Walsh-Hadamard Transform

Hadamard Matrix

The Kronecker product of two matrices A = [ajjlmxn and B = [bi;]kx 18
defined as
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In general, A® B # B ® A.

The Hadamard Matriz is defined recursively as below:
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The first column following the array is the index numbers of the N = 8
rows, and the second column represents the sequency — the number of zero-

crossings (sign changes) in each row.



Sequency is similar to, but different from, frequency in the sense that it
measures the rate of change of non-periodical signals.

The Hadamard matrix can also be obtained by defining its element in the
kth row and lth column of H (k,m =0,1,---, N — 1) as
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i.e., (kn_1kn_o---kiko)s and (my_1myu_o---mymy)s are the binary represen-
tations of k and m, respectively. Obviously, n = logsN.
H is real, symmetric, and orthogonal:

H=H'=H"=H"



Fast Walsh-Hadamard Transform (Hadamard
Ordered)

As any orthogonal (unitary) matrix can be used to define an orthogonal
(unitary) transform, we define a Walsh-Hadamard transform of Hadamard
order (W HT)) as

X = Hw

T=HX
These are the forward and inverse W H'T}, transform pair.
Here T = [2(0), z(1), -+, z(N — 1)]" and X = [X(0), X(1),---, X(N —1)]"
are the signal and spectrum vectors, respectively. The kth element of the
transform can also be written as

X(K) = 3 wlm)Waly(m, k) = Zox(m)’h(_l)miki

The complexity of WHT is O(N?). Similar to FFT algorithm, we can
derive a fast WHT algorithm with complexity of O(Nlog,N). We will assume
n =3 and N = 2" = 8 in the following derivation. An N = 8 point WHT),
of signal x(m) is defined as

?(3) :lg _g] #(3)

This equation can be separated into two parts. The first half of the X vector
can be obtained as
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The second half of the X vector can be obtained as
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where
pi(i+4) 2 2@ —a(i+4) (i=0,--,3) (4)

What we have done is converting a W HT of size N = 8 into two W HT's
of size N/2 = 4. Continuing this process recursively, we can rewrite Eq. (1)
as the following (similar process for Eq. (3))
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This equation can again be separated into two halves. The first half is
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The second half is
lX(Q) ] _u [ 1(0) l_HI [ 1(2) ] _u [ 2(2) ] _ [ 11 ] [x2(2)
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where N
Finally, from Eq. (5) we get (similar process for Eq. (7))
X(0) = 22(0) + z2(1) (9)
and
X(1) = 22(0) — 22(1) (10)

Summarizing the above steps of Equations (2), (4), (6), (8), (9) and (10), we
get the Fast WHT algorithm as illustrated below.



Fast Walsh-Hadamard Transform (Sequency Or-
dered)

In order for the elements in the spectrum X = [X(0), X(1),--+, X(N — 1)]F
to represent different sequency components contained in the signal in a low-
to-high order, we can re-order the rows (or columns) of the Hadamard matrix
H according to their sequencies.

To convert a given sequency number s into the corresponding index num-
ber k in Hadamard order, we need to

1. represent s in binary form:
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2. convert this binary form to Gray code:
gi=5®si1 (1=0,---,n—1)
where @ represents exclusive or and s, 2.
3. bit-reverse g;’s to get k;’s:

ki = gn—1—i = Sp—1-i D Sp—;

Now k can be found as
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where 57 = n — 1 — 7 is the index of the summation, which is just a symbol
and can be replace by, say, i.
For example, n = loga N = log,8 = 3, we have

s 0 1 2 3 4 5 6 7
binary 000 001 010 011 100 101 110 111
Gray code 000 001 011 010 110 111 101 100
bit-reverse 000 100 110 010 011 111 101 001
k 0 4 6 2 3 7 5 1



The sequency ordered Walsh-Hadamard transform (W HT,, also called
Walsh ordered W HT) can be obtained by first carrying out the fast W HT),
and then reordering the components of X as shown above. Alternatively, we
can use the following fast W HT,, directly with better efficiency.

The sequency ordered WHT of 2(m) can also be defined as
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where N = 2" k, 2 0, and the exponent of —1 represents the conversion from
sequency ordering to Hadamard ordering (binary-to-Gray code conversion
and bit-reversal conversion).

In the following, we assume n = 3, N = 2% =8, and we represent m and
k in binary form as, respectively, (momimg)s and (kokiko)s, i.€.,
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m:Zmi2i:4m2+2m1+mo (mZ:0,1)
1=0
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As the first step of the algorithm, we rearrange the order of the samples
x(m) by bit-reversal to get

xo(4mo + 2my + my) éx(4m2+2m1+m0) m=20,1,---7
We also define {; = m,,_;_;. Now the W HT,, can be written as
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Expanding the 3rd summation into two terms, we get
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where ks 20 and x1 is defined as

21 (dky + 20 + 1) 2 m(2h + o) + (=1)*=Fsag (4 + 2L + 1) (11)

Expanding the 2nd summation into two terms, we get

1
X(k) = 3o (=)EFRe oLy (dhy + o) + (= 1) (4 + 2+ Do)
lo=0
1
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where x5 is defined as
To(dky + 2ky + lo) £ 21 (dky + Lo) + (=) R2m (dky + 24 1) (12)
Finally, expanding the 1st summation into two terms, we have
X (k) = 2(4ks + 2k1) + (—1)Fo 12 (4ky + 2k; + 1) (13)

Summarizing the above steps, we get the fast W HT,, algorithm composed
of the bit-reversal and the three equations (11), (12), and (13), as illustrated
below:



