Probability of Random Vectors

Multiple Random Variables

Each outcome of a random experiment may need to be described by a

set of N > 1 random variables {xy,---,zx}, or in vector form:
T
X = [351, ;UUN]

which is called a random vector. In signal processing X is often used
to represent a set of N samples of a random signal z(¢) (a random
process).

Joint Distribution Function and Density Function

The joint distribution function of a random vector X is defined as

Fy(uy, - - uy) = Pz <wup, -, on <uy)
-/ / P&, En)des - de

where p(&;,---,&n) is the joint density function of the random vector
X.

Independent Variables

For convenience, let us first consider two of the NV variables and rename
them as x and y. These two variables are independent iff

P(ANB)=P(x <u,y<v)=P(xr <u)P(y <v)=P(A)P(B)

where events A and B are defined as “x < u” and “y < v”, respectively.
This definition is equivalent to

p(x,y) = p(z)p(y)

as this will lead to
Pa<uy<) = [ [ penden= [ [ pepmdedy
= / df/ n)dn = P(x < u)P(y < v)
Similarly, a set of N variables are independent iff

p(xy, -+, on) = p(ry) ples) - - p(oy)



e Mean Vector

The ezpectation or mean of random variable z; is defined as
A o0 (0]
=B) 2 [ [T (e, ) ey de

The mean vector of random vector X is defined as
A
M = E(X) = [E(x1),---, E(xn)]" = [, -+, un]”

which can be interpreted as the center of gravity of an N-dimensional
object with p(xy,---,zy) being the density function.

e Covariance Matrix

The wvariance of random variable z; is defined as

:/ / (& = pa)* P&, -+, En) d&r - - dEy

o2 2 F E[(z;

The covariance of z; and z; is defined as

0% = Cov(ws,x;) = Bl(w; — w)(w; — )] = E(wiz;) — pas;
= [ [T sl e e de =

The covariance matriz of a random vector X is defined as
Y = E[(X -M)(X-MT)=FBXX")-MMT

— 2

NxN

where
0Z2] E(x; xa) itk

is the covariance of x; and z;. When i = j, 07 = E(27) — p? is the
variance of x;, which can be interpreted as the amount of information,



or energy, contained in the ith component of the signal X. And the
total information or energy contained in X is represented by

N
tr=> o?
i=1

Y is symmetric as aizj = ajz-z-. Moreover, it can be shown that X is also

positive definite, i.e., all its eigenvalues {\, -+, Ay} are greater than
zero and we have

N
t?”E:ZAi>0
i=1
and
N
detE:H)\i>0

=1

Two variables z; and x; are uncorrelated iff afj =0, i.e.,
E(ziz;) = E(w:) E(x;) = pat;

If this is true for all ¢ # 7, then X is called uncorrelated or decorrelated
and its covariance matrix ¥ becomes a diagonal matrix with only non-

zero o2 (i =1,---, N) on its diagonal.

If (Z =1,---, N) are independent, p(ajla T :UN) = p(xl) o 'p(xN)a
then it is easy to show that they are also uncorrelated. However, un-
correlated variables are not necessarily independent. (But uncorrelated
variables with normal distribution are also independent.)
Autocorrelation Matrix

The autocorrelation matrix of X is defined as

A

R=EXXT) =1 . ry

NXxN

where



Obviously R is symmetric and we have
Y=R-MM"

When M =0, we have ¥ = R.

Two variable z; and z; are orthogonal iff r;; = 0. Zero mean random
variables which are uncorrelated are also orthogonal.



e Mean and Covariance under Unitary Transforms

A unitary (orthogonal) transform of X is defined as

Y =ATX
X =AY

where A is a unitary (orthogonal) matrix
A*T — A—l

and Y is another random vector.

The mean vector My and the covariance matrix Xy of Y are related
to the Mx and x of X as shown below:

My =E(Y)=EATX)=ATE(X) = AT My

Yy = EYY") -~ MyM! =FEA"XX"A) - A"TMxMELA
= ATE(XXMA - ATMxMiA=AT[E(XX") - MxMi]A
ATY ¢ A

Unitary transform does not change the trace of X:

trYy = tr [B(YY") = MyM]] = E[tr YY)] —tr (My M)
EYTY) - MIMy = E(XTAATX) — ML AA" My
E(XTX) - MEMyx =tr ©x

which means the total amount of energy or information contained in

X is not changed after a unitary transform ¥ = A”X (although its
distribution among the N components is changed).



e Normal Distribution
The density function of a normally distributed random vector X is:

expl—= (X~ M)TS (X~ M)

=NX,MY)=——""—/7—
p(xla 7xN) ( y ) (27T)N/2|E|1/2 z 2

where M and X are the mean vector and covariance matrix of X,
respectively. When N = 1, ¥ and M become o and u, respectively,
and the density function becomes single variable normal distribution.

To find the shape of a normal distribution, consider the iso-value hyper
surface in the N-dimensional space determined by equation

N(X,M,Y) = ¢
where ¢j is a constant. This equation can be written as
(X -M'S™ X -M)=¢

where ¢; is another constant related to ¢y, M and . For N = 2
variables x and y, we have

(X—M)Tzfl(X—M) = [$—Mzay_ﬂy][b72 bé2][§:fﬁ:]
= a(® — pe)® + b(x — pe) (y — piy) + ey — 1)

Here we have assumed

l % i ] =¥

The above quadratic equation represents an ellipse (instead of any other
quadratic curve) centered at M = [y, u2]T, because X1, as well as &,
is positive definite:

S =ac—1?/4>0

When N > 2, the equation N (X, M, ) = ¢y represents a hyper ellip-
soid in the N-dimensional space. The center and spatial distribution of
this ellipsoid are determined by M and X, respectively.
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In particular, when X = [z1,--+,2x]7 is decorrelated, i.e.,
oij =0 forall i # j, ¥ becomes a diagonal matrix

a2 0 0

2
2 = diaglo?, o3 = 02
0 0 - 0%

and equation N (X, M,¥) = ¢, can be written as

(X -M)"'S™ (X - M) = fj

=1

2
Li — i
( 2u) e

o;

which represents a standard ellipsoid with all its axes parallel to those
of the coordinate system.

Estimation of M and X

When p(z1,---,2y) is not known, M and ¥ cannot be found by their
definitions. However, they can be estimated if a large number of out-
comes (X;, j=1,---,K) of the random experiment in question can
be observed.

The mean vector M can be estimated as
R 1 X
M — —= Z Xj
szl
i.e., the ith element of M is estimated as
- _1&
i = 75 x,;
fii = 77 le

where x(j) is the ith element of X.

i

The autocorrelation R can be estimated as
. 1 XK
=—> X;X]
J
K o J
And the covariance matrix ¥ can be estimated as

& 1 & T e T > or T
EZKE:IX]-X]- —MM"=R—- MM
]:



