
Review of Linear Algebra { E186 Handout

Vectors and Their Inner Products

Let X and Y be two vectors:

X = [x1; � � � ; xn]
T

and
Y = [y1; � � � ; yn]

T

Their inner product is de�ned as

(X; Y )
4
= X�TY =

nX
k=1

x�kyk

where T and � represent transpose and complex conjugate, respectively.
The norm (magnitude, length) of a vector X is de�ned as

kXk
4
= (X;X)1=2 =

vuut nX
k=1

jxkj
2

where jxj represents the absolute value of x (real or complex). X is normal-
ized if kXk = 1.

Two vectors X and Y are orthogonal to each other i� their inner product
is zero. For normalized orthogonal vectors, we have

(X; Y ) = �XY
4
=

(
1 if X = Y
0 if X 6= Y
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Rank, Trace, Determinant, Transpose and In-

verse of a Matrix

Let A be an n� n square matrix:

A =

2
6664
a11 a12 � a1n
a21 a22 � a2n
� � � �
an1 an2 � ann

3
7775
n�n

where 2
6664
a1j
a2j
:::
anj

3
7775

is the jth column vector and

[ai1 ai2 � � � ain]

is the ith row vector.
The n rows span the row space of A and the n columns span the column

space of A. The dimensions of these two spaces are the same and called the
rank of A:

R = rank(A) � N

The determinant of A is denoted by

det(A) = jAj

and we have
jABj = jAj jBj

rank(A) < N i� det(A) = 0.
The trace of A is de�ned as the sum of its diagonal elements:

tr(A) =
nX
i=1

aii
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The transpose of a matrix A, denoted by AT , is obtained by switching
the positions of elements aij and aji for all i; j 2 f1; � � � ; ng. In other words,
the ith column of A becomes the ith row of AT , or equivalently, the ith row
of A becomes the ith column of AT :

AT = [A1 � � �An]
T =

2
6664
AT
1

::
::
AT
n

3
7775

where vector Ai is the ith column of A and its transpose AT
i is the ith row

of AT .
For any two matrices A and B, we have

(AB)T = BTAT

If AB = BA = I, where I is an identity matrix:

I = diag[1; � � � ; 1] =

2
6664
1 0 � 0
0 1 � 0
� � � �
0 0 � 1

3
7775

then B = A�1 is the inverse of A. A�1 exists i� det(A) 6= 0, i.e., rank(A) =
N .

For any two matrices A and B, we have

(AB)�1 = B�1A�1

and
(A�1)T = (AT )�1
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Hermitian Matrix and Unitary Matrix

A is a Hermitian matrix i� A�T = A. When a Hermitian matrix A is real
(A� = A), it becomes a symmetric matrix, AT = A.

A is a unitary matrix i� A�T A = I, i.e.,A�T = A�1. When a unitary
matrix A is real (A� = A), it becomes an orthogonal matrix, AT = A�1.

The columns (or rows) of a unitary matrix A are orthonormal, i.e. they
are both orthogonal and normalized, i.e.,

(Ai; Aj) = �ij
4
=

(
1 if i = j
0 if i 6= j

where Ai and Aj represent the ith and jth columns of A, respectively.
As we will see later, any Hermitian matrix A can be converted to a

diagonal matrix � (or diagonalized) by a particular unitary matrix �:

��TA� = �

where � is a diagonal matrix, i.e., all its o� diagonal elements are 0.
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Unitary Transforms

For any given unitary matrix A = [A1 A2 � � � An]
T , a unitary transform of a

vector X = [x1; x2; � � � ; xn]
T can be de�ned as

8>>><
>>>:

Y = A�TX =

2
64
AT
1

:::
AT
n

3
75 X

X = AY = [A1; A2; � � � ; An] Y

where Y = [y1; y2; � � � ; yn]
T is another vector.

The �rst equation of the unitary transform is the forward transform and
the ith component of Y can be written as:

yi = A�Ti X = (Ai; X)

yi is the inner product of X and the ith column vector Ai of A, i.e., the
projection of X on the ith vector Ai.

The second equation is the inverse transform and can be written as

X =
nX
i=1

yiAi

i.e., vector X is represented as a linear combination (weighted sum) of the n
column vectors Ai; A2; � � � ; An of the transform matrix A. In other words, X
is represented as a vector (or a point) in the n-dimensional space spanned by
the n orthonormal column vectors A1; A2; � � � ; An. Each of the n coordinates
(y1; y2; � � � ; yn) of this vector is its projection on the direction speci�ed by the
corresponding column vector of A.

