Principal Component Transform

Multivariate Random Signals

A real time signal x(t) can be considered as a random process and its samples
Ty (m=0,---,N —1) a random vector:

X = [fL'(), o '7xN—1]T

The mean vector of X is

My £ B(X) = [B(wo), -+, Blwn-1)]" = [no, - sin-1]"

The covariance matriz of X is

Sy £ E[(X = Mx)(X — My)"] = B(XX") — MM" = L o2

A : : :
where o7; = E(2;x;) — puij; is the covariance of two random variables 2; and

A

- - . 2 2 2

z;. When i = j, 0;; becomes the variance of z;, o; = E(x7) — 1;.
The correlation matriz of X is

RXéE(XXT): .. Tij

where r;; = Jgj + pip;. Both ¥x and Ry are symmetric matrices (Hermitian
if X is complex).

A signal vector X can always be easily converted into a zero-mean vector
X' = X — Mx with all of its information (or dynamic energy) conserved.
In the following, without loss of generality, we will assume My = 0 and
therefore ¥ x = Ryx.



The Principal Component Transform

The Principal Component Transform is also called Karhunen-Loeve Trans-
form (KLT), Hotelling Transform, or Eigenvector Transform.

Let ¢; and \; be the ith eigenvector and eigenvalue of the correlation
matrix Ry:

Rx¢i = Ny (1=0,---,N —1)
We can construct an N x N matrix ®
A
¢ = [¢07 T '7¢N71]

Since the columns of ® are the eigenvectors of a symmetric (Hermitian if X
is complex) matrix Ry, ® is orthogonal (unitary):

OTd =1
ie.,
o' ="
and we have
Rx® = ®A

where A = diag(Ag,- -+, Ax_1). Or, we have
P 'Ry® =d"Rx® = A

We can now define the orthogonal (unitary if X is complex) Principal
Component Transform of X by

Y =¢TX
X =9Y

The ith component of the forward transform Y = &7 X is the projection of
X on ¢;:

yi = (¢, X) = ¢ X
and the inverse transform X = ®Y represents X in the N-dimensional space
spanned by ¢; (1 =0,1,---, N — 1):

N-1
X = Z YiPi
i=0



KLT Completely Decorrelates the Signal

KLT is the optimal orthogonal transform in the following sense:
e KLT completely decorrelates the signal

e KLT optimally compacts the energy (information) contained in the
signal.

The first property is simply due to the definition of KLT, and the second
property is due to the fact that KLT redistributes the energy among the N
components in such a way that most of the energy is contained in a small
number of components of ¥ = &7 X

To see the first property, consider the correlation matrix Ry of Y

Ry = E(YYT)=E[®"X(®"X)T]
= E[@T (XX =0"E(XX")d
P"Rx® = A
We see that after KLT, the correlation matrix of the signal is diagonalized,

i.e., the correlation r;; = 0 between any two components x; and x; is always
zero. In other words, the signal is completely decorrelated.



KLT Optimally Compacts the Energy

Consider a general orthogonal transform pair defined as

Y = ATX

X =AY
where X and Y are N by 1 vectors and A is an arbitrary N by N orthogonal
matrix A~! = AT,

We represent A by its column vectors A;, (i =0,---,N —1) as
A= [A(]a' : '7AN71]

or

Aj
AT =
AN
Now the ith component of Y can be written as
Yi = AiT X

As we assume the mean vector of X is zero My = 0 (and obviously we
also have My = ATM, = 0), we have ¥y = Ry, and the variance of the ith
element in both X and Y are

and

A
oy, = E(y}) = Eley,)

A A . :
where e,, = 2? and e,, = y? represent the energy contained in the ith com-

ponent of X and Y, respectively. In order words, the trace of Xy (the sum
of all the diagonal elements of the matrix) represents the expectation of the
total amount of energy contained in the signal X

1 N-1

E(z7) = E(Y_ eq))

N-1 —
Total energy contained in X = tr¥yx = Z U:%i =
i=0 i=0 i=



Since an orthogonal transform A does not change the length of a vector X,
ie, [| Y [|=]| AX [[=]| X ||, where

A N-1 N-1
EIERDIE NS
1=0 =0

the total energy contained in the signal vector X is conserved after the or-
thogonal transform. (This conclusion can also be obtained from the fact that
orthogonal transforms do not change the trace of a matrix.)

We next define

m—1 m—1 m—1
AN
Su(A) = D E(y]) = Y o5, = > Eley,)

where m < N. S,,,(A) is a function of the transform matrix A and represents
the amount of energy contained in the first m components of ¥ = AT X,
Since the total energy is conserved, S,,(A) also represents the percentage of
energy contained in the first m components. In the following we will show
that S,,(A) is maximized if and only if the transform A is the KLT:

Sm(®) = Sm(A)

i.e., KLT optimally compacts energy into a few components of the signal.

Consider
m—1 m—1
Sm(4) = Y E@) =Y E[ATX(ATX)T]

i=0 1=0
m—1 m—1

= T BATX(XTA) = 3 ATE(YXT)A,
i=0 i=0
m—1

= AT Rx A, (1)
1=0

Now we need to find a transform matrix A so that

Sm(A) — max
subject to ATA; =1 (j=0,---,m —1)

The constraint A]TA]- = 1 is to guarantee that the column vectors in A
are normalized. This constrained optimization problem can be solved by
Lagrange multiplier method as shown below.
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We let

m—1

(o5

oA [Sm(A) — ]z% N(ATA; —1)]=0
a m—1 - -
1 =0

Il

(* the last equal sign is due to explanation in the handout of review of linear
algebra.) We see that the column vectors of A must be the eigenvectors of
in

i.e., the transform matrix must be

A:[AO,"',AN—I]:@:[¢07"'7¢N—1]

Thus we have proved that the optimal transform is indeed KLT, and
m—1 m—1
Sm(q)) = Z ¢iTRX¢i = Z Ai
i=0 i=0

where the ith eigenvalue \; of Ry is also the average (expectation) energy
contained in the ith component of the signal. If we choose those ¢)s that
correspond to the m largest eigenvalues of Rx: A\g > A1 > -+~ A\ > An_q,
then S,,(®) will achieve maximum.



