky Note
Cut "We see that."

user
Sticky Note
Replace comma after "summations" with a colon.

404 Introduction to Reinforcement Learning

where m = n − T + t. We see that in Eq. (8.62) all n-step returns Gt:t+n are

weighted by exponentially decaying coefficient λn−1, except the true return Gt
which is weighted by λT−t−1.

Again consider two special cases:

• λ = 0: all terms in Eq. (8.62) are zero, except the first one with n = 1:

Gλ=0
t = λn−1Gt:t+n

∣

∣

∣

∣

n=1

= 00Gt:t+1 = rt+1 + γv(st+1) (8.64)

This is simply the TD target, i.e., TD(0) is the TD method.

• λ = 1: the first summation is zero and

Gλ=1
t = Gt (8.65)

i.e., TD(1) is the MC method.

We therefore see that TD(λ) is a general algorithm of which the two special cases

TD(0) and TD(1) are respectively the TD and MC methods.

In Eq. (8.62), Gλt is calulated as the weighted sum of all n-step returns Gt:t+n
upto the last one Gt available at the end of the episode. This summation can be

truncated to include fewer terms before reaching the terminal state at the end

of the episode:

Gλt:h = (1 − λ)
h−t−1
∑

n=1

λn−1Gt:t+n + λh−t−1Gt:h, (0 ≤ t < h ≤ T) (8.66)

Specially when h = T , Gλt:h = Gλt same as before, and when h = t + 1, Gλt:h =

Gt:t+1 = rt+1 + γv(st+1), same as the TD target.

Based on λ-return, the iterative update of the value function vπ(st) in Eq.

(8.52) can be modified to:

vπ(st) = vπ(st) + α(Gλt − vπ(st)) = vπ(st) + αδt (8.67)

where

δt = Gλt − vπ(st) (8.68)

This iteration is called the forward view of TD(λ), which is similar to the MC

method, as they are based on either Gt or G
λ
t , available only at the end of each

episode.

An alternative method is the backward view of TD(λ), which can be shown

to be equivalent to the forward-view of TD(λ), but it is similar to the TD(0)

method, as they are both based on the immediate reward rt+1 available at each

time step of the episode, and therefore more computationally convenient.

Specifically, the backward view of TD(λ) is based the eligibility trace et(s) for

each of the states, which decays exponentially upon each state transition

et(s) = γλet−1(s) (∀s ∈ S) (8.69)

user
Sticky Note
"by the exponentially decaying"

user
Sticky Note
"up to"

user
Sticky Note
Cut "specially."

user
Callout
Same as before where? A lot of different variations of algorithms have been covered in this chapter; be specific.

user
Callout
"Same as X" is a phrasing you use a lot. It isn't quite grammatically right. It should either be "the same as," or preferably, "just as" or simply "as."

user
Line

user
Sticky Note
"they are both based on"

user
Sticky Note
"which is equivalent to"

user
Callout
Define what the backward view of TD(lambda) is before explaining what it's equivalent/similar to.

user
Sticky Note
"to the forward view of TD(lambda). It is similar to..."

user
Callout
An explanation of why these methods are called the forward and backward view would help to clarify the methods and their differences.

user
Line

8.4 Model-Free Evaluation and Control 405

but is boosted by an increment 1 to become et(s) = et(s)+1 if s = st is currently

visited.

Now the iterative update of the estimated value function in Eq. (8.52) is mod-

ified so that all states, instead of only the one currently visited, are updated, but

to different extents based on et(s):

vπ(s) = vπ(s) + αδtet(s), ∀s ∈ S (8.70)

where the TD error δt is the same as in TD(0), given in Eq. (8.53):

δt = rt+1 + γvπ(st+1)− vπ(s) (8.71)

The eligibility trace et(s) as defined above is motivated by the frequency and

recency of the visites to each state. If a state s has been more frequently and

recently visited compared to others, its et(s) is greater than others and its value

function vπ(s) will be updated by a greater increment than others.

Here is the pseudo code for the backward view of the TD(λ) methd for policy

evaluation:

Input: policy π to be evaluated

Initialize: v(s) = 0 ∀s ∈ S
loop (for each episode)

s = s0

e(s) = 0, ∀s ∈ S
while s is not terminal (for each step)

take action a based on π(a|s), get reward r and next state s′

δ = r + γv(s′)− v(s)
e(s) = e(s) + 1

for all s

v(s) = v(s) + αδe(s)

e(s) = γλe(s)

s = s′

Note that values at all states are updated, but to different extents depending on

e(s), different from the TD algorithm where only the value at the state currently

visited is updated.

Again consider two special cases:

• λ = 0, e(s) = 0 for all states except the current s being visited, i.e., TD(λ)

becomes TD(0), the same as the TD method.

