
Pattern Classi�cation { E186 Handout

General Concepts of Pattern Recognition

Pattern Recognition (PR) is a general term which may mean any of the
following with subtle conceptual di�erences.

� Recognition

Given a pattern (e.g., image objects such as a human face, printed or
written text, a natural scene, etc.), a name (perceptual category) is
generated as the output.

� Classi�cation/Categorization

The input patterns of di�erent classi�ed/categorized into a set of
classes/categories.

1

� Association

The associator learns to establish the connection between two patterns
(concepts).

� Completion

similar to the content addressable nature of the brain.

Di�erent methodologies can be used for PR, such as statistical PR, syntac-
tic (structural) PR, and neural network PR. And PR is in general a two-stage
process:

� Training (learning)

The computer is trained by one of the two strategies:

{ Supervised learning (learning with teacher) a priori knowledge
about the patterns to be recognized is assumed to be available
for teaching the computer how to recognize patterns;

{ Unsupervised learning (learning without teacher) no such a priori
knowledge is available. Computer has to learn by itself.

� Testing

The trained computer recognizes patterns.

2

Basic De�nitions

� Feature Space

We assume a set of n features can be extracted from the image to rep-
resent the image objects of interest. They form an n-dimensional space
called feature space, in which each axis represents the measurement of
a certain feature.

� Patterns

The measurements of the n features of an object to be recognized are ob-
tained and represented by an n-dimensional vector X = [x1; � � � ; xn]

T .
This vector is called a pattern, or a sample, and can be represented by
a point in the feature space: X 2 Rn.

� Pattern Classes (categories)

Assume there are c possible classes to which a given pattern X may
belong. These classes are members of a class set:

 = f!1; � � � ; !cg

� Pattern Classi�cation

Given an image pattern X 2 Rn, �nd a class ! 2
 to which X most
likely belongs. Classi�cation process can be be carried out as

X � !k iff Dk(X) = maxfDi; i = 1; � � � ; cg

where Di(X) is the discriminant function of class !i which can be
obtained according to the speci�c classi�cation method used.

3

Classi�cation can be considered as a partitioning of the feature space
into c regions each corresponding to a class, by the boundaries

Di(X) = Dj(X); for all i 6= j

� Feature Selection

The number of features actually used in classi�cation can be reduced
from n to m by feature selection for two reasons: (1) to use only those
features which are most relevant to a speci�c application, (2) to reduce
the computational cost.

Feature selection may be achieved in two di�erent ways:

{ Choosing m features directly from the n available features (Cm
n

ways to do so.)

{ Using m linear combinations of the n features as new features:

Y = AX

where X is the n-dimensional pattern, A is an m � n matrix,
and Y = [y1; � � � ; ym]

T is an m-dimensional pattern. Each yi is a
new feature which is a linear combination of all n original features
x1; � � � ; xn.

For either method, some criterion is needed to guide the selection (i.e.,
which m features to choose, how to �nd the matrix A).

4

Distance Measurements

Several distance measurements can be used in the feature space in the process
of pattern classi�cation.

� Distance between two points

DL(X; Y) = [
nX
i=1

jxi � yij
L]1=L

Where L can take any value such as 1, 2, and in�nity.

When L = 2, DL(X; Y) becomes Euclidean distance:

DE(X; Y)
4
=

vuut nX
i=1

(xi � yi)2 = [(X � Y)T (X � Y)]1=2

When L = 1, DL(X; Y) is called city-block distance

Dc(X; Y)
4
=

nX
i=1

jxi � yij

which is much less costly to compute than the Euclidean distance, as
absolute operation is much easier than multiplication and square root
operation.

When L =1, DL(X; Y) is so called maximum distance

Dm(X; Y) = maxfjxi � yij ; i = 1; � � � ; ng

� Distance between a point and a distribution

TheMahananobis distance can be used to measure the distance between
a pattern X and a class !i represented by its mean vector Mi and the
covariance matrix �i:

DM(X;!i) = (X �Mi)
T��1i (X �Mi)

5

� Distance between two distributions

The Bhattacharrya distance can be used to measure the distance be-
tween two classes !i and !j represented by their mean vectors and
covariance matrices:

DB(!i; !j) =
1

4
(Mi�Mj)

T
�
�i + �j

2

��1
(Mi�Mj)+log

2
4

����i+�j

2

���
(j�ij j�jj)1=2

3
5

6

Separability Criteria for Feature Selection

In feature selection, we need to evaluate how separable a set of classes are
in an m-dimensional feature space by some criteria such as the one discussed
here.

