Fourier Transform — E180 Handout

Four different forms of the Fourier transform

e Non-periodic, continuous time function z(¢), continuous, non-
periodic spectrum X (f)

This is the most general form of Fourier transform.

X(n=/ T p(t)emi gy

—o0
+00 i
oty = [ T X(f)eita
—00
The first one is the forward transform, and the second one is the inverse
transform.

e Non-periodic, discrete time function z(n), continuous, peri-
odic spectrum Xp(f)

The discrete time function can be considered as a sequence of samples
of continuous time function. The time interval between two consecutive
samples z(m) and x(m + 1) is ty = 1/F, where F' is the sampling rate,
which is also the period of the spectrum in the frequency domain.

The discrete time function can be written as

—+00
z(t) = > x(m)d(t — mty)
and its transform is:
+o0 )
Xe(f)= Y a(m)e smime

1+ j2m fmt
x(m) = f/_F/z Xr(f)e °df

(m=0,+1,£2,--)
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We can verify that the spectrum is indeed periodic:

Xp(f +kF) = Xo(f + kfto) = S a(m)e 2 kitomeo — X, (f)

m=—00
(for k = £1,+2,---) because e*72™"* =1,

e Periodic, continuous time function z(t), discrete, non-periodic
spectrum X (n)

This is the Fourier series expansion of periodic functions. The time
period is T, and the interval between two consecutive frequency com-
ponents is fo = 1/T, and its transform is:

/+T/2 —y27rnf0tdt
T T/2

+o0
Z X(n)ejQﬂ'nfot

n=-—00
n=0,%1,42, ..

The discrete spectrum can also be represented as:

X(f): Z X —nfo)

n=——o00

We can verify that the time function is indeed periodic:

rr(t+ kT) = xr(t + k/ fo) = Z X (n)e s2mnfolttk/fo) — g0 (1)

n=—oo

(for k = £1,£2,---)



e Periodic, discrete time function z(m), discrete, periodic spec-
trum X (n)

This is the discrete Fourier transform (DFT).

1 M—-1

X(n) = Z x(m)e’j%”“”folto
n=0,1,--,M—1

1 M—-1

F Z X(n)ejQﬂ'nmfoto

n=0

m=0,1,---,M—1

xz(m) =

where M is the number of samples in the period 7', which is also the
number of frequency components in the spectrum:

T _h_F

Tty UF  fy
We therefore also have TF = M and tofy = 1/M.
The DFT can be redefined as

X(n)=—— x(m)e MM — Z why

x(m) - X(?’L mn]27r/M Z wfmnX

where wy, 2 e 927/M /\/]].

We can easily verify that the time function and its spectrum are indeed
periodic: z(m + kM) = z(m) and X (n + kM) = X (n).
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The 6 function

The discrete and periodic time function and spectrum can be written

as, respectively
+o0o

zr(t) = > x(m)d(t —miy)

m=—00

Xe(f) = S X — )

n=—0oo

The ¢ function used above satisfies the following:

1.
i P
2.
+00
/_ 5(t)dt = 1
3.



Vector form of 1D-DFT

The above summation expression for DFT can also be written in more con-
venient form of matrix-vector multiplication:

O R
N T { (e ] |
X(M-1) | ' ' ' (M —1)
and
I T U
‘ — \/—M |: ) (ejQW/M)mn ‘
(M —1) ] ' ' X(M —1)

It is obvious that the complexity of 1D DFT takes is O(N?), which, as
we will see later, can be reduced to O(NlogaN) by Fast Fourier Transform
(FFT) algorithms.

These matrix-vector multiplications can be represented more concisely as:

X=W"'z
and
T=WX
where both X and T are M x 1 column (vertical) vectors:
[ X(0)
X2
XM -1)1,,.,
[ z(0)
_A :
Tr =
(M —-1)1,,.,

and W is an M x M matrix:

W{ Wynn ]
0 Ak
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where w,,, is an element in the mth row and nth column of matrix W defined
as

1 )
W 4 M(eﬂw/M)mn
whose complex conjugate is
1 )
w* 67]27T/M mn

Obviously W is symmetric (W, = Wnm)

wh=w
but W is not Hermitian:
W =wr £ W
W is a unitary matrix,
W*T — W* — Wfl
because its rows (or columns) are orthogonal:
M A : : J A :
(Wma Wm’) _ Z w:mwm’k _ 2(67]27T/M)mk(e]27r/M)m k_ — Z(GJZW/M)(m —m)k * i
k=1 M = M =
(* Why?)
The DFT pair can be rewritten as:

=<

=Ww*

S

T=WX



Fast Fourier Transform (FFT) Algorithm

The M-point DFT of time samples z(0),z(1),---,2(M — 1) is defined as
(ignoring the coefficient 1/+/M for now):