• λ = 1, then e(s) is scaled down by a factor γ < 1 for all states except the

current s being visited, i.e., TD(λ) becomes TD(1), the same as the MC

method. However, different from the MC method that updates the value

function v(s) at the end of each spisode, here v(s) is still updated at every

step of the episode due to the backward view of the method.

user
Sticky Note
"depending on e(s). This is different from..."

user
Callout
This makes it sound like TD(lambda) and vanilla TD both become TD(0) at lambda = 0, which is of course not the case.

user
Callout
In these cases, does e(s) take its value in addition to lambda, or because of lambda? As it stands, it's not clear.

user
Line

406 Introduction to Reinforcement Learning

This backward view of the TD(λ) method can be applied to model-free con-

trol when the state value function is replaced by the action value function. Cor-

responding to the SARSA and Q-learning algorithms based on TD(0) in the

previous section, here are the two algorithms based on eligibility traces:

• SARSA(λ) algorithm:

Initialize: q(s, a) = 0, ∀(s, a), α ∈ (0, 1], ǫ > 0, denote ǫ-greedy policy

pi(a|s) by π
loop (for each episode)

s = s0
e(s, a) = 0, ∀(s, a)
get action a according to π based on q(s, a)

while s is not terminal (for each step)

e(s, a) = e(s, a) + 1

take action a, get reward r and next state s′

get action a′ according to π based on q(s′, a)
δ = r + γq(s′, a′)− q(s, a)
for all (s, a)

q(s, a) = q(s, a) + αδ e(s, a)

e(s, a) = γλe(s, a)

s = s′, a = a′

• Q(λ) algorithem:

Initialize: q(s, a) = 0, ∀(s, a), α ∈ (0, 1], ǫ > 0, denote ǫ-greedy policy

pi(a|s) by π
loop (for each episode)

s = s0
e(s, a) = 0, ∀(s, a)
get action a according to π based on q(s, a)

while s is not terminal (for each step)

e(s, a) = e(s, a) + 1

take action a, get reward r and next state s′

get action a′ according to π based on q(s′, a)
a∗ = argmaxb q(s

′, b)
δ = r + γq(s′, a∗)− q(s, a)
for all (s, a)

q(s, a) = q(s, a) + αδ e(s, a)

if a′ = a∗ then e(s, a) = γλe(s, a) else e(s, a) = 0

s = s′, a = a′

Note that Q(λ) algorithm is different from the SARSA(λ) algorithm in two ways.

First, the action value is updated based on the greedy action a∗, instead of the

a′ by policy π; second, if the ǫ-greedy policy π happens to choose a random

non-greedy action a′ 6= a∗ with probability ǫ to explore rather than exploiting

a∗, the eligibility traces of all states are reset to zero. There are other different

versions of the algorithm which do not reset these traces.

user
Callout
This sentence has a dangling participle that makes it unclear that the two algorithms correspond to the SARSA and Q-learning algorithms. A rewrite to fix the problem might be: "Here are two algorithms based on eligibility traces that correspond to the SARSA and Q-learning algorithms based on TD(0)."

user
Sticky Note
"The Q(lambda) algorithm is..."

user
Sticky Note
"a' given by policy pi"

8.5 Value Function Approximation 407

8.5 Value Function Approximation

All previoiusly considered algorithms are based on either the state values function

vπ(s) for each state s or the action value qπ(s, a) for each state-action pair.

As these function values can be considered as either a 1-D or 2-D table, the

algorithms based on such function values are called tabular methods. However,

when the number of states and the number of actions in each state are large (e.g.,

the game Go has 10170 states), the tabular methods are no longer suitable due

to the unrealistic table sizes. In such a case, we can consider approximating the

state value function v(s) or action-value function q(s, a) by a function v̂(s,w)

or q̂(s, a,w), parameterized by a set of parameters as the components of vector

w. By doing so the state or action value functions can be represented more

conveniently in terms of a much smaller number of parameters in w.

This approach can be considered as a regression problem to fit a continuous

function v̂(s,w) or q(s, a,w) to a set of discrete and finite data points vπ(s) or

qπ(s, a) obtained by sampling the MDP of the environment, so that all points in

the state space, including those for stataes or state-action pairs never actually

observed during the sampling process can be represented.

Examples of such value function approximators include

• linear combination of all features

• multi-layer neural networks

• decision trees

Same as in regression problems, we desire to find the optimal parameter w

for the modeling function (̂v)π(s,w) so that the following objective function, the

mean squared error between the approximated values and the sample values, is

minimized:

J(w) =
1

2
Eπ [(vπ(s)− v̂(s,w))2] (8.72)

where the expectation Eπ is with respect to all states visited while following

some policy π. The gradient vector of J(w) is

▽J(w) =
d

dw
J(w) =

1

2
Eπ

[

d

dw

[

(vπ(s)− v̂(s,w))2
]

]

= −Eπ [(vπ(s)− v̂(s,w))▽v̂(s,w)] (8.73)

and the optimal parameter vector w∗ can be found iteratively by the gradient

descent method

wn+1 = wn +∆w = wn − α▽J(w) = wn + αEπ [(vπ(s)− v̂(s,w))▽v̂(s,w)]

(8.74)

where α is the step size or learning rate, and

∆w = −α▽J(w) = αEπ [(vπ(s)− v̂(s,w))▽v̂(s,w)] (8.75)

If the method of stochastic gradient descent (SGD) is used, i.e., the parameter

user
Sticky Note
action value function

user
Sticky Note
Typo: "previously"

user
Callout
Italicize "tabular methods."

user
Sticky Note
"we can approximate the state value function"

user
Sticky Note
Typo: "states"

user
Sticky Note
Insert comma between "process" and "can"

user
Sticky Note
"Just as in" or "As in"

408 Introduction to Reinforcement Learning

w is updated based on only one data point at each iteration instead of the

expectation of the data points, then Eπ for the expectation can be dropped:

wn+1 = wn +∆w = wn + α(vπ(s)− v̂(s,w))▽v̂(s,w)) (8.76)

Here the true value function vπ(s), the expected return, is unknown and needs

to be estimated by the actual return Gt at each state s = st based on the

MC method, or rt+1 + γv̂π(s
′,w) in terms of the immediate reward rt+1 and

the estimated value v̂π(s
′,w) of the next state s′ based on the TD method, by

sampling the environment. Such an approach can be considered as a supervised

learning based on labeled training data set: {(st, Gt), ∀t} for the MC method,

or {(st, rt+1, ∀t} for xthe TD method.