� Total number of samples:

N =
cX
i=1

Ni

where Ni is the number of samples in class !i

� Overall mean vector:

M =
1

N

X
X

X =
1

N

cX
i=1

Ni(
1

Ni

X
X�!i

X) =
cX
i=1

Ni

N
Mi =

cX
i=1

PiMi

where Pi = Ni=N is the a priori probability of class !i

� Scatter matrix of class !i (same as the covariance matrix of the class):

Si =
1

Ni

X
X�!i

(X �Mi)(X �Mi)
T = �i

� Within-class scatter matrix:

SW =
cX
i=1

PiSi =
cX
i=1

Pi�i

� Between-class scatter matrix:

SB =
cX
i=1

Pi(Mi �M)(Mi �M)T

� Total scatter matrix:

ST =
1

N

X
X

(X �M)(X �M)T =
1

N

cX
i=1

X
X�!i

(X �M)(X �M)T

7

We can show that ST = SW + SB, i.e., the total scatter is the sum of
within-class scatter and between-class scatter.

ST =
1

N

cX
i=1

X
X�!i

(X �M)(X �M)T

=
1

N

cX
i=1

X
X�!i

(X �Mi +Mi �M)(X �Mi +Mi �M)T

=
1

N

cX
i=1

X
X�!i

[(X �Mi)(X �Mi)
T + (X �Mi)(Mi �M)T

+(Mi �M)(X �Mi)
T + (Mi �M)(Mi �M)T]

�
=

1

N

cX
i=1

X
X�!i

(X �Mi)(X �Mi)
T +

1

N

cX
i=1

X
X�!i

(Mi �M)(Mi �M)T

=
cX
i=1

Ni

N
Si +

cX
i=1

Ni

N
(Mi �M)(Mi �M)T

= SW + SB

* You should be able to show why the two middle terms disappeared.
Now we can de�ne:

Ja = tr(S�1W SB)

or
Jb = det(S�1W SB)

where tr(A) and det(A) represent trace and determinant of matrix A, respec-
tively.

These J's are measurements of the separability among all classes and can
be used as criteria in feature selection, i.e., to obtain m from the n features
to form a sub-feature space in which the separability is maximized.

8

Nearest Neighbor Classi�er

� Training

This is a supervised classi�cation method as a set of training samples
(patterns of known classes) is assumed to be available for all c classes:

fX
(k)
1 ; � � � ; X

(k)
Nk
g (k = 1; � � � ; c)

The classi�cation is directly based on these training samples with no
further training needed.

� Classi�cation

First de�ne the nearest neighbor distance between a pattern X and a
class represented by its training samples as

Dist(X;!k)
4
= minfDL(X;X

(k)
i); i = 1; � � � ; Nkg

Then a pattern X of unknown class is classi�ed to its nearest neighbor's
class:

X � !k iff Dist(X;!k) = minfDist(X;!j); j = 1; � � � ; cg

Since this method depends highly on individual training samples, it is
sensitive to noise.

9

Minimum Distance Classi�er

� Training

The kth class !k is represented by its mean vector Mk and covariance
matrix which can be estimated from the training samples:

Mk =
1

Nk

NkX
i=1

X
(k)
i (k = 1; � � � ; c)

and

�k =
1

Nk

NkX
i=1

(X(k)
i �Mk)(X

(k)
i �Mk)

T

� Classi�cation

A given patternX of unknown class is classi�ed to !k if its Mahalanobis
distance to !k is smaller than those to all other classes:

X � !k iff DM(X;!k) = minfDM (X;!i) i = 1; � � � ; cg

For simplicity, the distance DL(X;Mi) can be used to replace DM(X;!i)
above. As now only the mean vector of each class is used, the classi�cation
does not take into account how the classes are distributed in the feature
space.

10

Bayes Classi�er | the Optimal Classi�er

The basic principle

� P (!k): the a priori probability that an arbitrary pattern belongs to
class !k.

� P (!k=X): the posteriori conditional probability that a speci�c pattern
X belongs to class !k.

� p(X): the density distribution of all patterns.

� p(X=!k): the conditional density distribution of all patterns belonging
to !k.

Note that p(X) is the weighted sum of all p(X=!i) for i = 1; � � � ; c:

p(X) =
cX
i=1

p(X=!i)P (!i)

� The Bayes' Theorem

P (!k=X) =
p(X=!k)P (!k)Pc
i=1 p(X=!i)P (!i)

=
p(X=!k)P (!k)

p(X)

� Training

The a priori probability P (!i) can be estimated from the training
samples as P (!i) = Pi = Ni=N , assuming the training samples are
randomly chosen from all the patterns.

