
Image Processing and Related Fields 

• Signal processing 
• Image processing 
• Computer/Machine/Robot vision 
• Biological vision 
• Artificial intelligence 
• Machine learning 
• Pattern recognition 

 
Computer vision is in parallel to the study of biological vision, as a major effort in the brain 
study. In this class of Image Processing and Analysis, we will cover some basic concepts and 
algorithms in image processing and pattern classification. The specific topics to be discussed 
in the course are some subset of these topics. 

 

Applications of Image Processing 

Visual information is the most important type of information perceived, processed and 
interpreted by the human brain. One third of the cortical area of the human brain is dedicated 
to visual information processing. 

Digital image processing, as a computer-based technology, carries out automatic processing, 
manipulation and interpretation of such visual information, and it plays an increasingly 
important role in many aspects of our daily life, as well as in a wide variety of disciplines and 
fields in science and technology, with applications such as television, photography, robotics, 
remote sensing, medical diagnosis and industrial inspection. 

• Computerized photography (e.g., Photoshop) 
• Space image processing (e.g., Hubble space telescope images, interplanetary probe 

images) 
• Medical/Biological image processing (e.g., interpretation of X-ray images, blood/cellular 

microscope images) 
• Automatic character recognition (zip code, license plate recognition) 
• Finger print/face/iris recognition 
• Remote sensing: aerial and satellite image interpretations 
• Reconnaissance 
• Industrial applications (e.g., product inspection/sorting) 

 



Different Types of Tasks 

• Image acquisition, storage, transmission: digitization/quantization, compression, 
encoding/decoding  

• Image Enhancement and Restoration: for improvement of pictorial information for 
human interpretation, both input and output are in the image form (e.g., the first few 
application examples above).  

• Image Understanding and Image Recognition: information extraction from images for 
further computer analysis (e.g., the rest of the application examples above). Input is in 
image form, but output is some none image representation of the image content, such 
as description, interpretation, classification, etc.  

• Pre-processing stage of computer vision of an artificial intelligent system (robots, 
autonomous vehicles, etc.).  
 

Fundamental Steps in Digital Image Processing 

 

 
These steps roughly correspond to the visual information processing in the brain. 
 



Visual Perception of Luminance 

• Spectral energy distribution of light source:    

     
• Luminance (intensity) Light energy reflected by an object:    

    
where  is the reflectivity of the object.  represents the objective physics of the 
lighting of the object.   
 

• Image signals: The light reflected by a 3D object is projected through the lens of the 

visual system (camera, eye) to become a 2D signal , which is then detected by 

the sensors/receptors of the visual system:         Here 
 is the sensitivity (``luminous efficiency'') of the film, the CCD sensors, or the 

photoreceptors (rods and cones) in the retina. The function of human eye is a bell-
shaped function of frequency.   
 

• Apparent brightness (brightness): Brightness is the perception or sensation caused by 
the input light signal. It is a subjective and qualitative attribute of the object being 
observed, and it depends on the surroundings of an object as well as the luminance. 
 Two objects with different surroundings could have the same luminance but different 
brightnesses. For example, the screen of a TV set may look gray, but when it is turned 
on, a black object in the scene may seem darker due to the comparison with the 
background, e.g., some white objects in the scene.  More examples: White'sillusion 
and Wertheimer-Benary illusion. 

 
 

• Contrast: Assuming the luminance of an object is f and the luminance difference between 
the object and its surrounding is df, then according to Weber's law, the perceived 
contrast dp (luminance difference) between the object and its surrounding is dp = df/f 
= d(ln f) which indicates that at higher level f, larger df is needed to perceive the same 
contrast at lower level f with a smaller df. In other words, equal increment in ln(f), 
instead of in f, is perceived to be equally different (equal contrast).  Integrating both 

sides, we get the perceived luminance         The constant of 
integration C can be obtained by assuming the perceived luminance is zero p = 0:   C 
= -ln f0, where f0 is the threshold luminance not perceivable. Now we have  p = 
ln(f/f0). The relationship between stimulus f and perception p is logarithmic.  Weber's 
law describes a general phenomenon in human perception. Another example is the 
difference between different sound frequencies. The difference between C4 (middle C, 
261.63 Hz) and C5 (523.25 Hz) is an octave, perceived the same as the difference 
between C5 and C6 (1046.5 Hz), although the frequency differences between the two 
pairs are quite different (261.63 Hz. vs. 523.25 Hz).   