In the following, we will consider the special case where the state value vπ(s)

is approximated by a linear function

v̂(s,w) =

d
∑

i=1

xiwi = wTx(s) (8.77)

based on the assumption that the value function of each state can be approxi-

mated as a linear combinatioin of a set of features in the feature vector x(s) =

[x1(s), · · · , xd(s)]T for state s, weighted by the corresponding weights in the

weight vector w = [w1, · · · , wd]T for all states.

As a simple example, if we represent each of the N = |S| states sn by a d =

N dimensional binary feature vector x(sn) = [x1(sn), · · · , xN (sn)]
T of all zero

components xi(sn) = 0 except the n-th one xn(sn) = 1, then the weight vector

can be w = [w1, · · · , wN]T = [vπ(s1), · · · , vπ(sN)]T , and we have v̂π(sn,w) =

wTx(sn) = vπ(sn). In this case, each state s is represented by its value function

vπ(s), same as in all previous discussions.

The objective function for the mean squared error of such a linear approxi-

mating function is

J(w) =
1

2
Eπ[(vπ(s)− v̂(s,w))2] =

1

2
Eπ[(vπ(s)−wTx(s))2] (8.78)

and its gradient is

▽J(w) =
d

dw
J(w) = −Eπ

[

(vπ(s)−wTx(s))x(s)
]

(8.79)

If all data points in terms of state s represented by x(s) and the corresponding

return G(s) as a sample of the true value vπ(s) have already been collected, then

the value function approximation can be carried out as an off-line algorithm in a

batch manner, the same as in the linear least squares linear regression problem

discussed in a previous chapter, and the optimal weight vector that minimizes

the squared error

w∗ = argmax
x

∑

s

[G(s)− v̂π(s,w)]2 (8.80)

user
Callout
This sentence would be clearer if it were cut into several shorter sentences.

user
Callout
Is supervised learning just one way of viewing the approach? Or is the approach an example of supervised learning? If the latter, rephrase to: "Such an approach is an example of supervised learning..."

user
Sticky Note
"based on a labeled..."

user
Callout
In the following what?

user
Callout
Introducing another variable to represent N makes this less clear. If you're not going to use d for anything later, this could just be "an N-dimensional binary feature vector."

user
Sticky Note
"where x_n(s_n) = 1 and all other components x_i(s_n) = 0,"

user
Sticky Note
"the same as in," "just as in," or "as in"

user
Callout
To make the transition into the equation clear, include w* above: "...and the optimal weight vector w* that minimizes the squared error."

8.5 Value Function Approximation 409

can be found by the same pseudo inverse method

w∗ = (XXT)−1XG (8.81)

where X = [x1, · · · ,xN] is a matrix containing all N samples for the states and

G = [G1, · · · , GN]T is a vector containing the corresponding returns.

However, as reinforcement learning is typically an online problem, the param-

eter w for the approximator needs to be modified in real-time whenever a new

piece of data becomes available during the sampling of the environment. In this

case, we can find the gradient descent method, based on the gradient vector of

J(w):

▽J(w) =
d

dw
J(w) = −Eπ(vπ(s)− v̂(s,w))▽v̂(s,w)

= −Eπ(vπ(s)−wTx(s))x(s) (8.82)

and the optimal parameter w∗ can be found iteratively

wn+1 = wn +∆w = wn + αEπ [vπ(s)− v̂(s,w)]▽v̂(s,w)

= wn + αEπ
[

vπ(s)−wTx(s)
]

x(s) (8.83)

where ∆w is the increment in each iteration:

∆w = αEπ [vπ(s)− v̂(s,w)]▽v̂(s,w) = αEπ
[

vπ(s)−wT
nx(s)

]

x(s) (8.84)

If stochastic gradient descent is used, then w is updated whenever a new sample

data point x(st) is available at a time step t, then the expectation Eπ in the

equations above can be dropped.

We note that the expectation of the estimated w found by this SGD method is

the same as that obtained by full GD method. Also this iteration will convergence

to the global minimum of the objective function J(w) in Eq. (8.78) as it is a

quadratic function with only one minimum which is global.

Specifically, the state value function is unknown and can be estimated in sev-

eral different ways, similar to the corresponding algorithms discussed before.

