
Walsh-Hadamard Transform

Hadamard Matrix

The Kronecker product of two matrices A = [aij]m�n and B = [bij]k�l is
de�ned as
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In general, A
B 6= B 
 A.
The Hadamard Matrix is de�ned recursively as below:
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The �rst column following the array is the index numbers of the N = 8
rows, and the second column represents the sequency | the number of zero-
crossings (sign changes) in each row.
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Sequency is similar to, but di�erent from, frequency in the sense that it
measures the rate of change of non-periodical signals.

The Hadamard matrix can also be obtained by de�ning its element in the
kth row and lth column of H (k;m = 0; 1; � � � ; N � 1) as

h(k;m) = (�1)
P

n�1

i=0
kimi =

n�1Y
i=0

(�1)kimi = h(m; k)

where

k =
n�1X
i=0

ki2
i = (kn�1kn�2 � � �k1k0)2 (ki = 0; 1)

m =
n�1X
i=0

mi2
i = (mn�1mn�2 � � �m1m0)2 (mi = 0; 1)

i.e., (kn�1kn�2 � � �k1k0)2 and (mn�1mn�2 � � �m1m0)2 are the binary represen-
tations of k and m, respectively. Obviously, n = log2N .

H is real, symmetric, and orthogonal:

H = H� = HT = H�1
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Fast Walsh-Hadamard Transform (Hadamard

Ordered)

As any orthogonal (unitary) matrix can be used to de�ne an orthogonal
(unitary) transform, we de�ne a Walsh-Hadamard transform of Hadamard
order (WHTh) as (

X = Hx
x = HX

These are the forward and inverse WHTh transform pair.
Here x = [x(0); x(1); � � � ; x(N � 1)]T and X = [X(0); X(1); � � � ; X(N � 1)]T

are the signal and spectrum vectors, respectively. The kth element of the
transform can also be written as

X(k) =
N�1X
m=0

x(m)Walh(m; k) =
N�1X
m=0

x(m)
n�1Y
i=0

(�1)miki

The complexity of WHT is O(N2). Similar to FFT algorithm, we can
derive a fast WHT algorithmwith complexity of O(Nlog2N). We will assume
n = 3 and N = 2n = 8 in the following derivation. An N = 8 point WHTh
of signal x(m) is de�ned as
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This equation can be separated into two parts. The �rst half of the X vector
can be obtained as2
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where
x1(i)

4
= x(i) + x(i+ 4) (i = 0; � � � ; 3) (2)
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The second half of the X vector can be obtained as2
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where
x1(i + 4)

4
= x(i)� x(i + 4) (i = 0; � � � ; 3) (4)

What we have done is converting a WHT of size N = 8 into two WHTs
of size N=2 = 4. Continuing this process recursively, we can rewrite Eq. (1)
as the following (similar process for Eq. (3))2
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where
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4
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where

x2(i+ 2)
4
= x1(i)� x1(i+ 2) (i = 0; 1) (8)

Finally, from Eq. (5) we get (similar process for Eq. (7))

X(0) = x2(0) + x2(1) (9)

and
X(1) = x2(0)� x2(1) (10)

Summarizing the above steps of Equations (2), (4), (6), (8), (9) and (10), we
get the Fast WHT algorithm as illustrated below.
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Fast Walsh-Hadamard Transform (Sequency Or-

dered)

In order for the elements in the spectrum X = [X(0); X(1); � � � ; X(N � 1)]T

to represent di�erent sequency components contained in the signal in a low-
to-high order, we can re-order the rows (or columns) of the Hadamard matrix
H according to their sequencies.

To convert a given sequency number s into the corresponding index num-
ber k in Hadamard order, we need to

1. represent s in binary form:

s = (sn�1sn�2 � � � s1s0)2 =
n�1X
i=0

si2
i

2. convert this binary form to Gray code:

gi = si � si+1 (i = 0; � � � ; n� 1)

where � represents exclusive or and sn
4
= 0.