Color Representation  
 
 What Determines the Color?  
 Along the visible wavelength (350 nm - 780 nm), there are only about 128 fully 

saturated colors that can be distinguished.  It is the energy spectral distribution 

 of the signal that determines the colors we perceive.   
 Three Components of Color  
 Hue: the dominant wavelength, the redness of red, greenness of green, etc. 
 Saturation: how pure the color is, or how much white is contained in the 

color. For example, red and royal blue are more saturated than pink 
and sky blue, respectively. 

 Luminance: the amount or intensity of light.  
  
 Tristimulus Theory  
 There exist 3 types of cells (cones) in human retina of different response functions 

(luminous efficiency functions): . They overlap with each 
other and peak in the yellow-green, green and blue regions, respectively.  The 
responses of these cells to a signal of intensity  (a ``color'') are therefore    

     
 The perceived color is determined by the combination of these 3 responses 

. In other words, if two colors  and  produce the same 
responses: 

          
 then they are perceived as the same color.  
  
 Color Models  
 There exist many different color models (all composed of three independent 

variables), for example:   
 RGB model: using Red, Green, and Blue as three primaries to represent a 

color.  
 HSV model: using Hue, Saturation, and Value (intensity) to represent a 

color  
 XYZ model (International Commission on Illumination, CIE)  
  
 Color Matching  
 It is possible for different colors, energy distributions, to produce exactly the same 

visual perception in the human visual system. These colors are said to be 

matched and are called metamers. Two matching colors  and  can be 

represented by        Note that in 
general matching colors do not necessarily have identical energy distributions, 



       
  
 Three-Color Theory  
 
 Any color can be reproduced by mixing an appropriate set of three primary colors 

(e.g., CIE X, Y, Z, or red, green, and blue, not unique) with energy 

distributions .   
  
 Matching Colors with Primaries  

 Suppose in order to match a given color  the three primaries need to be mixed 

in proportions of :    

        

 For the mixed color  to be perceived the same as the given color , the 

responses of the three types of cone cells to  should be the same as those 

to :   

        

 The cone cells' responses to  are    

     

 and their responses to the matching color  are  

      
   

   
    

   

    where  is defined as the response of ith cells to the kth primary:   

    which can be 

found given the cone cells' sensitivities  and the three primary colors . 

For  to be perceived the same as , we require    

     

 These three equations are called the color matching equations. As both  and the 

right-hand side of the equations (available from the given  and ) are 



known, the 3 coefficients   can be obtained by solving the 3 color 
matching equations, and the matching color is produced by mixing the three 

primaries:        
 
CIE XYZ Primaries  
The Commission Internationale de l'Eclairage (CIE) defined three standard primaries 
called X, Y, and Z. Any color  can be matched using these primaries with 
positive weights X(C), Y(C), and Z(C).  The chromaticity values of a color is defined 
by its weights for the three primaries normalized by the total energy X+Y+Z:   

        
so that x+y+z=1. Chromaticity values depend on the hue and saturation of the color, 
but are independent of the intensity.  All visible colors are represented by the points 
inside an enclosed area in the X+Y+Z=1 plane. And the chromaticity diagram is the 
projection of this enclosed area on (X,Y) plane.   

 
 
Image Digitization 

A two-dimensional scene can be represented by a 2D function f(x,y) of light intensity at the 
spatial location (x,y). However, in order for the continuous scene to be represented and 
processed digitally in a computer, it needs to be digitized. Specifically, the digitization 
includes the quantization of the intensity function value and the sampling of the two spatial 
dimensions. Correspondingly, the digital processing of the image can be classified into 
intensity (gray level) operations applied to the pixel values and geometric operations in the 
two spatial dimensions. 
 
Quantization:  

The continuous range of light intensity  received by the digital image 
acquisition system need be quantized to  gray levels (e.g., ). The 
numbers of gray levels of the following eight images are respectively 256, 128, 64, 32, 
16, 8, 4, and 2, respectively. 



 
• Uniform distribution  

Define L+1 boundaries         

where . And define the L discrete gray levels to represent the L intervals:   

     

Then the quantization can be defined as a function    
    

   
 

• Mean square error optimization  
Define mean square error of the quantization process as    

     

where  is distribution of input intensify . The optimal quantization in terms of 



 and  can be found by minimizing , by solving 

       

 This method requires  to be known. The previous quantization is optimal when 

 is a uniform distribution. When  is not uniform, more gray levels will be 
assigned to the gray scale regions corresponding to higher .  