• MC method

The value function vπ(s) is estimated by the actual return Gt for each

state st visited in an episode, obtained only at the end of each episode

while sampling the environment:

∆w = α[Gt − v̂(st,w)]▽v̂(st,w) = α[Gt −wTx(st)]x(st) (8.85)

Here is the pseudo code for the algorithm based on the MC method,

similar to that for value evaluation algorithms discussed previously:

Initialize w = 0

loop (for each episode)

run current episode to the end to get Gt, t = 1, · · · , T
for t = 1, · · · , T

if st is visited the first time

user
Sticky Note
"we can use"

user
Sticky Note
"time step t, and the expectation"

user
Sticky Note
Cut "We note that."

user
Sticky Note
Cut "also."

user
Sticky Note
Cut "Specifically."

410 Introduction to Reinforcement Learning

w = w + α[Gt −wTx(st)]x(st)

end if

end for

end loop

• TD(0) method

The value function vπ(s) is estimated by the TD target, the sum of the

immediate reward rt+1 and the approximated value of the next state st+1,

at each time step of each episode while sampling the environment:

∆w = α[rt+1 + γwTx(st+1)−wTx(st)]x(st) (8.86)

Here is the pseudo code for the algorithm based on the TD method,

similar to that for value evaluation algorithms discussed previously:

Initialize w = 0

loop (for each episode)

for each time step in current episode

take action a = π(s), get reward r and next state s′

w = w + α[r + γwTx(s′)−wTx(s)]x(s)

end for

end loop

• TD(λ) method

The value function vπ(s) is estimated based on λ-return Gλt given in Eq.

(8.62). As discussed before, TD(λ) has two flavors:

– Forward veiw: same as MC method, except the true return Gt is replaced

by λ-return Gλt available only at the end of each spisode:

∆w = α[Gλt −wTx(st)]x(st) (8.87)

– Backward view: similar to TD(0), this is based on the immediate reward

rt+1 available at every step of each episode:

δt = α[rt+1 + γwTx(st+1)−wTx(st)]x(st) (8.88)

et = γλet−1 + x(st), ∆w = αδtet (8.89)

Given a policy π for an MDP, we define a probability districution d(s) over all

staes visited according to π, satisfying
∑

s

d(s) = 1 (8.90)

and the following balance equation:

d(s′) =
∑

s

∑

a

π(a|s)p(s′|s, a)d(s) (8.91)

As both d(s′) and d(s) represent the same distribution, they must be identical.

user
Sticky Note
"based on the lambda-return"

user
Sticky Note
Typo: "view"

user
Sticky Note
Typo: "distribution"

user
Sticky Note
Typo: "states"

8.6 Control based on Function Approximation 411

Given the probability distribution d(s), the mean squared error of the value

function approximation for a policy π can be expressed as

MSE(w) =
∑

s

d(s)[vπ(s)− v̂π(s,w)]2 (8.92)

It can be shown that the MC method for the linear value function approximation

will converge to the optimal weight vectorwMC that minimizes the mean squared

error above:

MSE(wMC) = min
w

∑

s

d(s)[vπ(s)− v̂π(s,w)]2 (8.93)

8.6 Control based on Function Approximation

The control algorithms based on approximated value functions also follow the

general method of the general policy iteration, as illustrated bellow:

We note that this is similar to the algorithms for model-free control illustrated

in Fig. ??, but with the action-value function qπ(s, a) is replaced by the param-

eter w of the approximation action function q̂(s, a,w). In particular, for a linear

function, we have:

q̂(s, a,w) =
∑

n

wnx(s, a) = wTxn(s, a) (8.94)

where x(s, a) is the feature vector for the state-action pair (s, a). We need to

find the optimal parameter w that minimizes the objective function, the mean

square error of the approximation:

J(w) =
1

2
Eπ[(qπ(s, a)− q̂(s, a,w))2] =

1

2
Eπ[(qπ(s, a)−wTx(s, a))2] (8.95)

with gradient vector:

▽J(w) =
d

dw
J(w) = −Eπ [qπ(s, a)− q̂(s, a,w)]▽q̂(s, a,w)

= −Eπ
[

(qπ(s, a)−wTx(s, a))x(s, a)
]

(8.96)

If the stochastic gradient descent method is used based on a single sample of the

action value qπ(s, a), instead of its expectation, then Eπ can be dropped, and

the optimal weight vector w∗ that minimizes J(w) in Eq. (8.95) can be learned

iteratively:

wt+1 = wt +∆w = wt − α▽J(w)

= wt + α [(qπ(st, at)− q̂π(st, at,w))▽q̂π(st, at,w)]

= wt + α
[

(qπ(st, at)−wT
t x(st, at))x(st, at)

]

(8.97)

where ∆w is the increment of the update:

∆w = −α▽J(w) = α[qπ(st, at)− q̂π(st, at,w)]▽q̂π(st, at,w)

= α[qπ(st, at)−wT
t x(st, at)]x(st, at) (8.98)

user
Callout
This should be capitalized according to the rules for titles (all words are capitalized, except for small ones like "a," "the," and "and").

user
Sticky Note
"method of general policy iteration"

user
Callout
If this refers to a figure, cite the figure by number.

user
Sticky Note
Typo: "below."

user
Sticky Note
Cut "we note that."

user
Sticky Note
"but the action-value function"

412 Introduction to Reinforcement Learning

As the true Q-value qπ(s, a) in the expression is unknown, it needs to be esti-

mated by some target depending on the specific methods used:

• MC method:

The true qπ(s, a) is replaced by the sample return Gt as the target,

obtained at the end of each episode:

