next up previous
Next: The function and orthogonal Up: fourier Previous: Heisenberg Uncertainty Principle

Physical Meaning of 1DFT

Here we only consider the FT of continuous and periodic signals. The result here should be easily generalized to other cases. The Fourier expansion of a 1D periodic signal

\begin{displaymath}x_T(t)=\sum_{n=-\infty}^{\infty} X[n]e^{j2\pi nf_0t} \end{displaymath}

represents the signal as a weighted sum of complex exponential functions. Here $X[n]$ is the weight of the nth term (the Fourier coefficient) which is in general a complex number

\begin{displaymath}X[n]=X_r[n]+jX_j[n]=A_n e^{j\Phi_n}
=\frac{1}{T}\int_T x_T(t)e^{-j2\pi nf_0t} dt \end{displaymath}

where

\begin{displaymath}\left\{ \begin{array}{l}
\vert X[n]\vert=\sqrt{X_r[n]^2+X_j[...
...
\angle{X[n]}=tan^{-1} [ X_j[n]/X_r[n] ] \end{array} \right.
\end{displaymath}

We assume the signal $x_T(t)=x_T^*(t)$ is real, then $X[-n]=X^*[n]$, and we can rewrite the Fourier expansion of $x(t)$ above as
$\displaystyle x(t)$ $\textstyle =$ $\displaystyle \sum_{n=-\infty}^{\infty} X[n]e^{j2\pi nf_0t}
= X[0]+\sum_{n=1}^{\infty}[ X[n]e^{j2\pi nf_0t}+X[-n]e^{-j2\pi nf_0t}]$  
  $\textstyle =$ $\displaystyle X[0]+\sum_{n=1}^{\infty}[ X[n]e^{j2\pi nf_0t}+X^*[n]e^{-j2\pi nf_...
...j\angle X[n]}e^{j2\pi nf_0t}+\vert X[n]\vert e^{-j\angle X[n]}e^{-j2\pi nf_0t}]$  
  $\textstyle =$ $\displaystyle X[0]+\sum_{n=1}^{\infty} \vert X[n]\vert [e^{j(2\pi nf_0+\angle X...
...] )}]
= X[0]+\sum_{n=1}^{\infty} 2\vert X[n]\vert\;cos(2\pi nf_0t+\angle X[n] )$  

where $ X[0]=\frac{1}{T}\int_T x(t) dt $ is the average or DC component of the signal. Now we see that any real signal $x(t)$ can be represented as a weighted sum of infinite number of sinusoids of different frequencies $nf_0$ with different amplitudes $2X[n]$ and phases $\angle X[n]$.


next up previous
Next: The function and orthogonal Up: fourier Previous: Heisenberg Uncertainty Principle
Ruye Wang 2009-12-31