 
• Contrast equalization  

The perceived contrast is a function of the intensity. Specifically, we perceive the 
same contrast between the object and its surrounding if    

    where f is the intensity and  is the 
intensity difference, the absolute contrast. For example, 

       

i.e., a high contrast of  at a high absolute intensity  f = 100 is 

perceived the same as a much lower contrast of  at a low absolute 
intensity f = 10. In other words,, we are less sensitive to contrast when the intensity f 
is high. As another example, consider the perceived brightness of a 3-way light bulb 
with 50, 100 and 150 Watts (with the assumption that the brightness is proportional to 
the power consumption). The perceived contrast between 50 and 100 is higher than 

that between 100 and 150 as . Consequently, the 
perceived contrast can be defined as a logarithmic function of the intensity:   

     
As shown in the figure, to perceive the same contrast, larger intensity difference is 
needed for higher intensity regions than lower ones.  
 

 
   
To most efficiently use the limited number of gray levels available, we can allocate 
more gray levels in the low intensity region where our eye is more sensitive to 



contrast) than in high intensity region.   
 

Gamma correction  
In the image acquisition process, nonlinear mapping may occur in various stages. For 
example, in the camera system, the in-coming light intensity may be nonlinearly 
mapped to the film or digital recording sensors, in the cathode ray tube (CRT), the 
applied voltage may be nonlinearly mapped to the brightness of the CRT display, and 
in the biological visual system, the in-coming light intensity is nonlinearly perceived 
by retina and the visual cortex of the brain. To compensate for all such nonlinear 

mappings, the following power function that relates the input  to the output  can 

be considered:        where the ranges of both the input and output are 

normalized so that . Here  is a constant scaling factor, and  is a 

parameter that characterizes the nonlinearity. Obviously when ,  is linearly 
related to . Otherwise, we have a nonlinear mapping. As an example, the nonlinear 

CRT mapping modeled by  can be corrected by another nonlinear mapping 

, as shown below:  
 

 
 
Spatial sampling 

Also, the continuous two-dimensional image space needs to be sampled by the digital 
image acquisition system to form a raster, a 2D array of pixels (picture-elements) in 
rows and columns. Same as in 1D case, the sampling theorem also applies her, with 
the only difference that the sampling is carried out in two spatial dimensions, instead 
of one temporal dimension. 



 

 

Color and pseudo-color images 

A color image is usually represented by three functions of space. In most color 
formats, the three functions are for three primary colors such as red, green and blue 

, , and , or some other three parameters such as intensity, hue 

and saturation, , , and . 

Sometimes artificial colors can be assigned to a gray level image to better distinguish 
visually the different gray levels. 

The display of gray level, pseudo-color and true-color images on a monitor screen 
through color-map (color lookup table) is illustrated below. 

 



 

 

Neighbors and Connectivities 

As digital image is quite different from a continuous scene. As a digital image is no 
longer isotropic, some concepts intuitive in continuous world, such as neighbor, 
connectivity, distance, need to be carefully defined for digital images. 

Neighbors of Pixel 

There are two different ways to define the neighbors of a pixel  located at : 

 

• 4-neighbors  

The 4-neighbors of pixel p, denoted by , are the four pixels located at (x-1, y), 
(x+1, y), (x, y-1) and (x, y+1), there are, respectively, above (north), below (south), to 
the left (west) and right (east) of the pixel p.   



• 8-neighbors  
The 8-neighbors of pixel p, denoted by , include the four 4-neighbors and four 
pixels along the diagonal direction located at (x-1, y-1)  (northwest), (x-1, y+1)  
(northeast), (x+1, y-1)  (southwest) and (x+1, y+1)  (southeast).   
 

 
 
Connectivity 

In a binary (black and white) image, two neighboring pixels (as defined above) are connected 
if their values are the same, i.e., both equal to 0 (black) or 255 (white). 

In a gray level image, two neighboring pixels are connected if their values are close to each 

other, i.e., they both belong to the same subset of similar gray levels:  and , where 
 is a subset of all gray levels in the image. 

Specifically, the connectivity can be defined as one of the following: 

• 4-connected Two pixels p and q are 4-connected if they are 4-neighbors and  and 

;  

• 8-connected Two pixels p and q are 8-connected if they are 8-neighbors and  and 

;  
• mixed-connected Two pixels p and q are mix-connected if 
 p and q are 4-connected, or 
 p and q are 8-connected and not 4-connected through a third pixel 

( ) 
• The second condition states that if p and q are 8-connected and they are also 4-connected 

through a third pixel, the tighter 4-connectivity through a third pixel is preferred and 
therefore p and q are no longer considered as 8-connected.   

Two pixels at p at (x, y) and q at (u, v) not 4, 8, or mix-connected can still be connected 
through a path composed of a sequence (chain) of pixels  



 

 
 

with all neighboring pixels  and  4, 8, or mix-connected. 
 