∆w = α[Gt − q̂(st, at,w)]▽q̂(st, at,w) = α[Gt −wT
t x(st, at)]x(st, at)

(8.99)

• TD(0) method:

The action value function qπ(s, a) is replaced by the TD target, the sum

of the immediate reward, available at each step of each spisode, and the

approximated action value of the next state st+1:

– SARSA (on-policy):

∆w = α[rt+1 + γq̂(st+1, at+1,w)− q̂(st, at,w)]▽q̂(st, at,w)

= α[rt+1 + γwTx(st+1, at+1)−wT
t x(st, at)]x(st, at) (8.100)

Following Eq. (8.71), the TD error is defined as:

δt = rt+1 + γq̂(st+1, at+1,w)− q̂(st, at,w) (8.101)

then we get

∆w = αδt▽q̂(st, at,w) (8.102)

– Q-learning (off-policy):

∆w = α[rt+1 + γmax
a′

q̂(st+1, a
′,w)− q̂(st, at,w)]▽q̂(st, at,w)

= α[rt+1 + γmax
a′

wTx(st+1, a
′)−wT

t x(st, at)]x(s, a) (8.103)

• TD(λ) method:

In the forward-view version of the TD(λ) method the action function

qπ(s, a) is approximated by λ-return Gλt as the target, available only at the

end of each spisode:

∆w = α[Gλt −wT
t x(st, at)]x(st, at) (8.104)

The backward-view version of the TD(λ) method based on eligibility

traces is more advantageous in both space and temporal complexity as well

as learning efficiency.

We first define an eligiibility trace vector which is set to zero at the

beginning of the episode, but then decays

et = γλet−1 + ▽w q̂(st, at,w) (8.105)

∆w = αδtet (8.106)

user
Sticky Note
Typo: "episode"

user
Sticky Note
Typo: "eligibility"

8.7 Deep Q-learning 413

and Eq. (8.70)

vπ(s) = vπ(s) + αδtet(s), ∀s ∈ S (8.107)

/////

Recall the TD error for the backward view of the TD(λ) method first

given in Eq. (8.71):

δt = (rt+1 + γvπ(st+1)− vπ(s)) (8.108)

In summary, here are the conceptual (not necessarily algorithmic) steps for

the general model-free control based on approximated action-value function:

• Learn parameter w as in Eq. (8.97),

• Get the Q-values as in Eq. (8.94)

• Obtain the policy by ǫ-greedy approach as in Eq. (8.41)

These steps are also illustrated below:

Training of w =⇒ Q− value =⇒ Policy π (8.109)

8.7 Deep Q-learning

Previously we approximated the state or action value functions by a linear func-

tion v̂π(s,w) = wTx(s), or q̂π(s, a,w) = wTx(s, a) parameterized by the

weight vector w based on a set of features in x. However, these features need to

hand picked or designed based on the specific problem to solve.

Network!

8.8 Policy Gradient Methods

All RL algorithms previous considered are based on either state or action-value

function and the policy is indectly derived from them by greedy or ǫ-greedy

method. However, as the ultimate goal of an RL problem is to find the optimal

policy that maximizes the return, it make sense to consider this as an optimiza-

tion problem to directly find the optimal policy based on an objective function

representing the total return to be maximized, by the gradient ascent method,

as discussed in the following.

Previously we approximate the state value function vπ(s) and action value

function qπ(s, a) by some parameterized functions v̂π(s,w) and q̂π(s, a,w) re-

spectively, of which the parameter w can be obtained by sampling the environ-

ment, as a supervised learning process. Now we construct a model of a stochastic

policy as a parameterized function:

π(a|s, θ) = P (a|s, θ) (8.110)

user
Callout
This is not enough context to understand Eq 8.107, or what it has to do with Eq 8.70.

user
Callout
I assume this is a typographical error, and should be removed.

user
Callout
I think you mean that the TD error for the TD(lambda) method is analogous to delta_t here, but it would be clearer if you said that outright.

user
Callout
I think this section is a work in progress, so I won't comment on it substantively.

user
Callout
This is some odd spacing. Are there a few stray tabs around the word "or"?

user
Sticky Note
"either the state"

user
Sticky Note
Typo: "indirectly"

user
Sticky Note
"by a greedy"

user
Sticky Note
Cut "as discussed in the following."

user
Sticky Note
"we approximated"

414 Introduction to Reinforcement Learning

where vector θ = [θ1, · · · , θd]T represents some d parameters of the model. As

the dimensionality d is typically smaller than the number of states and actions,

such a parameterized policy model is suitable in cases where the numbers of

states and actions are large or even continuous.

As a specific example, the policy model can be based on the soft-max function:

π(a|s, θ) = eh(s,a,θ)
∑

b e
h(s,b,θ)

(8.111)

satisfying
∑

a π(a|s, θ) = 1. Here the summation is over all possible actions, and

h(s, a, θ) is the preference of action a in state s, which can be a parameterized

function such as a simple linear function h(s, a, θ) = θTx(s, a), or a neural net-

work with weights represented by θ, the same as how the value functions are

approxmiated in Section 8.5. According to this policy, an action with higher

preference h(s, a, θ) will have a higher probability to be chosen.

