
Week 5 of Introduction to Biological System
Design

Introduction to Feedback Systems

Ayush Pandey

Pre-requisite: To get the best out of this notebook, make sure that you have the basic
understanding of ordinary differential equations. For more information on ODEs you may
refer to any standard book on engineering math. To learn more about how to numerically
simulate ODEs, refer to week3_intro_ode.ipynb

You can learn more about Feedback Systems from this chapter of the book on Introduction
to Feedback Systems by Murray and Astrom.

Problem Setup
Throughout this notebook, we refer to a system model with the following equations:

where the function models the progression of states under inputs and the
output of the system is given by , modeled using a nonlinear function . We make certain
smoothness assumptions on this nonlinear system description as we discuss numerical
analysis tools. For more information on the smoothness assumptions, please refer to a
standard text on nonlinear dynamics (for example: Nonlinear Systems by Hassan Khalil). In
this notebook, we discuss the basics of feedback systems and employ numerical simulations
to elucidate the key properties of feedback.

Principle of Feedback

Use of feedback is extensive in all engineered and natural systems. The basic idea behind a
feedback system is to sense the performance of the system and actuate it so that the
observed performance is close to the desired performance. Use of feedback has been shown
to vastly improve performance of systems, ranging from an operational amplifier in
electronic circuits to homeostasis in biological systems. Some key properties of feedback are:

Feedback Properties

1. Controlled dynamical response

= f(x, u, t)

y = h(x, u, t)

dx

dt

f(x, u, t) x u

y h

https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb
https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb
https://fbswiki.org/wiki/index.php/Introduction
https://fbswiki.org/wiki/index.php/Introduction

2. Robustness to uncertainty
3. Disturbance rejection
4. Oscillations/instability/multi-stability

Refer to BFS for more information.

Input-Output System: A biological example
Biologists have engineered switching behavior by regulating gene expression in bacteria.
Read the paper by Gardner et al. 2000 for more details. If we have two genes and that
repress each other under control of inducer molecules and then it is possible to show
that this gene regulatory network exhibits a bistable behavior - that is, it has two stable
equilibrium points. Dependent on the input signal, the system would either express gene
or gene , giving rise to a "toggle switch" behavior.

Circuit Diagram
The interaction diagram is shown using dnaplotlib below:

A B

u1 u2

A

B

http://www.cds.caltech.edu/~murray/books/AM08/pdf/bfs-intro_14Sep14.pdf
http://www.cds.caltech.edu/~murray/books/AM08/pdf/bfs-intro_14Sep14.pdf
https://www.nature.com/articles/35002131
https://www.nature.com/articles/35002131

In [4]: import dnaplotlib as dpl
gene_A = {'type':'UserDefined', 'name':'A',

'opts': {'color':[0.38, 0.82, 0.32],
'label':'A', 'label_size':14,
'label_y_offset':0}}

gene_B = {'type':'UserDefined', 'name':'B',
'opts': {'color':[0.8, 0.32, 0.32],

'label':'B', 'label_size':14,
'label_y_offset':0}}

repress_A = {'from_part':gene_B, 'to_part':gene_A,
'type':'Repression',
'opts':{'linewidth':1, 'color':[0, 0, 0],

'arc_height':-10,
'arc_height_start':-3,
'arc_height_end':-6},

'fwd':True
}

repress_B = {'from_part':gene_A, 'to_part':gene_B,
'type':'Repression',
'opts':{'linewidth':1, 'color':[0, 0, 0],

'arc_height':10,
'arc_height_start':3,
'arc_height_end':6}

}
import matplotlib.pyplot as plt
%matplotlib inline
ax = plt.axes()
dr = dpl.DNARenderer()
start, end = dr.renderDNA(ax, [gene_A, gene_B],

regs = [repress_A, repress_B],
part_renderers = dr.SBOL_part_renderers(),
reg_renderers = dr.std_reg_renderers(),
plot_backbone = False)

ax.set_xlim([start, end])
ax.set_ylim([-15,15])
ax.set_aspect('equal')
ax.set_xticks([])
ax.set_yticks([])
ax.set_title('Toggle Switch')
ax.axis('off');

Nonlinear mathematical model
Consider the following model of a bistable switch (Gardner et al. 2000 and BFS Ch. 5):

where

 and

In this system description, we have , , and , that is both states

are also outputs, so .