We also need to estimate p(X=!i). If we don't have any good rea-
son to believe otherwise, we will assume the density to be a normal
distribution:

p(X=!i) = N(X;Mi;�i) =
1

(2�)n=2 j�ij
1=2

exp[�
1

2
(X�Mi)

T��1i (X�Mi)]

where the mean vector Mi and the covariance matrix �i can be esti-
mated from the training samples as shown before.

11

� Classi�cation

A given pattern X of unknown class is classi�ed to !k if \it is most
likely that X belongs to !k" (that's why it is called optimal classi�er),
i.e.:

X � !k iff P (!k=X) = maxfP (!i=X); i = 1; � � � ; cg

As shown above, the likelihood P (!k=X) can be written as

P (!k=X) =
p(X=!k)P (!k)

p(X)

and the denominator p(X) can be dropped as it is common in all
P (!k=X)'s, therefore a discriminant function

Di(X) = p(X=!k)P (!i)

can be used in the classi�cation:

X � !k iff Dk(X) = maxfDi(X) i = 1; � � � ; cg

Error analysis

First consider 2-class case (c = 2). Let P (X 2 Ri \ X � !j) denote the
joint probability that X belongs to !j but is in region Ri, then the total
probability of error (misclassi�cation) is:

P (error) = P (X 2 R2 \X � !1) + P (X 2 R1 \X � !2)

= P (X 2 R2=!1)P (!1) + P (X 2 R1=!2)P (!2)

=
Z
R2

p(X=!1)dX P (!1) +
Z
R1

p(X=!2)dX P (!2)

12

Next consider multi-class case. As there are many di�erent ways to have
a wrong classi�cation and only one way to get it right, consider

P (correct) =
cX
i=1

P (X 2 Ri \X � !i)

=
cX
i=1

P (X 2 Ri=!i)P (!i)

=
cX
i=1

P (!i)
Z
Ri

P (X=!i)dX

Some special cases

As p(X=!i) is only used relatively among all classes, it can be replaced by a
monotonic log function and the discriminant function becomes

Di(X) = ln p(X=!i)P (!i) = ln p(X=!i) + ln P (!i)

= �
1

2
(X �Mi)

T��1i (X �Mi)�
n

2
ln 2� �

1

2
ln j�ij+ ln P (!i)

The second term �n ln 2�=2 is a constant common to all Di's and can be
dropped.

Now consider several special cases:

� All classes have equal a priori probability:

P (!i) = P (!j) for all i; j

then the last term of Di(X) can be dropped.

� All classes have the same isotropic distribution:

�i = �2 I = diag[�2; � � � ; �2]

then
j�ij = �2n

and Di(X) becomes

Di(X) = �
jX �Mij

2

2�2
+ ln P (!i)

13

Note that the term ln j�ij has been dropped from the original expres-
sion of Di(X) as it is now the same for all classes.

Consider the boundary in the feature space between !i and !j:

Di(X) = Dj(X)

This can be simpli�ed to a linear equation:

W TX � w = 0

where W is a vector
W = Mi �Mj

and w is a scalar

w = �(MT
i Mi �MT

j Mj) + 2�2 ln
P (!i)

P (!j)

This linear equation represents a hyperplane between the two points
Mi andMj and perpendicular to the straight line passing through these
points.

Further, when all classes have the same P (!i), Di(X) becomes

Di(X) = � jX �Mij
2 = �(X �Mi)

T (X �Mi) = D2(X;Mi)

and the Bayes classi�er becomes minimum distance classi�er using
Euclidean distance (maximizing Di(X) is equivalent to minimizing
D2(X;Mi)).

� All classes have the same distribution:

�i = � (i = 1; � � � ; c)

but di�erent Mi. Di(X) becomes

Di(X) = �
1

2
(X �Mi)

T��1(X �Mi) + ln P (!i)

When all classes have the same P (!i), the classi�er is equivalent to
minimum distance classi�er using Mahananobis distance.

14

Consider the boundary in the feature space between !i and !j:

Di(X) = Dj(X)

This can be simpli�ed to a linear equation:

W TX � w = 0

where
W = ��1(Mi �Mj)

and

w = �
1

2
(MT

i �
�1Mi �MT

j �
�1Mj) + ln

P (!i)

P (!j)

This linear equation represents a hyperplane between the two points
Mi and Mj and perpendicular to the straight line ��1(Mi �Mj) (the
straight line Mi �Mj rotated by matrix ��1).

� All classes have di�erent �i.