Different from how we find the parameter w of q̂(s, a,w) by minimizing J(w),

the mean squared error between the value function qπ(s, a) and its model q̂π(s, a,w),

based on gradient descent, here we find the parameter θ of π(a|s, θ) by maximiz-

ing J(θ) representing the value function, the expected return, under the policy,

based on gradient ascent. Such methods are therefore called policy gradient meth-

ods.

The value-function based methods considered previously and the policy-based

methods considered here are summarized below, together with the actor-critic

method, as the combination of the two:

• Value-based: the policy is derived by the greedy or ǫ-greedy method based on

the value function learned during sampling the environment as a supervised

learning process.

• Policy-based: the policy is directly learned without explicitly value functioin

estimation.

• Actor-Critic: parameters for both the value function model and policy model

are learned simultaneously.

Advantages of policy-based RL includes better convergence properties, but

may stuck at local optimum, effective in high-dimensional or continuous action

space can learn stochastic policies, but have high variance.

How good a policy is may be measured by different objective functions all

related to the values or rewards associated with the policy being evaluated,

depending on the environment of the specific problem:

• In episodic environments with finite horizon, we can use the value, the ex-

pected return (sum of discounted future rewards), of the start state s0:

J1(θ) = vπθ
(s0) (8.112)

• In continuing (online) environments with infinite horizon, we can use the

user
Sticky Note
Typo: "approximated"

user
Sticky Note
"Unlike how we find..."

user
Callout
This sentence would be clearer if cut into two or three shorter sentences.

user
Sticky Note
"which is the combination"

user
Sticky Note
"learned while sampling"

user
Sticky Note
"include"

user
Callout
This sentence doesn't quite hang together grammatically. It would probably be better if cut into two: "Policy-based RL has better convergence policies, but it may stick at a local optimum. It's effective in high-dimensional or continuous action space, and can learn stochastic policies, but it has high variance."

user
Callout
Better convergence properties than what?

user
Sticky Note
"different objective functions related to..."

8.8 Policy Gradient Methods 415

average value

JavV (θ) =
∑

s

dπθ
(s)vπθ

(s) (8.113)

where dπθ
(s) is the stationary distribution of all states under policy π(a|s, θ).

We can find the optimal paramter θ∗ for the policy model π(a|s, θ) by solving

the maximization problem:

θ∗ = argmax
θ

J(θ) (8.114)

based on the gradient of J(θ):

▽θJ(θ) =
d

dθ
J(θ) =

[

∂J

∂θ1
, · · · , ∂J

∂θn

]T

(8.115)

by the iterative gradient ascent method:

θt+1 = θt +∆θ = θt + α▽θJ(θ) (8.116)

Here we use t for the index of the iteration based on the assumption that the

a new sample point is available at every time step of an episode while sampling

the environment following policy π(a|s, θ).
While it is conceptually straight forward to see how gradient ascent method

can be used to find the optimal parameter θ∗ that maximizes J(θ), it is not

easy to actually find its gradient ▽J(θ), which depends on not only what actions

to take at the states directly determined by the policy π(a|s, θ), but also how

the states are distributed under the policy in an unknown environment. This

challenge is addressed by the following policy gradient theorem. The proof of the

theorem below leads to an expression of the gradient ▽θJ(θ), which can be used

to find the optimal parameter θ∗ iteratively by the stochastic gradient ascend

method.

Proof of policy gradient theorem:

user
Sticky Note
Typo: "parameter"

user
Sticky Note
"how the gradient ascent method"

user
Sticky Note
"of the policy gradient theorem"

416 Introduction to Reinforcement Learning

▽θvπθ
(s) = ▽θ

(

∑

a

π(a|s, θ)qπθ
(s, a)

)

1
=
∑

a

[▽θπ(a|s, θ) qπθ
(s, a) + π(a|s, θ) ▽θqπθ

(s, a)]

2
=
∑

a

[

▽θπ(a|s, θ) qπθ
(s, a) + π(a|s, θ)▽θ

∑

s′

∑

r

P (s′, r|s, a)(r + vπθ
(s′))

]

3
=
∑

a

[

▽θπ(a|s, θ) qπθ
(s, a) + π(a|s, θ)

∑

s′

∑

r

P (s′, r|s, a)▽θvπθ
(s′)

]

4
=
∑

a

[

▽θπ(a|s, θ) qπθ
(s, a) + π(a|s, θ)

∑

s′

P (s′|s, a)▽θvπθ
(s′)

]

5
=
∑

a

▽θπ(a|s, θ) qπθ
(s, a) +

∑

a

∑

s′

π(a|s, θ)P (s′|s, a)▽θvπθ
(s′)

6
= φ(s) +

∑

s′

∑

a

P (s′|s, a)π(a|s, θ)▽θvπθ
(s′) (8.117)

where

1. product rule of derivative: (uv)′ = u′v + uv′

2. qπθ
(s, a) =

∑

s′
∑

r P (s
′, r|s, a)(r + vπθ

(s′))

3. r is not a function of θ

4.
∑

r P (s
′, r|s, a) = P (s′|s, a) in Eq. (8.17)

5. π(a|s, θ) is indpendent of s′ and moved inside summation over s′

6. We have defined

φ(s) =
∑

a

▽θπ(a|s, θ) qπθ
(s, a) (8.118)

We note that Eq. (refPolicyGradientThm1) is a recursion by which ▽θvπθ
(s) is

expressed as a function in terms ▽θvπθ
(s′).