3. bit-reverse gi's to get ki's:

ki = gn�1�i = sn�1�i � sn�i

Now k can be found as

k = (kn�1 kn�2 � � �k1 k0)2 =
n�1X
i=0

sn�1�i � sn�i2
i =

n�1X
j=0

sj � sj+12
n�1�j

where j = n � 1 � i is the index of the summation, which is just a symbol
and can be replace by, say, i.

For example, n = log2N = log28 = 3, we have

s 0 1 2 3 4 5 6 7
binary 000 001 010 011 100 101 110 111

Gray code 000 001 011 010 110 111 101 100
bit-reverse 000 100 110 010 011 111 101 001

k 0 4 6 2 3 7 5 1
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The sequency ordered Walsh-Hadamard transform (WHTw, also called
Walsh ordered WHT ) can be obtained by �rst carrying out the fast WHTh
and then reordering the components of X as shown above. Alternatively, we
can use the following fast WHTw directly with better e�ciency.

The sequency ordered WHT of x(m) can also be de�ned as

X(k) =
N�1X
m=0

x(m)Walw(m; k) =
N�1X
m=0

x(m)
n�1Y
i=0

(�1)(ki+ki+1)mn�1�i

where N = 2n, kn
4
= 0, and the exponent of�1 represents the conversion from

sequency ordering to Hadamard ordering (binary-to-Gray code conversion
and bit-reversal conversion).

In the following, we assume n = 3; N = 23 = 8, and we represent m and
k in binary form as, respectively, (m2m1m0)2 and (k2k1k0)2, i.e.,

m =
n�1X
i=0

mi2
i = 4m2 + 2m1 +m0 (mi = 0; 1)

k =
n�1X
i=0

ki2
i = 4k2 + 2k1 + k0 (ki = 0; 1)

As the �rst step of the algorithm, we rearrange the order of the samples
x(m) by bit-reversal to get

x0(4m0 + 2m1 +m2)
4
= x(4m2 + 2m1 +m0) m = 0; 1; � � �7

We also de�ne li = mn�1�i. Now the WHTw can be written as

X(k) =
1X

m2=0

1X
m1=0

1X
m0=0

x0(4m0 + 2m1 +m0)
2Y
i=0

(�1)(ki+ki+1)mn�1�i

=
1X

l0=0

1X
l1=0

1X
l2=0

x0(4l2 + 2l1 + l0)
2Y
i=0

(�1)(ki+ki+1)li

Expanding the 3rd summation into two terms, we get

X(k) =
1X

l0=0

1X
l1=0

1Y
i=0

(�1)(ki+ki+1)li [x0(2l1 + l0) + (�1)k2+k3x0(4 + 2l1 + l0)]

=
1X

l0=0

1X
l1=0

1Y
i=0

(�1)(ki+ki+1)lix1(4k2 + 2l1 + l0)
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where k3
4
= 0 and x1 is de�ned as

x1(4k2 + 2l1 + l0)
4
= x0(2l1 + l0) + (�1)k2+k3x0(4 + 2l1 + l0) (11)

Expanding the 2nd summation into two terms, we get

X(k) =
1X

l0=0

(�1)(ki+ki+1)l0 [x1(4k2 + l0) + (�1)k1+k2x1(4k2 + 2 + l0)]

=
1X

l0=0

(�1)(ki+ki+1)l0x2(4k2 + 2k1 +m0)

where x2 is de�ned as

x2(4k2 + 2k1 + l0)
4
= x1(4k2 + l0) + (�1)k1+k2x1(4k2 + 2 + l0) (12)

Finally, expanding the 1st summation into two terms, we have

X(k) = x2(4k2 + 2k1) + (�1)k0+k1x2(4k2 + 2k1 + 1) (13)

Summarizing the above steps, we get the fastWHTw algorithm composed
of the bit-reversal and the three equations (11), (12), and (13), as illustrated
below:
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