Example: 

The upper-right pixel and the lower-left pixel are 8 and mix-connected, but they are not 4-
connected: 

0 0 1 
0 1 0 
1 0 0 
The upper-right pixel and the lower-left pixel are 4, 8 and mix-connected: 

0 1 1 
0 1 0 
1 1 0 
 
 
Distances 

Any distance metric  D(p, q) between pixels p and q must satisfy: 

• ; 

• ; 

• . 
where r is an arbitrary pixel. 
Specifically, the distance between pixels p at (x, y) and q at (u, v) can be defined by one of 
the following: 
 
• Euclidean distance   

     
• City-block distance    

     



• Chess-board distance   

     
From these definitions we see that a general distance definition is  

 
 
where L can take any value between 1 and . When L is small (e.g., 1), contributions of the 
two dimensions are treated equally, but when L is large (e.g., toward ), the dimension with 
larger contribution is more emphasized. Note that other types of distance metrics can also be 
used. 

The  distance in digital image approximates the actual Euclidean distance in continuous 
situation. 
The numbers in the following array show the  distances to the pixel in the center. Note that 
all 4-neighbors have distance 1. 
 
4 3 2 3 4 
3 2 1 2 3 
2 1 0 1 2 
3 2 1 2 3 
4 3 2 3 4 

The numbers here are the  distances to the pixel in the center. Note that all 8-neighbors 
have distance 1. 

2 2 2 2 2 
2 1 1 1 2 
2 1 0 1 2 
2 1 1 1 2 
2 2 2 2 2 
     
The following figure shows the iso-distance contours composed of all points having equal 

distance to the center point. The circle is for Euclidean distance, the square is for the  
distance, the diamond is for the  distance. 

 



Distance between two connected pixels can be defined as the number of hops from one pixel 
to the next along the shortest path connecting the two pixels, according to the definition of 
connectivity (4, 8, or mix-connected). 

The upper-right pixel is 8 and mix-connected to the lower-left pixel with a  distance 2: 

0 0 1 
0 1 0 
1 0 0 

The upper-right pixel is 4 and mix-connected to the lower-left pixel with a  distance 4: 

0 1 1 
0 1 0 
1 1 0 
 

Gray levels and histogram 

The histogram is of essential importance in terms of characterizing a given image, and it is a 
global description of the appearance of the image. The histogram h[i] (i = 0, …, 255) is the 
probability of an arbitrary pixel to have gray level i, which can be approximated as: 

h[i]=(Number of pixels of gray level i)/(Total number of pixels) 

The cumulative density function is defined as:  

 
Here is the code for finding the histogram of a given image:  



 
 
where  is the number of gray levels (256 for a 8-bit image) and note that as the density 
function, the histogram satisfies:  
 

 
 
 

  

  



For a gray level image to be properly displayed on screen, its pixel values have to be within a 
proper range. For a 8-bit digital image there are  (from 0 to 255) gray levels. 
However, after applying certain processing operations to the input image, the gray levels of 
the resulting image are no longer necessarily within the proper range for display. In this case 
rescaling of the image is needed: 

 

where  and  are, respectively, the minimum and maximum pixel values in the 
image. The rescaling can be implemented by the following code: 
 

 
 
where  is some large number (e.g., the largest floating point number representable in 
the computer) known to be greater than the highest pixel value. 
 
 
 
Image Scaling and Rotation  
 
Enlargement:  The size of a given image can be easily enlarged integer multiple times (2, 3, 
etc.) by repeating each of the pixels in the image. For example, a 2 by 2 image can be 
doubled by 

 
Obviously the drawback of this simple method is that it is not flexible in terms of the scaling 
factor, and the resulting image is likely to look blocky. 
This replication can be implemented equivalently by this two-step procedure: 



 
• Zero interlacing  

       
• Convolution with kernel  

       to get   

    
An obvious problem of enlargement by replication is that the resulting image looks blocky, 
which can be avoided by using linear interpolation: 

 
This operation is called bilinear interpolation (two-dimensional linear interpolation) which 
can be implemented equivalently by this two-step procedure: 

• Zero interlacing 

        
• Convolution with kernel    

     
to get    

    
Note that the convolution assumes zero pixels outside the image. The resulting image looks 
smooth instead of blocky. 
 
 
 
 
 
 
 
 



Reduction:  Image size can be easily reduced by subsampling, e.g., getting rid of every other 
pixel in each row and column: 

 
 
In any of the 4 possible subsampling cases, three fourths of the information contained in the 
original image is lost. A better way (better model of eye) is to find the average of a  2x2 
neighborhood as the resulting pixel: 
 

 
Again, this operation can be implemented in a two-step process: 
 
• Regional averaging by convolving with 

       
 to get 

       
• Subsampling  to get    

 

 
 
 
 
 
 
 
 
 
 
 
 
 



Arbitrary resizing 

It is obviously more desirable to arbitrarily resize a given image (enlarge or reduce the image 
proportionally or non-proportionally). We first consider converting a one-dimensional m-

sample input signal  into an n-sample output 

, where n may be either smaller or greater than m. 