Simulation
To simulate the mathematical model given above, we use odeint as demonstrated in
week3_intro_ode.ipynb.

Define the ODE

= − γAdA

dt

β

1+()n
B

KB(u2)

= − γB
dB

dt

β

1+()n
A

KA(u1)

KA(u1) = K (1 +)u1

Kd1

KB(u2) = K (1 +)u2

Kd2

x = [A

B
] u = [u1

u2
] y = [A

B
]

y = x

https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb
https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb

In [5]: def toggle_switch(x, t, *args):
Get all parameters and inputs
beta, gamma, K, K_d1, K_d2, n, u1, u2 = args
Compute lumped input parameters
K_A = K*(1 + u1/K_d1)
K_B = K*(1 + u2/K_d2)

Compute RHS of ODE
Here x = [A, B] so A = x[0] and B = x[1]
dx_dt = np.zeros_like(x)
dx_dt[0] = beta/(1 + (x[1]/K_B)**n) - gamma * x[0]
dx_dt[1] = beta/(1 + (x[0]/K_A)**n) - gamma * x[1]
return dx_dt

from scipy.integrate import odeint
import numpy as np

Parameter values from BFS Figure 5.3
beta = 1
gamma = 1
K_d1 = 1
K_d2 = 1
K = np.sqrt(0.1)
n = 2

Switch B on by setting u1 = 1 (repress A) and u2 = 0
u1 = 1
u2 = 0
initial_values = np.array([0, 0])
timepoints = np.linspace(0,50,100)
solution_switchA = odeint(func = toggle_switch,

y0 = initial_values,
t = timepoints,

args = (beta, gamma, K, K_d1,
K_d2, n, u1, u2))

Switch A on by setting u2 = 1 and u1 = 0
u1 = 0
u2 = 1
Continue simulation with changed values
new_timepoints = np.linspace(timepoints[-1], 100, 100)
solution_switchB = odeint(func = toggle_switch,

y0 = solution_switchA[-1,:],
t = new_timepoints,

args = (beta, gamma, K, K_d1,
K_d2, n, u1, u2))

solution = np.concatenate((solution_switchA, solution_switchB),
axis = 0)

total_timepoints = np.concatenate((timepoints, new_timepoints))

Controlled dynamical in response to inputs:

After t = 50, the input signals are switched so that u2 = 1 and u1 = 0. We observe that the
we can control the system switching behavior by switching the input signals (in this case, by
adding chemical inducers to the solution). This demonstrates a key feature of feedback
systems, that we can design dynamical response of a system in a controlled manner.

You can compare odeint performance with your numerical integrator by running both
simultaneously.

Robustness to uncertainty in feedback systems
Initial condition response (for differing initial concentrations of protein B in the solution)

In [6]: import matplotlib.pyplot as plt
ax = plt.axes()
ax.plot(total_timepoints, solution[:,0],

lw = 3, label = 'A')
ax.plot(total_timepoints, solution[:,1],

lw = 3, label = 'B')
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('A and B', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend();

In [7]: beta = 1
gamma = 1
K_d1 = 1
K_d2 = 1
K = np.sqrt(0.1)
n = 2

Switch B on by setting u1 = 1 (repress A)
and u2 = 0
u1 = 1
u2 = 0
Set different initial conditions for
concentration of protein B
ax = plt.axes()
for B0 in [0,2,5]:

initial_values = np.array([0, B0])
timepoints = np.linspace(0,50,100)
solution_switchA = odeint(func = toggle_switch,

y0 = initial_values,
t = timepoints,

args = (beta, gamma, K, K_d1,
K_d2, n, u1, u2))

