
Week 3 of Introduction to Biological System
Design

Introduction to Modeling Biological Processes

Ayush Pandey

Pre-requisite: If you have installed numpy, scipy, matplotlib, and pandas already, then you are
all set to run this notebook.

This notebook introduces modeling of biological processes using differential equations. Note
that to model the growth of any variable , we can write a differential equation:

where the function models the rate of change of the variable . In this notebook, we
will use this formalism of modeling systems (deterministic ordinary differential equations) to
study transcription and translation.

ODE Modeling with Python

Introduction to scipy.integrate

For Homework 2, you implemented your own numerical integrator by using a form of
backward difference method to compute the derivative. This method is often referred to as
the Euler's method to integrate differential equations. The scientific computing workhorse of
the Python language Scipy consists of various integration algorithms. One of the best
method in the scipy.integrate module is called odeint . We will use odeint in this
notebook and throughout the course quite often to integrate ODE models.

You can look at the odeint documentation here: https://docs.scipy.org/doc/scipy/reference
/generated/scipy.integrate.odeint.html

Let us learn how to use odeint by simulating a simple birth and death model:

x

= f(x, t)dx

dt

f(x, t) x

https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

Growth and death model

Let us assume that a species grows at the rate and dies at a rate of . We can write a one-
variable ODE model for this species:

To simulate this model, we can integrate this ODE over a set of time points and plot the result
as vs on a graph.

Define the ODE as a Python function. We can use the *args argument to pass multiple
parameters to our ODE. Inside the function, we can unfold args to get out the parameter
values from it. The function defines the ODE by defining the right hand side of the differential
equation. Recall that we used similar function definitions to integrate using our crude
numerical integrator.

Take a look at what odeint returns by running the next cell

(uncomment to run)

Plot the simulated ODE with time:

x k d

= k − d ⋅ x
dx

dt

x(t) t

In [78]: def growth_death_ode(x, t, *args):
k, d = args
return k - d*x

from scipy.integrate import odeint
import numpy as np
It is often helpful to use Python functions with keyword arguments, so we know
the meanings of the arguments that are passed. This is helpful in easy debugging, as well a
code better.
k = 1.0
d = 0.1
initial_values = np.array([0])
timepoints = np.linspace(0,50,100)
solution = odeint(func = growth_death_ode, y0 = initial_values, t = timepoints

args = (k, d))

In [79]: # solution

In [80]: import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.plot(timepoints, solution, lw = 3)
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('$x(t)$', fontsize = 18)
ax.tick_params(labelsize = 14)

You can compare odeint performance with your numerical integrator by running both
simultaneously.

Validate odeint simulation with analytical solution

Since the birth-death model that we considered is a simple equation that can be integrated
analytically, we can validate the numerical ODE simulation by comparing it to our analytical
solution. Note that analytically solving an ODE is not possible for all kinds of ODEs, especially,
as write more complicated models it may not be possible to obtain a closed form solution.

For the model above, the analytical solution is given by:

Let us plot this analytical solution alongside the numerical simulation:

x(t) = (1 − e−d(t−t0)) − x(0)e−d(t−t0)k

d

In [101… def analytical_solution(t, k, d, t0, x0):
return (k/d)*(1 - np.exp(-d*(t - t0))) - x0*np.exp(-d*(t - t0))

x0 = initial_values
t0 = timepoints[0]
fig, ax = plt.subplots()
ax.plot(timepoints, solution, lw = 3, label = 'numerical', alpha = 0.9)
ax.scatter(timepoints, analytical_solution(timepoints, k, d, t0, x0), c = 'r'

marker = 'x', label = 'analytical')
ax.set_xlabel('t', fontsize = 18)
ax.set_ylabel('$x(t)$', fontsize = 18)
ax.legend(fontsize = 14)
ax.tick_params(labelsize = 14)

odeint has various options that you can explore in the documentation. For example, you
can use the rtol and the atol option to set the tolerance levels of the integration
algorithm. The tolerance levels decide the accuracy of the solution => lower the tolerance for
error, more accurate the simulation, but also it is slower. So you have a speed-accuracy
tradeoff. You can also take a look at the infodict that is returned when you pass in
full_output = True . The infodict dictionary consists of information about the solver

and the steps it took. Finally, an advanced version of odeint is solve_ivp which has
multiple algorithms to integrate ODEs. However, the disadvantage is that it has slightly higher
overhead and needs to be setup correctly inorder to get reliable simulations for ill-conditioned
differential equations.

In []:

