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Feature Selection

The main purpose of feature selection is to reduce the computational cost
by using only m (m < n) features for recognition/classi�cation purposes.
These m features can be either directly chosen from the original n features, or
generated as some linear combinations of the original features. To prevent the
result from degrading, the features selected should keep as much separability
information as possible.

Choose m features from n original ones

There are

Cm
n =

n!

(n�m)!m!

ways to choose m features from n ones. We just need to �nd the m best
ones to span an m-dimensional feature space in which any of the following
separability criteria J is maximized.

�

J1 =
X
i6=j

PiPjDB(!i; !j)

where Pi and Pj are the a priori probabilities for class !i and !j,
respectively.

�

J2 = tr (S�1W SB) = tr (SB=W )

where, for convenience, SB=W is de�ned as

SB=W
4
= S�1W SB
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Generate m features from n original ones

If the m features chosen optimally above do not produce satisfactory separa-
bility, we can try to generate some m new features as the linear combinations
of the n old ones by a linear transform:

Y = ATX

where A is a n�m matrix composed of m n-dimensional column vectors Ai:

A = [A1; � � � ; Am]

and Y is an m-dimensional vector whose m elements
fyi = AT

i X; i = 1; � � � ; mg are the new features.
First we recall that after a linear transform Y = ATX, the mean vectors,

the covariance matrices and the various scatter matrices become

M
(Y )
i = ATM

(X)
i (i = 1; � � � ; c)

�
(Y )
i = AT�

(X)
i A (i = 1; � � � ; c)

and
S
(Y )
W = ATS

(X)
W A

S
(Y )
B = ATS

(X)
B A

S
(Y )
B=W = ATS

(X)
B=WA

We need to �nd the optimal matrix A which maximizes J(A) in the m-
dimensional feature space spanned by the new features Y = ATX.
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Optimal A for maximizing tr(SB)

First we realize that the separability criterion tr (SB) in space Y = ATX

can be expressed as:

J (Y )(A) = tr (S
(Y )
B ) = tr (AT S

(X)
B A) = tr

2
64
AT

1

� � �
AT
n

3
75S(X)

B [A1; � � � ; An]

= tr

2
64 AT

1

� � �
AT
n

3
75 [S(X)

B A1; � � � ; S
(X)
B An] =

nX
i=1

(AT
i S

(X)
B Ai)

To �nd A which maximizes tr(S
(Y )
B ) in space Y = ATX, we solve the

following optimization problem:(
J(A)

4
= tr(SB)! max

subject to AT
j Aj = 1 (j = 0; � � � ; n� 1)

Here we have further assumed that A is an orthogonal matrix (a justi�able
constraint as orthogonal matrices conserve energy/information in the signal
vector). This constrained optimization problem can be solved by Lagrange
multiplier method:

@

@Ai
[J(A)�

m�1X
j=0

�j(A
T
j Aj � 1)] = 0

=
@

@Ai

[
nX
j=1

(AT
j S

(X)
B Aj � �jA

T
j Aj + �j)]

=
@

@Ai
[AT

i S
(X)
B Ai � �iA

T
i Ai]

= 2S
(X)
B Ai � 2�iAi = 0

We see that the column vectors of A must be the orthogonal eigenvectors of
the symmetric matrix SB:

SBAi = �iAi (i = 1; � � � ; n)

i.e., the transform matrix must be

A = [A1; � � � ; An] = � = [�1; � � � ; �n]
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Thus we have proved that the optimal feature selection transform is the
principal component transform (KLT) which, as we have shown before, tends
to compact most of the energy/information (representing separability here)
into a small number of components. Therefore the m new features can be
obtained by

Y = AT
m�nX =

2
64
�1
� � �
�m

3
75
m�n

X

and

J(A) = J(�) =
mX
i=1

�Ti SB�i =
mX
i=1

�i

Obviously, to maximize J(A), we just need to choose the m eigenvectors �i's
corresponding to the m largest eigenvalues of SB:

�1 � �2 � � � � � �m � � � � � �n
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Optimal A for maximizing tr(SB=W )

To �nd the transform matrix A which maximizes the criterion

J(A) = tr [S
(Y )
B=W ]

(instead of tr(SB) as shown above) in the new space Y = ATX, we have
to use a di�erent approach from what was used previously. This is because
SB=W = S�1W SB is not necessarily symmetric, therefore the transform matrix
A can no longer be assumed to be orthogonal.

