
Probability of Random Vectors

� Multiple Random Variables

Each outcome of a random experiment may need to be described by a
set of N > 1 random variables fx1; � � � ; xNg, or in vector form:

X = [x1; � � � ; xN ]
T

which is called a random vector. In signal processing X is often used
to represent a set of N samples of a random signal x(t) (a random
process).

� Joint Distribution Function and Density Function

The joint distribution function of a random vector X is de�ned as

FX(u1; � � � ; uN) = P (x1 < u1; � � � ; xN < uN)

=
Z u1

�1

� � �
Z uN

�1

p(�1; � � � ; �N)d�1 � � �d�N

where p(�1; � � � ; �N) is the joint density function of the random vector
X.

� Independent Variables

For convenience, let us �rst consider two of the N variables and rename
them as x and y. These two variables are independent i�

P (A \ B) = P (x < u; y < v) = P (x < u)P (y < v) = P (A)P (B)

where events A and B are de�ned as \x < u" and \y < v", respectively.
This de�nition is equivalent to

p(x; y) = p(x)p(y)

as this will lead to

P (x < u; y < v) =
Z u

�1

Z v

�1

p(�; �)d�d� =
Z u

�1

Z v

�1

p(�)p(�)d�d�

=
Z u

�1

p(�)d�
Z v

�1

p(�)d� = P (x < u)P (y < v)

Similarly, a set of N variables are independent i�

p(x1; � � � ; xN) = p(x1) p(x2) � � � p(xN)
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� Mean Vector

The expectation or mean of random variable xi is de�ned as

�i = E(xi)
4
=
Z
1

�1

� � �
Z
1

�1

�i p(�1; � � � ; �N) d�1 � � �d�N

The mean vector of random vector X is de�ned as

M = E(X)
4
= [E(x1); � � � ; E(xN )]

T = [�1; � � � ; �N ]
T

which can be interpreted as the center of gravity of an N-dimensional
object with p(x1; � � � ; xN) being the density function.

� Covariance Matrix

The variance of random variable xi is de�ned as

�2
i

4
= E[(xi � �i)

2] = E(x2i )� �2
i

=
Z
1

�1

� � �
Z
1

�1

(�i � �i)
2 p(�1; � � � ; �N) d�1 � � �d�N

The covariance of xi and xj is de�ned as

�2
ij = Cov(xi; xj)

4
= E[(xi � �i)(xj � �j)] = E(xixj)� �i�j

=
Z
1

�1

� � �
Z
1

�1

�i�j p(�1; � � � ; �N) d�1 � � �d�N � �i�j

The covariance matrix of a random vector X is de�ned as

� = E[(X �M)(X �M)T ] = E(XXT )�MMT

=

2
64
:: :: ::
:: �2

ij ::
:: :: ::

3
75
N�N

where
�2
ij = E(xixj)� �i�j

is the covariance of xi and xj. When i = j, �2
i = E(x2i ) � �2

i is the
variance of xi, which can be interpreted as the amount of information,
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or energy, contained in the ith component of the signal X. And the
total information or energy contained in X is represented by

tr � =
NX
i=1

�2
i

� is symmetric as �2
ij = �2

ji. Moreover, it can be shown that � is also
positive de�nite, i.e., all its eigenvalues f�1; � � � ; �Ng are greater than
zero and we have

tr � =
NX
i=1

�i > 0

and

det � =
NY
i=1

�i > 0

Two variables xi and xj are uncorrelated i� �2
ij = 0, i.e.,

E(xixj) = E(xi)E(xj) = �i�j

If this is true for all i 6= j, then X is called uncorrelated or decorrelated
and its covariance matrix � becomes a diagonal matrix with only non-
zero �2

i (i = 1; � � � ; N) on its diagonal.

If xi (i = 1; � � � ; N) are independent, p(x1; � � � ; xN ) = p(x1) � � �p(xN ),
then it is easy to show that they are also uncorrelated. However, un-
correlated variables are not necessarily independent. (But uncorrelated
variables with normal distribution are also independent.)