We further define Prπ(s→ x, k) as the probability of transitioning from state

s to a state x after k steps following π(a|s, θ):

s
π(a|s,θ)−→ s′

π(a|s′,θ)−→ s′′
π(a|s′′,θ)−→ · · · π(a|s

(k−1),θ)−→ s(k) = x (8.119)

with the following properties:

•
Prπ(s→ s, 0) = 1 (8.120)

•
Prπ(s→ s′, 1) =

∑

a

π(a|s, θ)P (s′|s, a) (8.121)

user
Sticky Note
Cut "we note that."

user
Callout
You're missing a number here.

8.8 Policy Gradient Methods 417

•
∑

s′

Prπ(s→ s′, 1) = 1 (8.122)

•
Prπ(s→ s′′, 2) = Prπ(s→ s′, 1)Prπ(s

′ → s′′, 1) (8.123)

Continuing Eq. (8.117) we keep rolling out the recursion of ▽θvπθ
(s′) and get:

▽θvπθ
(s) = φ(s) +

∑

s′

∑

a

π(a|s, θ)P (s′|s, a)▽θvπθ
(s′)

1
= φ(s) +

∑

s′

Prπ(s→ s′, 1)▽θvπθ
(s′)

2
= φ(s) +

∑

s′

Prπ(s→ s′, 1)

[

φ(s′) +
∑

s′′

Prπ(s
′ → s′′, 1)▽θvπθ

(s′′)

]

3
= φ(s) +

∑

s′

Prπ(s→ s′, 1)φ(s′) +
∑

s′′

Prπ(s→ s′, 1)Prπ(s
′ → s′′, 1)▽θvπθ

(s′′)

4
= φ(s) +

∑

s′

Prπ(s→ s′, 1)φ(s′) +
∑

s′′

Prπ(s→ s′′, 2)▽θvπθ
(s′′)

5
= φ(s) +

∑

s′

Prπ(s→ s′, 1)φ(s′) +
∑

s′′

Prπ(s→ s′′, 2)φ(s′′) +
∑

s′′′

Prπ(s→ s′′′, 2)▽θvπθ
(s′′′)

= · · · · · · 6
=
∑

x∈S

∞
∑

k=0

Prπ(s→ x, k)φ(x) (8.124)

where

1. Eq. (8.121)

2. unroll ▽θvπθ
(s′)

3. Eq. (8.122)

4. Eq. (8.123)

5. unroll ▽θvπθ
(s′′)

6. keep unrolling recursively to infinity, and Eq. (8.120)

Now the gradient of the objective J(θ) = vπθ
(s0) can be written as

▽θJ(θ) = ▽θvπ(s0) =
∑

s∈S

∞
∑

k=0

Prπ(s0 → s, k) φ(s)

=
∑

s∈S
η(s) φ(s) =

(

∑

s′

η(s′)

)

∑

s∈S

η(s)
∑

s′ η(s
′)
φ(s)

∝
∑

s∈S

η(s)
∑

s′ η(s
′)
φ(s) =

∑

s∈S
µπ(s)

∑

a

▽θπ(a|s, θ) qπθ
(s, a) (8.125)

Here the proportionality is introduced due to the dropping of
∑

s′ η(s
′) as a

user
Callout
"And Eq. (8.120)" is unclear. To clarify, explain how Eq. (8.120) is involved.

418 Introduction to Reinforcement Learning

constant independent of state s, and we also defined

η(s) =

∞
∑

k=0

Prπ(s0 → s, k), (8.126)

as the sum of all probabilities for visiting state s from the start state s0, and

µπ(s) =
η(s)

∑

s′ η(s
′)

(8.127)

as a normalized verion of η(s) representing the probability distribution of visiting

state s while following policy π. Eq. (8.125) can be further written as

▽θJ(θ) = ▽θvπ(s0) ∝
∑

s∈S
µπ(s)

∑

a

π(a|s, θ)▽θπ(a|s, θ)
π(a|s, θ) qπθ

(s, a)

=
∑

s∈S
µπ(s)

∑

a

π(a|s, θ) ▽θ lnπ(a|s, θ) qπθ
(s, a)

= Eπθ
[▽θ lnπ(a|s, θ) qπθ

(s, a)] (8.128)

where Eπθ
denotes the expectation over all actions in each state s weighted by

π(a|s, θ) and all states s ∈ S weighted by µπ(s).

Q.E.D.

We see that the gradient ▽θJ(θ) is now expressed as the expectation of the

action value function qπ(s, a), weighted by the gradient of the logrithm of the

corresponding policy π(a|s, θ). Now Eq. (8.116) can be further written as

θt+1 = θt + α▽θJ(θ) = θt + αEπθ
[qπθ

(st, at) ▽θ lnπ(at|st, θ)] (8.129)

We further note that Eq. (8.125) still hold if an arbitrary bias term b(s) inde-

pendent of action a is included:

▽θJ(θ) ∝
∑

s∈S
µπ(s)

∑

a

▽θπ(a|s, θ) (qπθ
(s, a))

=
∑

s∈S
µπ(s)

∑

a

▽θπ(a|s, θ) (qπθ
(s, a) + b(s)) (8.130)

as
∑

a

▽θπ(a|s, θ) b(s) = b(s)▽θ
∑

a

π(a|s, θ) = b(s)▽θ1 = 0 (8.131)