Specially when A = I, we have

X =
nX
i=1

yiAi =
nX
i=1

xiIi

where Ii = [0; � � � ; 0; 1; 0; � � � ; 0]T is the ith column of the identity matrix I
with the ith element equal 1 and all other 0.
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Unitary transform does not change a vector's norm:

kY k2 = Y �TY = (A�TX)�T (A�TX) = X�TAA�TX = X�TX = kXk2

as AA�T = I. In other words, the length of a vector is always the same in
di�erent coordinate systems.

The geometric interpretation of any unitary transform Y = AX is to
rotate a vector about the origin [0; � � � ; 0]T (rotation does not change the
vector's length), or equivalently, to represent the same vector X by the co-
ordinates Y in a di�erent coordinate system.

If X is interpreted as a signal, then kXk2 can be interpreted as the total
energy or information contained in the signal which is preserved by during
any unitary transform. However, some other features of the signal may be
changed, e.g., the signal may be decorrelated after the transform, which is
desirable in many applications.
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Eigenvalues and Eigenvectors

For any matrix A, if there exist a vector � and a value � such that

A� = ��

then � and � are called the eigenvalue and eigenvector of matrix A, respec-
tively. To obtain �, rewrite the above equation as

(�I � A)� = 0

which is a homogeneous equation system. To �nd its non-zero solution for
�, we require

j�I � Aj = 0

Solving this nth order equation of �, we get n eigenvalues f�1; � � � ; �ng. Sub-
stituting each �i back into the equation system, we get the corresponding
eigenvector �i. We now have

A[�1; � � � ; �n] = [�1�1; � � � ; �n�n] = [�1; � � � ; �n]

2
6664
�1 0 � 0
0 �2 � 0
� � � �
0 0 � �n

3
7775

or in a more compact form,
A� = ��

or
��1A� = �

where
� = [�1; � � � ; �n]

and
� = diag[�1; � � � ; �n]

7



The trace and determinant of A can be obtained from its eigenvalues

tr(A) =
nX

k=1

�k

and

det(A) =
nY

k=1

�k

AT has the same eigenvalues and eigenvectors as A.
Am has the same eigenvectors as A, but its eigenvalues are f�m

1
; � � � ; �mn g,

where m is a positive integer.
This is also true form = �1, i.e., the eigenvalues ofA�1 are f1=�1; � � � ; 1=�ng.
If A is Hermitian (symmetric if A is real), all the �i's are real and all

eigenvectors �i's are orthogonal:

(�i; �j) = �ij

If all �i's are normalized, matrix � is unitary (orthogonal if A is real):

��1 = ��T

and we have
��1A� = ��TA� = �
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Positive De�nite Matrix

A real symmetric matrix A is positive de�nite, denoted by A > 0, i� the
quadratic form XTAX is greater than zero:

XTAX > 0

for any X = [x1; � � � ; xn]
T (xi's are not all zero).

A > 0 i� all its eigenvalues are greater than zero:

�i > 0; i = (1; � � � ; n)

As the eigenvalues of A�1 are 1=�i; i = (1; � � � ; n), we have A > 0 i�
A�1 > 0.
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Vector Di�erentiation

A vector di�erentiation operator is de�ned as

d

dX

4
= [

@

@x1
; � � � ;

@

@xn
]T

which can be applied to any scalar function f(X) to �nd its derivative with
respect to X:

d

dX
f(X) = [

@f

@x1
; � � � ;

@f

@xn
]T

Vector di�erentiation has the following properties:

d

dX
(BTX) =

d

dX
(XTB) = B

d

dX
(XTX) = 2X

d

dX
(XTAX) = 2AX (if AT = A)

To prove the third one, consider the kth element of the vector:

@

@xk
(XTAX) =

@

@xk

nX
i=1

nX
j=1

aijxixj =
nX
i=1

aikxi +
nX
j=1

akjxj = 2
nX
i=1

aikxi

for (k = 1; � � � ; n).
Note that here we have used the assumption that aik = aki, i.e., A

T = A.
Putting all n elements in vector form, we have the above.

When A = I, we have

d

dX
(XTX) = 2X

You can compare these results with the familiar derivatives in the scalar case:

d

dx
(ax2) = 2ax
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