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The convolution of two continuous signals is de�ned as

y(t) = h(t) � x(t)
4
=
Z
1

�1

x(�)h(t� �)d� =
Z
1

�1

h(�)x(t� �)d�

i.e., convolution operation is commutative. Also it is associative:

h � (g � x) = (h � g) � x

As a typical example, y(t) is the output of a system characterized by its
impulse response function h(t) with input x(t).

Convolution in discrete form is

y(n) =
1X

m=�1

x(n�m) h(m) =
1X

m=�1

h(n�m) x(m)

If h(m) is �nite, i.e.,

h(m) =

(
h(m) jmj � k

0 jmj > k

the convolution becomes

y(n) =
kX

m=�k

x(n�m) h(m)

In time domain, all realistic systems are causal

y(n) = 0 if n < 0

However, in image processing, we often consider convolution in spatial do-
main where causality does not apply.
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If h(m) is symmetric (almost always true in image processing), i.e.,

h(�m) = h(m)

the convolution becomes

y(n) =
kX

m=�k

x(n+m) h(m)

If x(m) is also �nite (always true in reality), i.e.,

x(m) =

(
x(m) 0 � m < N

0 otherwise

for x(n+m) to be in the valid non-zero range, its index (n+m) has to satisfy:

0 � (n+m) � N � 1

correspondingly for y(n) to be non-zero, its index (n) has to satisfy:

�m � n � N �m� 1

When m = k, the lower bound n = �k is reached, and when m = �k, the
upper bound n = N + k � 1 is reached. In other words, there are N + 2k
valid elements in the output:

y(n); (�k � n � N + k � 1)

This convolution can be best understood graphically (where the index of
y(n) is rearranged).

In image processing, all the discussions above for one-dimensional con-
volution are generalized into two dimensions, and h is called a convolution
kernel.
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