� Autocorrelation Matrix

The autocorrelation matrix of X is de�ned as

R
4
= E(XXT ) =

2
64 :: :: ::
:: rij ::
:: :: ::

3
75
N�N

where
rij

4
= E(xixj) = �2

ij + �i�j

3



Obviously R is symmetric and we have

� = R�MMT

When M = 0, we have � = R.

Two variable xi and xj are orthogonal i� rij = 0. Zero mean random
variables which are uncorrelated are also orthogonal.
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� Mean and Covariance under Unitary Transforms

A unitary (orthogonal) transform of X is de�ned as

(
Y = ATX
X = AY

where A is a unitary (orthogonal) matrix

A�T = A�1

and Y is another random vector.

The mean vector MY and the covariance matrix �Y of Y are related
to the MX and �X of X as shown below:

MY = E(Y ) = E(ATX) = ATE(X) = ATMX

�Y = E(Y Y T )�MYM
T
Y = E(ATXXTA)� ATMXM

T
XA

= ATE(XXT )A� ATMXM
T
XA = AT [E(XXT )�MXM

T
X ]A

= AT�XA

Unitary transform does not change the trace of �:

tr �Y = tr [E(Y Y T )�MYM
T
Y ] = E[tr (Y Y T )]� tr (MYM

T
Y )

= E(Y TY )�MT
Y MY = E(XTAATX)�MT

XAA
TMX

= E(XTX)�MT
XMX = tr �X

which means the total amount of energy or information contained in
X is not changed after a unitary transform Y = ATX (although its
distribution among the N components is changed).
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� Normal Distribution

The density function of a normally distributed random vector X is:

p(x1; � � � ; xN) = N(X;M;�) =
1

(2�)N=2 j�j1=2
exp[�

1

2
(X�M)T��1(X�M)]

where M and � are the mean vector and covariance matrix of X,
respectively. When N = 1, � and M become � and �, respectively,
and the density function becomes single variable normal distribution.

To �nd the shape of a normal distribution, consider the iso-value hyper
surface in the N-dimensional space determined by equation

N(X;M;�) = c0

where c0 is a constant. This equation can be written as

(X �M)T��1(X �M) = c1

where c1 is another constant related to c0, M and �. For N = 2
variables x and y, we have

(X �M)T��1(X �M) = [x� �x; y � �y]

"
a b=2
b=2 c

# "
x� �x
y � �y

#

= a(x� �x)
2 + b(x� �x)(y � �y) + c(y � �y)

2

= c1

Here we have assumed "
a b=2
b=2 c

#
= ��1

The above quadratic equation represents an ellipse (instead of any other
quadratic curve) centered at M = [�1; �2]

T , because ��1, as well as �,
is positive de�nite: �����1��� = ac� b2=4 > 0

When N > 2, the equation N(X;M;�) = c0 represents a hyper ellip-
soid in the N-dimensional space. The center and spatial distribution of
this ellipsoid are determined by M and �, respectively.
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In particular, when X = [x1; � � � ; xN ]
T is decorrelated, i.e.,

�ij = 0 for all i 6= j, � becomes a diagonal matrix

� = diag[�2
1; � � � ; �

2
N ] =

2
6664
�2
1 0 � � � 0
0 �2

2 � � � 0
� � � � � � � � � � � �
0 0 � � � �2

N

3
7775

and equation N(X;M;�) = c0 can be written as

(X �M)T��1(X �M) =
NX
i=1

(xi � �i)
2

�2
i

= c1

which represents a standard ellipsoid with all its axes parallel to those
of the coordinate system.

� Estimation of M and �

When p(x1; � � � ; xN) is not known, M and � cannot be found by their
de�nitions. However, they can be estimated if a large number of out-
comes (Xj; j = 1; � � � ; K) of the random experiment in question can
be observed.

The mean vector M can be estimated as

M̂ =
1

K

KX
j=1

Xj

i.e., the ith element of M is estimated as

�̂i =
1

K

KX
j=1

x
(j)
i

where x
(j)
i is the ith element of Xj.

The autocorrelation R can be estimated as

R̂ =
1

K

KX
j=1

XjX
T
j

And the covariance matrix � can be estimated as

�̂ =
1

K

KX
j=1

XjX
T
j � M̂M̂T = R̂� M̂M̂T
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