 

The method is a two-step process of linear interpolation: 

• Convert indices: Represent each index  for the output as a floating point 

number p in the range of  for the input:    

     
The two integer neighbors of p can be found as its floor and ceiling:   

     

where  and  represent, respectively, the floor and the ceiling of p, i.e., the 
largest integer smaller than p and the smallest integer larger than p.  

• Re-sampling: Find the fraction  and note, as shown in the figure,     
 

     

Now the jth value  of the output can be found to be interpolation:   

     



 

The above 1D linear interpolation can be generalized to 2D bilinear interpolation for image 
resizing. 

• Convert indices: Similar to the 1D case, we first convert the indices (k, l) of each point in 
the output image into (p, q) in the range of the input image. Then the corresponding 

fractions  and  in both dimensions can be found:    

      

     
• Re-sampling: Find pixel value x(p,q) as the bilinear interpolation of its four neighbors in 

the input image, whose gray level values are represented by a, b, c, and d for 
simplification of the notation:   

         
The bilinear interpolation is carried out in two levels of linear interpolations. First we 
find the interpolation of a, b and c, d:  

        
Then we find y(k,l) = x(p,q) as the linear interpolation of e and f:   

 
   or, equivalently, we could first find   

     
and then find the output pixel:   

     



 

 
 
 
 

Arbitrary rotation 

Rotating the input image x by an angle  is equivalent to rotating the output image y by an 

angle . For the indices (k, l) of each pixel in y we find their position in x:  

 
This rotation is about the origin of the image, the top left corner of the image. If it is desired 
that the rotation is the center (cx, cy) of the image, then  
 

 
 
 



Then we find the interpolation value x(p,q) for each pixel y(k,l) of the output image the same 
way as in the arbitrary scaling discussed above. 

 

 

 

 

 

 

 

 

 



Image Enhancement by Contrast Transform 
 

The appearance of an image can be modified according to various needs by a gray level 
mapping function Y = f(x), where x = x[m,n]  is a pixel in the input image and y = y[m,n] is 
the corresponding pixel in the output image. This mapping function can be specified in 
different ways, such as a piecewise linear function, or based on the histogram of the input 
image. 

The histogram of an image shows the distribution of the pixel values in the image over the 

dynamic range, typically from 0 to  for a 8-bit image. The ith item of the 

histogram is  (i = 0…255) represents the probability of a randomly chosen 

pixel has the gray level i, where  is the number of pixels of gray level i, and N is the total 
number of pixels in the image. 
 
• Piecewise linear mapping: A mapping function can be specified by a set of n break points 

, with neighboring points connected by straight lines, such as 
shown here: 

     
For example, on the left of the image below is a microscopic image of some onion 
cells. Piecewise linear mapping is applied to stretch the dynamic range for the cells 
(dark) and to compress the background (bright). 
 

       
 
 
  



• Thresholding:  

 
  As a special case of piecewise linear mapping, thresholding is a simple way to do 
image segmentation, in particular, when the histogram of the image is bimodal with 
two peaks separated by a valley, typically corresponding to some object in the image 
and the background. A thresholding mapping maps all pixel values below a specified 
threshold to zero and all above to 255.  
 

       
 
 
 

• Negative image:    

    
 
 This mapping is shown below which generates the negative of the input image: 

   
 



 
 
Example: 
 

    

    
 
 
 

 
• Min-max linear stretch:    

 

     
This is a piecewise linear mapping between the input and output images of three 
linear segments with slopes 0 for x < min,  (L-1)/(max-min) > 1 for min < x < max, 
and 0 for x > max. The greater than 1 slope in the middle range stretches the dynamic 
range of the image to use all gray levels available in the display.  
 
 
 
 



   
 
 
Example:  
 

   

    
 
 
 



 
 

• Linear stretch based on histogram:  
 
If in the image there are only a small number of pixels close to minimum gray level 0 
and the maximum gray level L-1 = 255, and the gray level of most of the pixels are 
concentrated in the middle range (gray) of the histogram, the above linear stretch 
method based on the minimum and maximum gray levels has very limited effect (as 
the slope (L-1)/(max-min) is very close to 1).  In this case we can push a small 
percentage (e.g., 3%, 5%) of gray levels close to the two ends of the histogram 
toward 0 and L-1. 
 
 
 
 

 