Switch A on by setting u2 = 1 and u1 = 0
u1 = 0
u2 = 1
Continue simulation with changed values
new_timepoints = np.linspace(timepoints[-1], 100, 100)
solution_switchB = odeint(func = toggle_switch,

y0 = solution_switchA[-1,:],
t = new_timepoints,

args = (beta, gamma, K, K_d1,
K_d2, n, u1, u2))

solution = np.concatenate((solution_switchA, solution_switchB),
axis = 0)

total_timepoints = np.concatenate((timepoints, new_timepoints))
ax.plot(total_timepoints, solution[:,0], lw = 2,

label = 'A, B(0) = ' + str(B0))
ax.plot(total_timepoints, solution[:,1], lw = 2,

label = 'B, B(0) = ' + str(B0))
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('A and B', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend();

Initial condition response (for differing initial concentrations of protein A in the solution)

In [8]: beta = 1
gamma = 1
K_d1 = 1
K_d2 = 1
K = np.sqrt(0.1)
n = 2

Switch B on by setting u1 = 1 (repress A) and u2 = 0
u1 = 1
u2 = 0
Set different initial conditions for
concentration of protein B
ax = plt.axes()
for A0 in [0,2,5]:

initial_values = np.array([A0, 0])
timepoints = np.linspace(0,50,100)
solution_switchA = odeint(func = toggle_switch,

y0 = initial_values,
t = timepoints,

args = (beta, gamma, K, K_d1,
K_d2, n, u1, u2))

Switch A on by setting u2 = 1 and u1 = 0
u1 = 0
u2 = 1
Continue simulation with changed values
new_timepoints = np.linspace(timepoints[-1], 100, 100)
solution_switchB = odeint(func = toggle_switch,

y0 = solution_switchA[-1,:],
t = new_timepoints,

args = (beta, gamma, K, K_d1,
K_d2, n, u1, u2))

solution = np.concatenate((solution_switchA, solution_switchB),
axis = 0)

total_timepoints = np.concatenate((timepoints, new_timepoints))
ax.plot(total_timepoints, solution[:,0], lw = 2,

label = 'A, A(0) = ' + str(A0))
ax.plot(total_timepoints, solution[:,1], lw = 2,

label = 'B, A(0) = ' + str(A0))
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('A and B', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend();

Multi-stability in feedback systems:
Nullcline analysis can be used to study properties of two-dimensional systems on a graph
that plots the evolution of vectors on the 2D plane. The nullclines can be computed by
finding the points at which the rates of growth go to zero. When the nullclines for the two
states intersect (that is, both and at the same point), then this point is

called an "equilibrium point". In general, for a nonlinear system , where is a
 length vector of state variables, an equilibrium point is defined as the point such that

. The problem of finding out whether an equilibrium point is stable for a general
nonlinear system is not straightforward. However, for two-dimensional systems, the
nullclines can be used to determine the stability by looking at the evolution of the vectors in
the 2D space. Roughly speaking, if an equilibrium point is such that all starting conditions
near the equilibrium point "converge" to the equilibrium point then it is a stable equilibrium
point. On the other hand, if you start near an equilibrium point and the system dynamics are
such that you diverge away from this equilibrium point then this equilibrium point is termed
as an unstable equilibrium point.

We will use the nullclines analysis for the toggle switch system to establish the stability of its
equilibrium points.

