The derivatives of a given function
at a set of equally spaced
points
can be found by integration method.
 |
(170) |
On the other hand, the integral can also be found by Simpson's rule:
![$\displaystyle \int_{x_{i-1}}^{x_{i+1}} f'(x)\,dx=\frac{h}{3}[f'(x_{i-1})+4f'(x_i)+f'(x_{i+1})],
\;\;\;\;\;(i=1,\cdots,n-1)$](img624.svg) |
(171) |
Equating the right-hand sides of the two equations we get
![$\displaystyle \frac{h}{3}[f'(x_{i-1})+4f'(x_i)+f'(x_{i+1})]=f(x_{i+1})-f(x_{i-1}),
\;\;\;\;\;(i=1,\cdots,n-1)$](img625.svg) |
(172) |
![$\displaystyle \left[\begin{array}{cccccc}
4 & 1 & & & & \\
1 & 4 & 1 & & & \\ ...
...\vdots\\ f(x_{n-1})-f(x_{n-3})\\ f(x_n)-f(x_{n-2})-hf'(x_n)/3\end{array}\right]$](img626.svg) |
(173) |
where
and
can be approximated by
 |
(174) |
Solving the linear equation system above, we get
.