This is the most general case and the boundary between any two classes
!i and !j

Di(X) = Dj(X)

becomes a quadric (multivariable quadratic) equation:

XTWX +W TX + w = 0

where W is an n by n matrix:

W = �
1

2
(��1i � ��1j)

W = ��1i Mi � ��1j Mj

and

w = �
1

2
(MT

i �
�1Mi �MT

j �
�1Mj)�

1

2
ln
j�ij

j�jj
+ ln

P (!i)

P (!j)

These boundaries in the nD feature space are in general quadric hyper-
surfaces such as hyper-sphere, hyper-ellipsoid, hyper-parabola, hyper-
hyperbola, etc.

15

Unsupervised Classi�cation { Clustering

Given a set of samples fXi; i = 1; 2; :::; Ng (where each Xi = [x
(i)
1 ; � � � ; x(i)n]T

is a column vectors representing a point in the n-dimensional feature space),
group them into a set of clusters according to their natural distribution in
the feature space. Clustering is unsupervised classi�cation as no a priori
knowledge (such as samples of known classes) is assumed to be available.

The K-Means Algorithm

� Step 1. Arbitrarily choose from the given sample set k initial cluster
centers M

(0)
1 ; M

(0)
2 ; ::::;M

(0)
k (e.g., the �rst k samples of the sample

set). Set l = 0;

� Step 2. Assign each of the samples fXi; i = 1; :::; Ng to one of the
clusters according to the distance between the sample and the center
of the cluster:

X � !j if DL(X;M
(l)
j) = min f DL(X;M

(l)
i); i = 1; � � � ; kg

where !j denotes the ith cluster of samples whose center is M
(l)
j at the

lth iteration;

� Step 3. Update the cluster centers to get M
(l+1)
j

M
(l+1)
j =

1

Nj

X
X�!j

X; (j = 1; � � � ; k)

where N
(l)
j is the number of samples currently in !

(l)
j at the lth iteration,

and
kX
j=1

N
(l)
j = N

.

By doing so the sum of the distances from all points in !j to the new
center is minimized (you should be able to derive it), i.e.,

X
X�!

(l)
j

DL(X;M
(l+1)
j)! min: (j = 1; � � � ; k)

16

� Step 4. Terminate if the algorithm has converged:

M
(l+1)
j =M

(l)
j (j = 1; � � � ; k)

or a preset maximum number of iterations is exceeded.

Otherwise, l l + 1, goto Step 2.

This method is simple, but has obvious drawbacks. For example, the user
has to guess the number of clusters k, which stays �xed even it may turn out
later that more or fewer clusters would �t the data better.

The Isodata Algorithm

Isodata stands for Iterative Self-Organizing Data Analysis Techniques. This
is a more sophisticated algorithm which allows the number of clusters to be
automatically adjusted during the iteration by merging similar clusters and
splitting clusters with large standard deviations. We �rst de�ne the following
parameters:

1. K = number of clusters desired;

2. I = maximum number of iterations allowed;

3. P = maximum number of pairs of cluster which can be merged;

4. �N = a threshold value for minimum number of samples in each cluster
can have (used for discarding clusters);

5. �S = a threshold value for standard deviation (used for split operation);

6. �C = a threshold value for pairwise distances (used for merge opera-
tion).

The algorithm:

� Step 1. Arbitrarily choose k (not necessarily equal to K) initial cluster
centers: M1; M2; ::::;Mk from the data set fXi; i = 1; 2; :::; Ng.

17

� Step 2. Assign each of the N samples to the closest cluster center:

X � !j if DL(X;Mj) = max f DL(X;Mi); i = 1; � � � ; k)

� Step 3. Discard clusters with fewer than �N members, i.e., if for any
j, Nj < �N , then discard !j and k k � 1.

� Step 4. Update each cluster center:

Mj =
1

Nj

X
X�!j

X (j = 1; � � � ; k)

� Step 5. Compute the average distance Dj of samples in cluster !j from
their corresponding cluster center:

Dj =
1

Nj

X
X�!j

DL(X;Mj) (j = 1; � � � ; k)

� Step 6. Compute the overall average distance of the samples from their
respective cluster centers:

D =
1

N

kX
j=1

NjDj

� Step 7. If k � K=2 (too few clusters), go to Step 8; else if k > 2K (to
many clusters), go to Step 11; else go to Step 14.

(Steps 8 through 10 are for split operation, Steps 11 through 13 are for
merge operation.)