= 0dx1

dt
= 0dx2

dt

ẋ = f(x) x ∈ Rn

n x∗

f(x∗) = 0

Plot direction of vector flows to numerically simulate stability of
equilibrium points

In [93]: beta = 1
gamma = 1
K_d1 = 1
K_d2 = 1
K = np.sqrt(0.1)
n = 2
u1 = 0
u2 = 0
K_A = K*(1 + u1/K_d1)
K_B = K*(1 + u2/K_d2)

fig, ax = plt.subplots()
b_val = np.linspace(0,1.5,100)
a_val = np.linspace(0,1.5,100)
ax.plot(beta/(gamma*(1 + (b_val/K_B)**n)), b_val,

'r', lw = 1.5, label = '$\dot{A} = 0$')
ax.plot(a_val, beta/(gamma*(1 + (a_val/K_A)**n)),

'b', lw = 1.5, label = '$\dot{B} = 0$')
ax.legend(fontsize = 14)
ax.tick_params(labelsize = 14)
ax.tick_params(labelsize = 14)
ax.set_xlabel('A', fontsize = 18)
ax.set_ylabel('B', fontsize = 18)
ax.margins(x=0, y= 0)

In [148… beta = 1
gamma = 1
K_d1 = 1
K_d2 = 1
K = np.sqrt(0.1)
n = 2
u1 = 0
u2 = 0
K_A = K*(1 + u1/K_d1)
K_B = K*(1 + u2/K_d2)

fig, ax = plt.subplots()
b_val = np.linspace(0,2,20)
a_val = np.linspace(0,2,20)
a_directions = np.zeros((np.shape(a_val)[0],

np.shape(b_val)[0]))
b_directions = np.zeros((np.shape(a_val)[0],

np.shape(b_val)[0]))
for i, a_i in enumerate(a_val):

for j, b_i in enumerate(b_val):
vector_directions = toggle_switch(np.array([a_i, b_i]),

0,beta, gamma, K,
K_d1, K_d2,
n, u1, u2)

a_directions[i,j] = vector_directions[0]
b_directions[i,j] = vector_directions[1]

ax.plot(beta/(gamma*(1 + (b_val/K_B)**n)), b_val, 'r',

label = '$\dot{A} = 0$')
ax.plot(a_val, beta/(gamma*(1 + (a_val/K_A)**n)), 'b',

label = '$\dot{B} = 0$')
ax.quiver(a_val, b_val, a_directions, b_directions,)
ax.tick_params(labelsize = 14)
ax.tick_params(labelsize = 14)
ax.set_xlabel('A', fontsize = 18)
ax.set_ylabel('B', fontsize = 18)
ax.margins(x=0, y= 0)

Phase portrait by simulating system from different initial
conditions

In [154… beta = 1
gamma = 1
K_d1 = 1
K_d2 = 1
K = np.sqrt(0.1)
n = 2
u1 = 0
u2 = 0
K_A = K*(1 + u1/K_d1)
K_B = K*(1 + u2/K_d2)

fig, ax = plt.subplots()
b_val = np.linspace(0,1.5,20)
a_val = np.linspace(0,1.5,20)
timepoints_pp = np.linspace(0,200,20)
for i, a_i in enumerate(a_val):

for j, b_i in enumerate(b_val):
solutions = odeint(func = toggle_switch,

y0 = np.array([a_i, b_i]),
t = timepoints_pp,
args = (beta, gamma, K, K_d1,

K_d2, n, u1, u2))
ax.plot(solutions[:,0], solutions[:,1], 'k',

alpha = 0.3)

ax.plot(beta/(gamma*(1 + (b_val/K_B)**n)), b_val, 'r',

lw = 2.5, label = '$\dot{A} = 0$')
ax.plot(a_val, beta/(gamma*(1 + (a_val/K_A)**n)), 'b',

lw = 2.5, label = '$\dot{B} = 0$')
ax.tick_params(labelsize = 14)
ax.tick_params(labelsize = 14)
ax.set_xlabel('A', fontsize = 18)
ax.set_ylabel('B', fontsize = 18)
ax.margins(x=0, y= 0)

Things to try:
1. Effect of n
2. Disturbance to drive the system away from an equilibrium point
3. Effect of varying other parameters
4. Stability of equilibrium points