M—1 . M—1
X(n) = Z x(m)e_ﬂ”m"/M = Z xz(m)wl)
m=0 m=0

for
n=0,1,-,M—1

wyy is defined as wy 2 e 927/M and it is easy to show that wy, has the
following properties:

1. wkM =
2% — .k
2. wyy = wyy
M —

Let M = 2N, the above DFT can be written as

N-1
X(n) =Y z(2m)wiy" + Z 2(2m + 1)wimon

m=0

The first summation has all the even terms and the second all the odd ones.
Due to the 2nd property of wj,, the above can be rewritten as

N-1
X(n)=> "+ Z (2m + DHwi wyy
m=0
We define
ANl
even = 1‘
m=0
and
ANl
Xoga(n) = > z(2m + Nw

They are M/2-point DFTs. The original M-point DFT becomes
X(n) = Xeven(n) + Xoga(n)wyy (1)
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Here we let the index n cover only the first half of the original range of
the DFT, n =0,1,---,M/2 — 1= N — 1. The second half can be obtained
by replacing n in Eq. (1) by n+ N:

X(n+ N) = Xepen(n + N) 4+ Xoga(n + N)wiF™

Due to the first property of w,;, we have

N-1
Xeven(n + N) Z (2m) wN m(n+N) Z T = Xeven(n)
m=0 m=0

and similarly
Xodd(n + N) = Xodd(n)

Also, due to the 3rd property of w);, we have

n+N __ n N _ n
Wy = WonWon = —Wopn

Now the second half of the DFT becomes
X(n+4+ N) = Xepen(n) — Xoga(n)wly (2)

The M-point DFT can now be obtained from Eqs. (1), (2), once Xeyper(n)
and X,q4(n) are available. However, since Xeyen(n) and Xpgq(n) are M/2-
point DFTs, they can be obtained the same way. This process goes on
recursively until finally only 1-point DFTs are needed, which are just the
time samples themselves. Therefore, the operations of an M-point DF'T can
be symbolically represented by the following diagram. The complexity is
therefore reduced from O(M?) to O(MlogsM).



Fourier Transform 2 Real Functions with 1 DFT

First we recall the symmetry properties of the DFT. The DFT of z(m) =
x.(m) + jz;(m) is defined as

M-1

X(n) = x(m)e‘j%m"/M
m=0
M—1 . M—1 _
— Z xr(m)67]27rmn/M _|_] Z xi(m)efj%rmn/M
m=0 m=0
M—1 M—1
= z,(m)cos(2rmn/M) — j > x.(m)sin(2rmn/M)
m=0 m=0
M—1 M—1
+513° zi(m)cos(2mmn/M) — j Y x;(m)sin(2rmn/M)
m=0 m=0
M—1
= Y [z,(m)cos(2rmn/M) + z;(m)sin(2rmn/M)]
m=0

+j Z zi(m)cos(2mmn/M) — x.(m)sin(2rmn/M)]

where X, (n) and X;(n) are the real and imaginary part of the spectrum
respectively. If x(m) is real, i.e., z;(m) = 0, then we have

{ X, (=n) = X,(n)
XZ(—TL) = —Xl(n)

or

X(=n) = X;(=n) + jXi(=n) = X;(n) — jXi(n) = X*(n)

If z(m) is imaginary, i.e., x,(m) = 0, then we have

{ X, (=n) = =X,.(n)

or



Next we show how an arbitrary function f(z) can be decomposed into
the even and odd components f.(x) and f,(z):

{ fe(w) = (f(x) + f(=2))/2
fol) = (f(z) = f(=x))/2
and
fe(x) + folz) = f(x)
Now we are ready to show how to Fourier transform two real functions
x1(m) and z5(m) to get their spectra X;(n) and X3(n) by one DFT.

1. Define a complex function x(m) by the two real functions:
A .
z(m) = z1(m) + jza(m)
Notice here that we impose j on x2(m) to make it imaginary.

2. Find the DFT of z(m)
DFT[z(m)] = X(n) = X,.(n) + jXi(n)

3. Separate X (n) into X;(n) and Xy(n), the spectra of z1(m) and z(m),
using the symmetry properties discussed previously.

e Since x;(m) is real, the real part of its spectrum X;(n) is the even
component of X, (n) and the imaginary part of X;(n) is the odd
component of X;(n), i.e.,

X, (n)+ X,.(—n) . Xi(n) — X;(—n)

2 2

e Since jzy(m) is imaginary, the real part of its spectrum jX,(n) is
the odd component of X, (n) and the imaginary part of jX5(n) is
the even component of X;(n), i.e.,

Xo(n) = Xo(=n)  Xi(n) + Xi(=n)

7 Xa(n) = j[Xo (n)+jXou(n)] = 5 +J 5

Xl(n) = Xlr(n)+]X1,(n) =

Dividing both sides by j, we get
Xi(n) + Xi(=n) . X:(n) = X;(=n)

Xy(n) = Xop(n)+jXai(n) = 5 —J 5

Note that X (—n) = X(N — n) because X (n) is a periodic function.

