
Week 4 of Introduction to Biological System
Design

Introduction to Hill Functions

Ayush Pandey

Pre-requisite: To get the best out of this notebook, make sure that you have the basic
understanding of ordinary differential equations. For more information on ODEs you may
refer to any standard book on engineering math. To learn more about how to numerically
simulate ODEs, refer to week3_intro_ode.ipynb

Throughout this notebook, we refer to an ODE with the following equation:

where the function models the rate of change of the variable with time . A Hill
function is a particular kind of nonliner function that can be used to write ODE models for
gene regulation in biological systems. In this notebook, we discuss some of the common
kinds of Hill functions and their parametrizations.

Hill Functions

Activation Hill Function
If a protein X is activated by a transcription factor A, then an activator Hill function has been
shown to satisfactorily describe the gene regulation dynamics. The activation Hill function is
given by:

The Hill function describes the promoter activity due to the action of the transcription factor
. Now, we will numerically show why a Hill function is a suitable nonlinear function to

model gene regulatory interactions.

= f(x, t)dx

dt

f(x, t) x t

rate of production of X = f(A) = β An

Kn+An

A

https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb
https://pages.hmc.edu/pandey/reading/week3_intro_ode.ipynb

Note that in the above plot the half-max is achieved when amount of A = K, the activation
constant (hence, the name). The maximal rate of production of X is capped by the value of .
So, this nonlinear function represents key biological properties of gene regulation.

In [18]: import numpy as np

amounts_of_A = np.linspace(0,100,50)
Let us assume that the amount of activator
takes values starting from 0 to 100 (arbitrary units),
and that we have 50 such
values. In an experimental setting this
would correspond to 50 different titrations
that would introduce A into the solution
starting at 0 and ending at 100.

beta = 5 # the maximal activity parameter.
K = 20 # the activation constant.
n = 2 # the Hill coefficient
We will numerically see the physical implications of these parameters.

Define the activator Hill function
def activator_hill_function(activator, beta, K, n):

A = activator
return beta*(A**n)/(K**n + A**n)

import matplotlib.pyplot as plt
ax = plt.axes()
ax.plot(amounts_of_A, activator_hill_function(amounts_of_A,

beta, K, n),
lw = 3)

ax.step(np.array([0, K, amounts_of_A[-1]]),
np.array([0, 0, beta]), 'k', lw = 4)

ax.set_xlabel('Amounts of A', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.set_ylabel('Rate of production of X', fontsize = 18);

β

Effect of the Hill coefficient

In [26]: import numpy as np

amounts_of_A = np.linspace(0,100,50)

beta = 5 # the maximal activity parameter.
K = 20 # the activation constant.
n = np.linspace(1, 5, 5) # the Hill coefficient

Define the activator Hill function
def activator_hill_function(activator, beta, K, n):

A = activator
return beta*(A**n)/(K**n + A**n)

import matplotlib.pyplot as plt
ax = plt.axes()
for n_i in n:

ax.plot(amounts_of_A,
activator_hill_function(amounts_of_A,

beta, K, n_i),
lw = 3, alpha = 0.7,
label = 'n = '+str(n_i))

ax.step(np.array([0, K, amounts_of_A[-1]]),
np.array([0, 0, beta]), 'k', lw = 4)

ax.set_xlabel('Amounts of A', fontsize = 18)
ax.set_ylabel('Rate of production of X', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

Repression Hill Function
If a protein X is repressed by a transcription factor Rep, then a repressor Hill function has
been shown to satisfactorily describe the gene regulation dynamics. The repression Hill
function is given by:

The Hill function describes the promoter activity due to the action of the transcription factor
. Now, we will numerically show why a Hill function is a suitable nonlinear function to

model gene regulatory interactions.

rate of production of X = f(Rep) = β
Kn

Kn+Repn

Rep

In [25]: import numpy as np

amounts_of_Rep = np.linspace(0,100,50)
Let us assume that the amount of repressor
takes values starting from 0 to 100 (arbitrary units),
and that we have 50 such
values. In an experimental setting this would
correspond to 50 different titrations
that would introduce Rep into the solution
starting at 0 and ending at 100.

beta = 5 # the maximal activity parameter.
K = 20 # the activation constant.
n = 2 # the Hill coefficient
We will numerically see the physical
implications of these parameters.

Define the activator Hill function
def repressor_hill_function(repressor, beta, K, n):

Rep = repressor
return beta*(K**n)/(K**n + Rep**n)

import matplotlib.pyplot as plt
ax = plt.axes()
ax.plot(amounts_of_Rep, repressor_hill_function(amounts_of_Rep,

beta, K, n),
lw = 3)

ax.step(np.array([0, K, amounts_of_Rep[-1]]),
np.array([beta, beta, 0]), 'k', lw = 4)

ax.set_xlabel('Amounts of Rep', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.set_ylabel('Rate of production of X', fontsize = 18);

TX-TL modeling with gene regulation
For the activated expression of a gene, we can write the following ODE model:

In [50]: def activated_gene_expression(x, t, *args):
k_tx, alpha, A, n, K, d_T, k_tl, d_X = args
T, X = x
dT_dt = k_tx * (alpha + A**n/(A**n + K**n)) - d_T*T
dX_dt = k_tl * T - d_X*X
return np.array([dT_dt, dX_dt])

from scipy.integrate import odeint
import numpy as np

Parameters
k_tx = 2
alpha = 1e-3
amounts_of_A = np.linspace(0,100,5)
n = 2
K = 20
d_T = 0.1
k_tl = 0.1
d_X = 0.01

Initial conditions

initial_values = np.array([0, 0])
timepoints = np.linspace(0,500,100)
ax = plt.axes()
for A in amounts_of_A:

solution = odeint(func = activated_gene_expression,
y0 = initial_values, t = timepoints,
args = (k_tx, alpha, A, n,

K, d_T, k_tl, d_X))
ax.plot(timepoints, solution[:,1], lw = 3,

label = 'A = '+str(A))
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('Protein, X', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

Effect of the leak parameter

In [51]: ax = plt.axes()
for A in amounts_of_A:

solution = odeint(func = activated_gene_expression,
y0 = initial_values, t = timepoints,
args = (k_tx, alpha, A, n, K, d_T,

k_tl, d_X))
ax.plot(timepoints, solution[:,0], lw = 3,

label = 'A = '+str(A))
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('mRNA, T', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

In [52]: def activated_gene_expression(x, t, *args):
k_tx, alpha, A, n, K, d_T, k_tl, d_X = args
T, X = x
dT_dt = k_tx * (alpha + A**n/(A**n + K**n)) - d_T*T
dX_dt = k_tl * T - d_X*X
return np.array([dT_dt, dX_dt])

from scipy.integrate import odeint
import numpy as np

Parameters
k_tx = 2
alpha = 1 # High leak
amounts_of_A = np.linspace(0,100,5)
n = 2
K = 20
d_T = 0.1
k_tl = 0.1
d_X = 0.01

Initial conditions

initial_values = np.array([0, 0])
timepoints = np.linspace(0,500,100)
ax = plt.axes()
for A in amounts_of_A:

solution = odeint(func = activated_gene_expression,
y0 = initial_values, t = timepoints,
args = (k_tx, alpha, A, n, K,

d_T, k_tl, d_X))
ax.plot(timepoints, solution[:,1], lw = 3,

label = 'A = '+str(A))
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('Protein, X', fontsize = 18)
ax.tick_params(labelsize = 14)
ax.legend(fontsize = 14);

The plot for A = 0 corresponds to the leaky expression. We can see that with , the
leaky expression is quite high compared to previously.

α = 1
α = 0.001

In []:

