
Fourier Transform | E180 Handout

Four di�erent forms of the Fourier transform

� Non-periodic, continuous time function x(t), continuous, non-
periodic spectrum X(f)

This is the most general form of Fourier transform.

X(f) =
Z +1

�1

x(t)e�j2�ftdt

x(t) =
Z +1

�1

X(f)ej2�ftdf

The �rst one is the forward transform, and the second one is the inverse
transform.

� Non-periodic, discrete time function x(n), continuous, peri-

odic spectrum XF (f)

The discrete time function can be considered as a sequence of samples
of continuous time function. The time interval between two consecutive
samples x(m) and x(m+1) is t0 = 1=F , where F is the sampling rate,
which is also the period of the spectrum in the frequency domain.

The discrete time function can be written as

x(t) =
+1X

m=�1

x(m)�(t�mt0)

and its transform is:

XF (f) =
+1X

m=�1

x(m)e�j2�fmt0

x(m) =
1

F

Z +F=2

�F=2
XF (f)e

j2�fmt0df

(m = 0;�1;�2; � � �)
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We can verify that the spectrum is indeed periodic:

XF (f + kF ) = XF (f + k=t0) =
+1X

m=�1

x(m)e�j2�(f+k=t0)mt0 = XF (f)

(for k = �1;�2; � � �) because e�j2�mk = 1.

� Periodic, continuous time function xT (t), discrete, non-periodic
spectrum X(n)

This is the Fourier series expansion of periodic functions. The time
period is T , and the interval between two consecutive frequency com-
ponents is f0 = 1=T , and its transform is:

X(n) =
1

T

Z +T=2

�T=2
xT (t)e

�j2�nf0tdt

xT (t) =
+1X

n=�1

X(n)ej2�nf0t

n = 0;�1;�2; � � �

The discrete spectrum can also be represented as:

X(f) =
+1X

n=��1

X(n)�(f � nf0)

We can verify that the time function is indeed periodic:

xT (t+ kT ) = xT (t+ k=f0) =
+1X

n=�1

X(n)e�j2�nf0(t+k=f0) = xT (t)

(for k = �1;�2; � � �)
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� Periodic, discrete time function x(m), discrete, periodic spec-

trum X(n)

This is the discrete Fourier transform (DFT).

X(n) =
1

T

M�1X
m=0

x(m)e�j2�nmf0t0

n = 0; 1; � � � ;M � 1

x(m) =
1

F

M�1X
n=0

X(n)ej2�nmf0t0

m = 0; 1; � � � ;M � 1

where M is the number of samples in the period T , which is also the
number of frequency components in the spectrum:

M =
T

t0
=

1=f0
1=F

=
F

f0

We therefore also have TF = M and t0f0 = 1=M .

The DFT can be rede�ned as

X(n) =
1p
M

M�1X
m=0

x(m)e�mn j2�=M =
M�1X
m=0

wmn
M x(m)

n = 0; 1; � � � ;M � 1

x(m) =
1p
M

M�1X
n=0

X(n)emn j2�=M =
M�1X
n=0

w�mn
M X(n)

m = 0; 1; � � � ;M � 1

where wM
4
= e�j2�=M=

p
M .

We can easily verify that the time function and its spectrum are indeed
periodic: x(m + kM) = x(m) and X(n+ kM) = X(n).
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The � function

The discrete and periodic time function and spectrum can be written
as, respectively

xT (t) =
+1X

m=�1

x(m)�(t�mt0)

XF (f) =
+1X

n=�1

X(n)�(f � nf0)

The � function used above satis�es the following:

1.

�(t� �) =

(
0 t 6= �
1 t = �

2. Z +1

�1

�(t)dt = 1

3. Z +1

�1

x(t)�(t� �)dt = x(�)
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Vector form of 1D-DFT

The above summation expression for DFT can also be written in more con-
venient form of matrix-vector multiplication:2

6664
X(0)
:
:

X(M � 1)

3
7775 =

1p
M

2
64
: : :
: (e�j2�=M)mn :
: : :

3
75
2
6664

x(0)
:
:

x(M � 1)

3
7775

and 2
6664

x(0)
:
:

x(M � 1)

3
7775 =

1p
M

2
64
: : :
: (ej2�=M)mn :
: : :

3
75
2
6664

X(0)
:
:

X(M � 1)

3
7775

It is obvious that the complexity of 1D DFT takes is O(N2), which, as
we will see later, can be reduced to O(Nlog2N) by Fast Fourier Transform
(FFT) algorithms.

These matrix-vector multiplications can be represented more concisely as:

X = W�1x

and
x = WX

where both X and x are M � 1 column (vertical) vectors:

X
4
=

2
6664

X(0)
:
:

X(M � 1)

3
7775
M�1

x
4
=

2
6664

x(0)
:
:

x(M � 1)

3
7775
M�1

and W is an M �M matrix:

W =

2
64
: : :
: wmn :
: : :

3
75
M�M
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where wmn is an element in the mth row and nth column of matrixW de�ned
as

wmn
4
=

1p
M

(ej2�=M)mn

whose complex conjugate is

w�mn =
1p
M

(e�j2�=M)mn

Obviously W is symmetric (wmn = wnm)

W T = W

but W is not Hermitian:
W �T = W � 6= W

W is a unitary matrix,

W �T = W � = W�1

because its rows (or columns) are orthogonal:

(Wm;Wm0) =
MX
k=1

w�mkwm0k =
1

M

MX
k=1

(e�j2�=M)mk(ej2�=M)m
0k =

1

M

MX
k=1

(ej2�=M)(m
0�m)k �

= �m0m

(* Why?)
The DFT pair can be rewritten as:

X = W �x

x = WX
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Fast Fourier Transform (FFT) Algorithm

The M-point DFT of time samples x(0); x(1); � � � ; x(M � 1) is de�ned as
(ignoring the coe�cient 1=

p
M for now):

X(n) =
M�1X
m=0

x(m)e�j2�mn=M =
M�1X
m=0

x(m)wmn
M

for
n = 0; 1; � � � ;M � 1

wM is de�ned as wM
4
= e�j2�=M and it is easy to show that wM has the

following properties:

1. wkM
M � 1

2. w2k
2M � wk

M

3. wM
2M � �1

Let M = 2N , the above DFT can be written as

X(n) =
N�1X
m=0

x(2m)w2mn
2N +

N�1X
m=0

x(2m+ 1)w
(2m+1)n
2N

The �rst summation has all the even terms and the second all the odd ones.
Due to the 2nd property of wM , the above can be rewritten as

X(n) =
N�1X
m=0

x(2m)wmn
N +

N�1X
m=0

x(2m + 1)wmn
N wn

2N

We de�ne

Xeven(n)
4
=

N�1X
m=0

x(2m)wmn
N

and

Xodd(n)
4
=

N�1X
m=0

x(2m + 1)wmn
N

They are M=2-point DFTs. The original M-point DFT becomes

X(n) = Xeven(n) +Xodd(n)w
n
2N (1)
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Here we let the index n cover only the �rst half of the original range of
the DFT, n = 0; 1; � � � ;M=2� 1 = N � 1. The second half can be obtained
by replacing n in Eq. (1) by n +N :

X(n+N) = Xeven(n+N) +Xodd(n+N)wn+N
2N

Due to the �rst property of wM , we have

Xeven(n+N) =
N�1X
m=0

x(2m)w
m(n+N)
N =

N�1X
m=0

x(2m)wmn
N = Xeven(n)

and similarly
Xodd(n+N) = Xodd(n)

Also, due to the 3rd property of wM , we have

wn+N
2N = wn

2Nw
N
2N = �wn

2N

Now the second half of the DFT becomes

X(n+N) = Xeven(n)�Xodd(n)w
n
2N (2)

The M-point DFT can now be obtained from Eqs. (1), (2), once Xever(n)
and Xodd(n) are available. However, since Xeven(n) and Xodd(n) are M/2-
point DFTs, they can be obtained the same way. This process goes on
recursively until �nally only 1-point DFTs are needed, which are just the
time samples themselves. Therefore, the operations of an M-point DFT can
be symbolically represented by the following diagram. The complexity is
therefore reduced from O(M2) to O(Mlog2M).
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Fourier Transform 2 Real Functions with 1 DFT

First we recall the symmetry properties of the DFT. The DFT of x(m) =
xr(m) + jxi(m) is de�ned as

X(n) =
M�1X
m=0

x(m)e�j2�mn=M

=
M�1X
m=0

xr(m)e�j2�mn=M + j
M�1X
m=0

xi(m)e�j2�mn=M

=
M�1X
m=0

xr(m)cos(2�mn=M)� j
M�1X
m=0

xr(m)sin(2�mn=M)

+j[
M�1X
m=0

xi(m)cos(2�mn=M)� j
M�1X
m=0

xi(m)sin(2�mn=M)

=
M�1X
m=0

[xr(m)cos(2�mn=M) + xi(m)sin(2�mn=M)]

+j
M�1X
m=0

[xi(m)cos(2�mn=M)� xr(m)sin(2�mn=M)]

= Xr(n) + jXi(n)

where Xr(n) and Xi(n) are the real and imaginary part of the spectrum
respectively. If x(m) is real, i.e., xi(m) � 0, then we have

(
Xr(�n) = Xr(n)
Xi(�n) = �Xi(n)

or
X(�n) = Xr(�n) + jXi(�n) = Xr(n)� jXi(n) = X�(n)

If x(m) is imaginary, i.e., xr(m) � 0, then we have

(
Xr(�n) = �Xr(n)
Xi(�n) = Xi(n)

or
X(�n) = Xr(�n) + jXi(�n) = �Xr(n) + jXi(n) = �X�(n)
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Next we show how an arbitrary function f(x) can be decomposed into
the even and odd components fe(x) and fo(x):(

fe(x) = (f(x) + f(�x))=2
fo(x) = (f(x)� f(�x))=2

and
fe(x) + fo(x) = f(x)

Now we are ready to show how to Fourier transform two real functions
x1(m) and x2(m) to get their spectra X1(n) and X2(n) by one DFT.

1. De�ne a complex function x(m) by the two real functions:

x(m)
4
= x1(m) + jx2(m)

Notice here that we impose j on x2(m) to make it imaginary.

2. Find the DFT of x(m)

DFT [x(m)] = X(n) = Xr(n) + jXi(n)

3. Separate X(n) into X1(n) and X2(n), the spectra of x1(m) and x2(m),
using the symmetry properties discussed previously.

� Since x1(m) is real, the real part of its spectrum X1(n) is the even
component of Xr(n) and the imaginary part of X1(n) is the odd
component of Xi(n), i.e.,

X1(n) = X1r(n)+jX1i(n) =
Xr(n) +Xr(�n)

2
+j

Xi(n)�Xi(�n)
2

� Since jx2(m) is imaginary, the real part of its spectrum jX2(n) is
the odd component of Xr(n) and the imaginary part of jX2(n) is
the even component of Xi(n), i.e.,

jX2(n) = j[X2r(n)+jX2i(n)] =
Xr(n)�Xr(�n)

2
+j

Xi(n) +Xi(�n)
2

Dividing both sides by j, we get

X2(n) = X2r(n)+jX2i(n) =
Xi(n) +Xi(�n)

2
�jXr(n)�Xr(�n)

2

Note that X(�n) = X(N � n) because X(n) is a periodic function.

10



Two-Dimensional Fourier Transform (2D-FT)

Similar to 1D-FT, 2D-FT can also have four di�erent forms depending on
whether the 2D signal (usually spatial signal) f(x; y) is periodic and whether
it is discrete. Here we consider only two cases:

� 2D Fourier transform pair of a Non-periodic, continuous signal f(x; y)
is

F (u; v) =
Z Z

1

�1

f(x; y)e�j2�(ux+vy)dx dy

f(x; y) =
Z Z

1

�1

F (u; v)ej2�(ux+vy)du dv

where u and v are spatial frequencies in x and y directions, respectively,
and F (u; v) is the 2D spectrum of f(x; y).

� 2D discrete Fourier transform pair of a �nite (periodic) and discrete
signal x(m;n); (0 � m �M � 1; 0 � n � N � 1) is

X(k; l) =
1p
MN

N�1X
n=0

M�1X
m=0

x(m;n)e�j2�(
mk

M
+nl

N
)

x(m;n) =
1p
MN

N�1X
l=0

M�1X
k=0

X(k; l)ej2�(
mk

M
+nl

N
)

(0 � m; k � M � 1; 0 � n; l � N � 1)

where M and N are the numbers of samples in x and y directions,
respectively, and X(k; l) is the 2D discrete spectrum of x(m;n). Both
X(k; l) and x(m;n) can be considered as elements in two M by N
matrices [x] and [X], respectively.