Now Eq. (8.116) can also be written as

θt+1 = θt + α▽θJ(θ) = θt + αEπθ
[(qπθ

(st, at) + b(st)) ▽θ lnπ(at|st, θ)] (8.132)

The expectation Eπθ
in Eqs. (8.129) and (8.132) can be dropped if the method

of stochastic gradient ascent is used, as in all algorithms below, where each

iterative step is based on only one sample data point instead of its expectation.

user
Sticky Note
"of state s. We also defined"

user
Sticky Note
Cut "We see that."

user
Sticky Note
Typo: "logarithm"

user
Sticky Note
Cut "we further note that."

user
Sticky Note
"still holds"

8.8 Policy Gradient Methods 419

Specifically, for a soft-max policy model as given in Eq. (8.111), we have

▽θ lnπ(a|s, θ) = ▽θ ln

(

eθ
Tx(s,a)

∑

b e
θTx(s,b)

)

= ▽θ

(

θTx(s, a)− ln
∑

b

eθ
Tx(s,b)

)

= x(s, a)− ▽θ
∑

b e
θTx(s,b)

∑

b e
θTx(s,b)

= x(s, a)−
∑

b e
θTx(s,b)x(s, b)
∑

b e
θTx(s,b)

= x(s, a)−
∑

b

eθ
Tx(s,b)

∑

b e
θTx(s,b)

x(s, b)

= x(s, a)−
∑

b

π(b|s, θ)x(s, b) (8.133)

We list set of popular policy-based algorithms below, based on either the MC

or TD methods, generally used in previous algorithms.

• REINFORCE (MC) policy gradient

In this algorithm, the action value function qπθ
(st, at) in Eq. (8.129) is

replaced by the return Gt btained at the end of each episode while sampling

the environment. Now the equation becomes:

θt+1 = θt + αγtGt ▽θ lnπ(a|s, θ) (8.134)

Note that the discount factor γt is included as the expression for ▽θJ(θ)

in Eq. (8.128) assumed γ = 1 for simplicity.

Here is the pseudo code for the algorithm:

Initialize π(a|s, θ
loop (for each episode)

At the end of episode, get Gt for each state visited

for t = 1, · · · , T
θ = θ + αγtGt▽θ lnπ(at|st, θ)

end loop

• Actor-Critic (TD) policy gradient

As its name suggests, this algorithm is based on two approximation func-

tion models, the first for the policy π(a|s, θ) parameterized by θ, the actor,

same as in the REINFORCE algorithm above, and the second for the value

function v̂π(s,w) parameterized by w, the critic, same as in Eq. (8.97).

Specifically, in Eq. (8.132), the action value function qπθ
(st, at) is re-

placed by its bootstrapping expression rt+1+γv̂π(s
′,w), and the bias term

b(s) is replaced by the approximated value function v̂(st,w). Now both

parameters w and θ can be found iteratively at every step of an episode

while sampling the environment (the TD method) by stochastic gradient

method with the expectation Eπ dropped:

wt+1 = wt + αw [(rt+1 + γv̂π(s
′,w)− v̂π(s,w))▽w v̂π(s,w)]

θt+1 = θt + αθ [(rt+1 + γv̂π(s
′,w)− v̂π(s,w))▽θ lnπ(a|s, θ)](8.135)

Here is the pseudo code for the algorithm:

user
Sticky Note
Cut "Specifically."

user
Sticky Note
"a set of"

user
Sticky Note
"below. They are based on"

user
Sticky Note
Typo: "obtained"

user
Sticky Note
"The same as in," "just as in," or "as in"

user
Sticky Note
"The same as in," "just as in," or "as in"

user
Sticky Note
Cut "specifically."

420 Introduction to Reinforcement Learning

initialize model parameters θ and w

initialize step sizes αθ and αw
loop (for each episode)

initialize s = s0, t = 0

while s is not terminal (for each step)

take action a following π(a|s, θ), find reward r and next

state s′

find TD error: δ = r + γv̂(s′,w)− v̂(s,w)

w = w + αw δ ▽v̂(s,w)

θ = θ + αθγ
tδ ▽ lnπ(a|s, θ)

s = s′

t = t+ 1

end while

end loop

• Backward view of TD(λ) policy gradient

Here is the pseudo code for the algorithm:

initialize model parameters θ and w

initialize step sizes αθ and αw
initialize trace-decay rates λθ and λw
loop (for each episode)

initialize s = s0, t = 0

initialize zθ = 0, zw = 0

while s is not terminal (for each step)

take action a following π(a|s, θ), find reward r and next

state s′

find TD error: δ = r + γv̂(s′,w)− v̂(s,w)

zθ = γλθzθ + ▽γt lnπ(a|s, θ)
zw = γλwzw + γt▽v̂(s,w)

w = w + αw δ ▽v̂(s,w)

θ = θ + αθ δ ▽ lnπ(a|s, θ)
s = s′

t = t+ 1

end while

end loop

Following the similar steps, the policy gradient theorem for environment with

continuous state and action spaces can be also proven:

▽θJ(θ) =

∫

s

µπ(s)

∫

a

▽θπ(a|s, θ) qπθ
(s, a)da ds (8.136)