� Step 8. Find the standard deviation vector �j = [�
(j)
1 ; � � � ; �(j)n]T for

each cluster:

�
(j)
i =

vuut 1

Nj

X
X�!j

(xi �m
(j)
i)2; (i = 1; � � � ; n; j = 1; � � � ; k)

where m
(j)
i is the ith component ofMj and �i is the standard deviation

of the samples in !j along the ith coordinate axis. Nj is the number of
samples in !j.

18

� Step 9. Find the maximum component of each �j and denote it by
�(j)max; Do this for all j = 1; � � � ; k.

� Step 10.

If for any �(j)max; (j = 1; � � � ; k), all of the following are true

{ �(j)max > �S,

{ Dj > D,

{ Nj > 2�N

then split Mj into two new cluster centers M+
j and M�

j by adding ��

to the component ofMj corresponding to �
(j)
max, where � can be � �(j)max,

for some � > 0. Then delete Mj and let k k + 1. Goto Step 2

else Go to Step 14.

� Step 11. Compute the pairwise distances Dij between every two cluster
centers:

Dij = DL(Mi;Mj); (for all i 6= j)

and arrange these k(k � 1)=2 distances in ascending order.

� Step 12. Find no more than P smallest Dij's which are also smaller
than �C and keep them in ascending order:

Di1 j1 � Di2 j2 � � � � � DiP jP

� Step 13. Perform pairwise merge: for l = 1; � � � ; P , do the following:

If neither of Mil and Mjl has been used in this iteration,

Then merge them to form a new center:

M =
1

Nil +Njl

[NilMil +NjlMjl]

Delete Mil and Mjl, and let k k � 1.

Go to Step 2.

� Step 14. Terminate if maximum number of iterations I is reached.
Otherwise go to Step 2.

The Isodata algorithm is more
exible than the K-mean method. But
the user has to choose empirically many more parameters listed previously.

19

The Tree Classi�ers

When both the number of classes c and the number of features n are large,
the feature selection and classi�cation discussed before encounter di�culties
because

� feature selection is no longer e�ective as it is di�cult to �nd m features
from n which are suitable for separating all the c classes (some features
may be good from some classes but not good for others).

� classi�cation is costly as a large number of features are necessary.

The solution is to do classi�cation in several steps implemented as a tree
classi�er. One method to design the tree classi�er is the bottom-up merge
algorithm described in the following steps, which is considered as the training
process.

1. From the training samples of each class !i (i = 1; � � � ; c), estimate the
mean and covariance:

Mi =
1

Ni

X
X�!i

X

and

�i =
1

Ni

X
X�!i

(X �Mi)(X �Mi)
T

2. Compute Bhattacharrya distances for every pair of di�erent classes
(c(c� 1)=2 of them in total):

Dij =
1

4
(Mi �Mj)

T
�
�i + �j

2

��1
(Mi �Mj) + log

2
4

����i+�j

2

���
(j�ij j�jj)1=2

3
5

for all i 6= j

3. Merge the two classes with the smallest Dij to form a new class:
!i [!j = !n and compute its mean and covariance:

Mn =
1

Ni +Nj
[NiMi +NjMj]

20

and

�n =
1

Ni +Nj

[Ni(�i+(Mi�Mn)(Mi�Mn)
T)+Nj(�j+(Mj�Mn)(Mj�Mn)

T)]

Delete the old classes !i and !j.

4. Compute the distance between the new class !n and all other classes
(excluding !i and !j).

5. Repeat the above steps until eventually all classes are merged into one
and a binary tree structure is thus obtained.

6. At each node of the tree build a 2-class classi�er to be used to classify
a sample into one of the two children Gl and Gr representing the two
groups of classes. According to the classi�cation method used, we �nd
the discriminant functions Dl(X) and Dr(X).

7. At each node of the tree adaptively select features that are best for
separating the two groups of classes Gl and Gr. Any feature selec-
tion method can be used here, such as directly choosing m from n
features using between-class distance (Bhattacharyya distance) as the
criterion, or feature selection using some orthogonal transform (KLT,
DFT, WHT, etc.). Only a small number of selected features may be
needed as here only two groups of classes need to be distinguished.

After the classi�er is built and trained, the classi�cation is carried out in
the following manner:

A testing sample X of unknown class enters the classi�er at the root
of the tree and is classi�ed to either the left or the right child of the node
according to

X �

(
Gl if Dl(X) > Dr(X)
Gr if Dl(X) < Dr(X)

This process is repeated recursively at the child node (either Gl or Gr)
and its child and so on, until eventually X reaches a leaf node corresponding
to a single class, to which the sample X is therefore classi�ed.

21