Example 1

f(x; y) =

(
1 if (�a

2
< x < a

2
; � b

2
< y < b

2
)

0 else
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F (u; v) =
Z Z

1

�1

f(x; y)e�j2�(ux+vy)dx dy

=
Z a=2

�a=2
e�j2�uxdx

Z b=2

�b=2
e�j2�vydy

=
sin(�ua)

�u

sin(�vb)

�v

See Fig. 3.2 on page 85 of the text book.
Example 2

f(x; y) =

(
1 x2 + y2 < R2

0 else

It is more convenient to use polar coordinate system in both spatial and
frequency domains. Let

(
x = r cos�; y = r sin�
r =

p
x2 + y2; � = tan�1(y=x)

dx dy = rdr d�

and (
u = � cos�; v = � sin�

� =
p
u2 + v2; � = tan�1(v=u)

du dv = �d� d�

we have:

F (u; v) =
Z Z

1

�1

f(x; y)e�j2�(ux+vy)dx dy

=
Z R

0
[
Z 2�

0
e�j2�r�(cos�cos�+sin�sin�)d�]rdr

=
Z R

0
[
Z 2�

0
e�j2�r�cos(���)d�]rdr

=
Z R

0
[
Z 2�

0
e�j2�r�cos�d�]rdr
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To continue, we need to use 0th order Bessel function J0(x) de�ned as

J0(x)
4
=

1

2�

Z 2�

0
e�jx cos�d�

which is related to the 1st order Bessel function J1(x) by

d

dx
(x J1(x)) = x J0(x)

i.e. Z x

0
x J0(x)dx = x J1(x)

Substituting 2�r� for x, we have

F (u; v) = F (�; �) =
Z R

0
2�r J0(2�r�)dr

=
1

�
RJ1(2��R)

We see that the spectrum F (u; v) = F (�; �) is independent of angle �
and therefore is central symmetric. See the top example in Fig. 3.3 on page
86 of the text book.
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Matrix Form of 2D DFT

Reconsider the 2D DFT:

X(k; l) =
1p
MN

N�1X
n=0

[
M�1X
m=0

x(m;n)e�j2�
mk

M ]e�j2�
nl

N

=
1p
N

N�1X
n=0

X 0(k; n)e�j2�
nl

N

(0 � m; k �M � 1; 0 � n; l � N � 1)

where

X 0(k; n)
4
=

1p
M

M�1X
m=0

x(m;n)e�j2�
mk

M

As the summation is with respect to the row index m and the column index n
can be treated as a �xed parameter, this expression can be considered as the
Fourier transform of the nth column of [x], which can be written in column
vector (vertical) form as:

X 0
n = W �xn

for all columns n = 0; � � � ; N � 1.
Putting all these N columns together, we can writeh

X 0
0; � � � ; X 0

N�1

i
= W � [x0; � � � ; xN�1]

or more concisely
[X 0] = W � [x]

where W � is a N by N Fourier transform matrix.
We then notice that the summation expression for X(k; l) is with respec-

tive to the column index n and the row index number k can be treated as
a �xed parameter, the expression is the Fourier transform of the kth row,
which can be written in row vector (horizontal) form as

X
T
k = (W �X 0

k)
T = X 0

T
kW

�T ; (k = 0; � � � ;M � 1)
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Putting all these M rows together, we can write

2
66664

X
T
0

:
:

X
T
M�1

3
77775 =

2
66664

X 0
T
0

:
:

X 0
T
M�1

3
77775W �

(W is symmetric: W �T = W �), or more concisely

[X] = [X 0]W �

Substituting [X 0] by W � [x], we have

[X] = W � [x] W �

This transform expression indicates that 2D DFT can be implemented
by transforming all the rows of [x] and then transforming all the columns
of the resulting matrix. The order of the row and column transforms is not
important.

Similarly, the inverse 2D DFT can be written as

[x] = W [X] W

Again note that W is a symmetric Unitary matrix:

W�1 = W �T = W �

It is obvious that the complexity of 2D DFT isO(M3) (assumingM = N),
which can be reduced to O(M2log2M) if FFT is used.
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