10



Two-Dimensional Fourier Transform (2D-FT)

Similar to 1D-FT, 2D-FT can also have four different forms depending on
whether the 2D signal (usually spatial signal) f(z,y) is periodic and whether
it is discrete. Here we consider only two cases:

e 2D Fourier transform pair of a Non-periodic, continuous signal f(x,y)
is

F(u,v) = //oo f(x,y)e_ﬂ”(“‘””y)dx dy

f(x,y) :// F(u, v)e?? e+ dy, dy

where u and v are spatial frequencies in z and y directions, respectively,
and F'(u,v) is the 2D spectrum of f(z,y).

e 2D discrete Fourier transform pair of a finite (periodic) and discrete
signal z(m,n), (0<m<M—-1,0<n<N-1)is

1 N—-1M-1

> x(m,n)e’ﬂ”(mﬁu%)

n=0 m=0

—_

X (k1) =

-

1 N—1M-1

= X (k, )¢ (i +5)
x(m,n) \/m Z Z ( ) )6

=0 k=0

O0<mk<M-1, 0<n,Il<N-1)

where M and N are the numbers of samples in z and y directions,
respectively, and X (k,[) is the 2D discrete spectrum of x(m,n). Both
X(k,l) and x(m,n) can be considered as elements in two M by N
matrices [x] and [X], respectively.

Example 1

1 if (—2<ax<d —baoy<t
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F(u,v) = / / fla,y)e Tt dy dy
a/2

— —J27ux b/2 —j2mvy
= e dx e dy
—a/2 —b/2

sin(mua) sin(mwvb)

U ™

See Fig. 3.2 on page 85 of the text book.
Example 2

1 22 4+9y? < R?
0 else

f(x,y)Z{

It is more convenient to use polar coordinate system in both spatial and
frequency domains. Let

{ x = 1 cosb, y =1 sind

r= V@ EP, 0= tan~(y/)

dx dy = rdr df
and
{ U = pcoso, v = psing
p=VuZ+v2, ¢=tan"'(v/u)
du dv = pdp de
we have:

F(u,v) = //oo Fx,y)e 72w tvn) d. dy

— 00

R 27 ] i ]
[/ 6_]27r7«p(0050608¢+5m05m¢)dg]TdT
0

R 2 .
[/ 67]27rrpcos(97¢)d9],rd,r
0

[l
S— — >—

R 27 i
[/ 6—327rrpcosﬂd9]rdr
0
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To continue, we need to use Oth order Bessel function Jy(x) defined as

1 2T i
Tola) & o [ eretag

T oor
which is related to the 1st order Bessel function .J;(z) by

d
%(x Ji(x)) = x Jo(x)

i.e.

/ z Jo(x)dr = x J;(x)
0
Substituting 27rp for x, we have
R
F(u,v) = F(p,¢) :/ 27 Jo (2mrp)dr
0
1
= —-R J1 (27TpR)
p
We see that the spectrum F'(u,v) = F(p,$) is independent of angle ¢

and therefore is central symmetric. See the top example in Fig. 3.3 on page
86 of the text book.
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Matrix Form of 2D DFT

Reconsider the 2D DFT:

X(k,1) = (S z(m, n)e 72w |92

where .
YAN ]_ ~ . mk
X'(k,n) = — x(m,n)e 7*"
(ko) & 2 3% a(m.
As the summation is with respect to the row index m and the column index n
can be treated as a fixed parameter, this expression can be considered as the
Fourier transform of the nth column of [z], which can be written in column
vector (vertical) form as:

X', =Wz,

for all columns n=0,---, N — 1.
Putting all these N columns together, we can write

707 e 77N—1:| — W* [507 e 7EN—1]
or more concisely
(X' =W [x]

where W* is a N by N Fourier transform matrix.

We then notice that the summation expression for X (k, 1) is with respec-
tive to the column index n and the row index number k£ can be treated as
a fixed parameter, the expression is the Fourier transform of the kth row,
which can be written in row vector (horizontal) form as

X, =WxX) =X, W, (k=0,---,M—1)
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Putting all these M rows together, we can write

T T
X, X',
— wW*
T T
X X'

(W is symmetric: W*T' = W*), or more concisely
[X] =[x W
Substituting [X'] by W* [z], we have
(X =W o] W*

This transform expression indicates that 2D DFT can be implemented
by transforming all the rows of [z] and then transforming all the columns
of the resulting matrix. The order of the row and column transforms is not
important.

Similarly, the inverse 2D DFT can be written as

[z] =W [X] W
Again note that W is a symmetric Unitary matrix:
Wfl — W*T — W*

It is obvious that the complexity of 2D DFT is O(M?) (assuming M = N),
which can be reduced to O(M?log, M) if FFT is used.
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