
Principal Component Transform

Multivariate Random Signals

A real time signal x(t) can be considered as a random process and its samples
xm (m = 0; � � � ; N � 1) a random vector:

X = [x0; � � � ; xN�1]
T

The mean vector of X is

MX
4
= E(X) = [E(x0); � � � ; E(xN�1)]

T = [�0; � � � ; �N�1]
T

The covariance matrix of X is

�X
4
= E[(X �MX)(X �MX)

T ] = E(XXT )�MMT =

2
64
:: :: ::

:: �2ij ::

:: :: ::

3
75

where �2ij
4
= E(xixj)� �i�j is the covariance of two random variables xi and

xj. When i = j, �ij becomes the variance of xi, �
2

i

4

= E(x2i )� �2i .
The correlation matrix of X is

RX
4
= E(XXT ) =

2
64
:: :: ::

:: rij ::

:: :: ::

3
75

where rij = �2ij +�i�j. Both �X and RX are symmetric matrices (Hermitian
if X is complex).

A signal vector X can always be easily converted into a zero-mean vector
X 0 = X �MX with all of its information (or dynamic energy) conserved.
In the following, without loss of generality, we will assume MX = 0 and
therefore �X = RX .
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The Principal Component Transform

The Principal Component Transform is also called Karhunen-Loeve Trans-
form (KLT), Hotelling Transform, or Eigenvector Transform.

Let �i and �i be the ith eigenvector and eigenvalue of the correlation
matrix RX :

RX�i = �i�i (i = 0; � � � ; N � 1)

We can construct an N �N matrix �

�
4
= [�0; � � � ; �N�1]

Since the columns of � are the eigenvectors of a symmetric (Hermitian if X
is complex) matrix RX , � is orthogonal (unitary):

�T� = I

i.e.,
��1 = �T

and we have
RX� = ��

where � = diag(�0; � � � ; �N�1). Or, we have

��1RX� = �TRX� = �

We can now de�ne the orthogonal (unitary if X is complex) Principal
Component Transform of X by(

Y = �TX

X = �Y

The ith component of the forward transform Y = �TX is the projection of
X on �i:

yi = (�i; X) = �Ti X

and the inverse transform X = �Y represents X in the N-dimensional space
spanned by �i (i = 0; 1; � � � ; N � 1):

X =
N�1X
i=0

yi�i
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KLT Completely Decorrelates the Signal

KLT is the optimal orthogonal transform in the following sense:

� KLT completely decorrelates the signal

� KLT optimally compacts the energy (information) contained in the
signal.

The �rst property is simply due to the de�nition of KLT, and the second
property is due to the fact that KLT redistributes the energy among the N
components in such a way that most of the energy is contained in a small
number of components of Y = �TX.

To see the �rst property, consider the correlation matrix RY of Y :

RY = E(Y Y T ) = E[�TX(�TX)T ]

= E[�T (XXT )�] = �TE(XXT )�

= �TRX� = �

We see that after KLT, the correlation matrix of the signal is diagonalized,
i.e., the correlation rij = 0 between any two components xi and xj is always
zero. In other words, the signal is completely decorrelated.
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KLT Optimally Compacts the Energy

Consider a general orthogonal transform pair de�ned as

(
Y = ATX

X = AY

where X and Y are N by 1 vectors and A is an arbitrary N by N orthogonal
matrix A�1 = AT .

We represent A by its column vectors Ai; (i = 0; � � � ; N � 1) as

A = [A0; � � � ; AN�1]

or

AT =

2
6664

AT
0

:

:

AT
N�1

3
7775

Now the ith component of Y can be written as

yi = AT
i X

As we assume the mean vector of X is zero MX = 0 (and obviously we
also have MY = ATMx = 0), we have �X = RX , and the variance of the ith
element in both X and Y are

�2xi
= E(x2i )

4
= E(exi

)

and
�2yi = E(y2i )

4
= E(eyi)

where exi

4
= x2i and eyi

4
= y2i represent the energy contained in the ith com-

ponent of X and Y , respectively. In order words, the trace of �X (the sum
of all the diagonal elements of the matrix) represents the expectation of the
total amount of energy contained in the signal X

Total energy contained in X = tr�X =
N�1X
i=0

�2xi
=

N�1X
i=0

E(x2i ) = E(
N�1X
i=0

exi
)
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Since an orthogonal transform A does not change the length of a vector X,
i.e., k Y k=k AX k=k X k, where

k X k
4
=

vuutN�1X
i=0

x2i =

vuutN�1X
i=0

exi

the total energy contained in the signal vector X is conserved after the or-
thogonal transform. (This conclusion can also be obtained from the fact that
orthogonal transforms do not change the trace of a matrix.)

We next de�ne

Sm(A)
4
=

m�1X
i=0

E(y2i ) =
m�1X
i=0

�2yi =
m�1X
i=0

E(eyi)

where m � N . Sm(A) is a function of the transform matrix A and represents
the amount of energy contained in the �rst m components of Y = ATX.
Since the total energy is conserved, Sm(A) also represents the percentage of
energy contained in the �rst m components. In the following we will show
that Sm(A) is maximized if and only if the transform A is the KLT:

Sm(�) � Sm(A)

i.e., KLT optimally compacts energy into a few components of the signal.
Consider

Sm(A)
4
=

m�1X
i=0

E(y2i ) =
m�1X
i=0

E[AT
i X(AT

i X)T ]

=
m�1X
i=0

E[AT
i X(XTAi)] =

m�1X
i=0

AT
i E(XXT )Ai

=
m�1X
i=0

AT
i RXAi (1)

Now we need to �nd a transform matrix A so that(
Sm(A)! max

subject to AT
j Aj = 1 (j = 0; � � � ; m� 1)

The constraint AT
j Aj = 1 is to guarantee that the column vectors in A

are normalized. This constrained optimization problem can be solved by
Lagrange multiplier method as shown below.
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We let

@

@Ai

[Sm(A)�
m�1X
j=0

�j(A
T
j Aj � 1)] = 0

=
@

@Ai

[
m�1X
j=0

(AT
j RXAj � �jA

T
j Aj + �j)]

=
@

@Ai

[AT
i RXAi � �iA

T
i Ai]

�
= 2RxAi � 2�iAi = 0

(* the last equal sign is due to explanation in the handout of review of linear
algebra.) We see that the column vectors of A must be the eigenvectors of
RX :

RXAi = �iAi (i = 0; � � � ; m� 1)

i.e., the transform matrix must be

A = [A0; � � � ; AN�1] = � = [�0; � � � ; �N�1]

Thus we have proved that the optimal transform is indeed KLT, and

Sm(�) =
m�1X
i=0

�Ti RX�i =
m�1X
i=0

�i

where the ith eigenvalue �i of RX is also the average (expectation) energy
contained in the ith component of the signal. If we choose those �0is that
correspond to the m largest eigenvalues of RX : �0 � �1 � � � ��m � � � � �N�1,
then Sm(�) will achieve maximum.
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