We �rst simultaneously diagonalize the two scatter matrices SW and SB
in the originalX space. SW can be diagonalized by its orthogonal eigenvector
matrix �

�TSW� = �

where � = diag(�1; � � � ; �n) is the eigenvalue matrix (all �i's are real and
positive), or

��1=2�TSW���1=2 = I

Applying the same transform to SB gives

��1=2�TSB��
�1=2 = K

where K is symmetric and can be diagonalized by its orthogonal eigenvector
matrix 	:

	TK	 = 	T��1=2�TSW���1=2	 = �

where � = diag(�1; � � � ; �n) is the eigenvalue matrix of K (all �0is are real and
positive).

We now de�ne the transform matrix A as

A
4
= ���1=2	

(A is not orthogonal as A�1 = 	�1�1=2��1 = 	T�1=2�T 6= AT ) and apply it
to X and get

Y = ATX

In space Y , both the within-class and between-class scatter matrices are
diagonalized: (

S
(Y )
W = ATSWA = I

S
(Y )
B = ATSBA = �
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and the separability criterion J becomes

J(A) = tr [S
(Y )
B=W ] = tr [(S

(Y )
W )�1S

(Y )
B ] = tr � =

mX
i=1

�i

In the original X space, SW and SB can now expressed as:

(
SW = (AT )�1A�1

SB = (AT )�1�A�1

and
SB=W = S�1W SB = AAT (AT )�1�A�1 = A�A�1

i.e.,
SB=WA = A�

We see that � and A are just the eigenvalue and eigenvector matrices of
SB=W = S�1W SB. If only m featues are to be used in space Y = ATX, the
criterion J(A) can be maximized by a transform matrix A composed of the
m eigenvectors corresponding to the m largest eigenvalues of SB=W , i.e.:

An�m = ���1=2[ 1; � � � ;  m]

where � and � are respectively the eigenvector and eigenvalue matrices of
SW , and  i is the eigenvector corresponding to the ith largest eigenvalue �i
of ��1=2�TSB��

�1=2.
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Suboptimal feature selection

When the number of features n is large, solving the eigenvalue problem of
the n�n matrix S

(X)
B=W maybe very time consuming. To compromise, we can

use other orthogonal transform such as DFT or WHT instead of KLT for the
transform Y = ATX.

Obviously DFT and WHT are not dependent on the feature selection
criterion S

(X)
B=W . The reason why they can be used to replace KLT is that

orthogonal transforms in general tend to decorrelate signals so that the en-
ergy/information (separability information here) is concentrated in a small
number of components while others containing little. (However, this energy
compaction is suboptimal compared to KLT.) We should choose the m rows

of the n by n DFT or WHT matrix corresponding to them largest AT
i S

(X)
B=WAi

values to achieve best feature selection e�ect.

Information conservation in feature selection

The percentage of separability information (energy) contained in the m-D
space after feature selection can be found as

r =

Pm
i=1A

T
i SB=WAiPn

i=1A
T
i SB=WAi

=

Pm
i=1A

T
i SB=WAi

tr ASB=WAT

=

Pm
i=1A

T
i SB=WAi

tr SB=W
=

Pm
i=1A

T
i SB=WAiPn
i=1 �i

where �i's are the eigenvalues of SB=W . When KLT is used, the above can
be further written as

r =

Pm
i=1 �

T
i SB=W�iPn
i=1 �i

=

Pm
i=1 �iPn
i=1 �i

as here Ai = �i (i = 1; � � � ; m) are the eigenvectors of SB=W (corresponding
to the m largest eigenvalues �i (i = 1; � � � ; m)).
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