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In this video we’re going to start developing a theory for understanding linear circuits that 
have two ports, which is a departure from the networks we’ve looked at up until this point.
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Match Networks and Filters have 2 Ports
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+
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-

+
Vout
-

Vout
+
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-

As a reminder, a port is a place where we measure circuits, and in this class we’ve been 
pretending we only measure 1 port circuits.  Everything we’ve looked at thus far has been 
some combination of inductors, capacitors and transmission lines that terminates in a load. 
But we’re straining under that idea, because we spent a lot of time talking about how much 
power went through a filter into a load.  We don’t really have numerical tools that describe 
how much of a signal goes through our circuits, and that’s because treating everything as a 
1 port network is a deceptive because many circuit really have two ports.  CLKICK We can 
see that really clearly if we take off the loads from the matching network and filter pictured 
here: which reveals that they have both an input and an output, CLICK and if we were 
feeling really crazy we could hook one output to another input to make a filter that is 
matched to a different impedance.

That poses a problem for us, because even though we’ve analyzed matching networks and 
filters separately, we have no systematic way to combine the two analyses.  We could 
probably figure something out -- the filter will look like some impedance in its pass band, 
and we could say that’s the load on our matching network -- but in this set of videos we’re 
going to describe a more mathematically rigorous way to talk about linear two port 
networks.
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Linearity: Each Port IV Set by Weighted Sum
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1 Port: 

Defined (equivalently) by:

2 Port: 

𝑉 = 𝑍௧𝐼 Γ =
𝑍௧ − 𝑍

𝑍௧ + 𝑍
OR

Each port can affect each other port, so 
the network is defined by 4 numbers:

𝑉ଵ = 𝑍ଵଵ𝐼ଵ + 𝑍ଵଶ𝐼ଶ

𝑉ଶ = 𝑍ଶଵ𝐼ଵ + 𝑍ଶଶ𝐼ଶ

OR Four Γ-like numbers 
w/ arbitrary Z0 values

𝑉ଵ

𝑉ଶ
=

𝑍ଵଵ 𝑍ଵଶ

𝑍ଶଵ 𝑍ଶଶ

𝐼ଵ

𝐼ଶ
  or  𝑽 = 𝑍𝑰Typically write as Z matrix:

+
V
-

I

+
V1
-

+
V2
-

I1 I2

We’ll start making our formalism for two port networks by looking closely at one port 
networks.  I’ve drawn an example one port here, and it has a pair of port variables V and I, 
and I is defined as positive going into the port.  As long as the circuit inside the one port is 
linear and passive, we can describe the relation between V and I using a Thevenin 
impedance.  Or, equivalently, we could specify a reflection coefficient for the port, which is 
a one-to-one function of the impedance.  

We had to add a bit of extra information to our definition when we defined the reflection 
coefficient, which was the idea of Z0.  While we know that we mean Z0 to refer to the 
characteristic impedance of the driving transmission line, the one port model doesn’t know 
anything about what it’s connected to, so Z0 seems like some arbitrary constant the 
designer picks from the one-port’s point of view.

CLICK A linear, passive two port network extends this idea.  Instead of having one port, it 
has two, and those two each have names.  Creatively, we call them port 1 and port 2.  Each 
port has a port voltage and a port current associated with it, and the port current always 
points into the port.

Instead of describing the relation between port voltages and currents with one number, like 
the Thevenin impedance above, we need four numbers.  That’s because each port can 
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affect both itself and every other port depending on what circuit is inside the two-port box. 
I’m being a little fuzzy about what it means for a port to affect another port, and we’ll get 
into it in another video.  However, we know that everything in the two-port box is linear, so 
ports affecting one another has to result in a weighted sum of port variables, which is what 
the equations I’m showing here indicate.  

The weights in this type of equation are called Z parameters, and they are written as a letter 
with two subscripts, the first is the port being affected, the second is the port doing the 
affecting.  So Z12 describes the effect of port 2 on port 1.  There are other types of 
parameters that can describe a two-port network, including a two port version of reflection 
coefficient called S parameters, so stay tuned.  Just like with one ports, we’ll probably have 
to pick a Z0 to use S parameters.

CLICK Finally, we usually write these equations as a matrix to make them more compact. I’m 
going to try to indicate vectors with bold font to help you identify matrix equation, but 
sometimes I might just ask you to pick things up from context.  For instance, the Z in this 
matrix equation represents a matrix, even though I don’t use any special notation for it.
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Summary

• We care about two port theory because we have been making two 
port networks.  eg: filters, matching networks.

• Two port theory lets us describe “through” behavior in addition to 
“loading / reflection” behavior.

• Each port has an associated I (into the port) and V

• All the port I and V quantities are related by matrix equations.
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In this video we’re going to look at a specific set of numbers you can use to describe two 
port networks called Z parameters.  These are similar to Thevenin impedances, and they’ll 
serve as an example of two-port analysis to make the idea more concrete.
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Dividers are Common Examples of Two-Ports
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R1

R2
+
V2
-

+

V1

-

I2

I1

+
V1
-

+
V2
-

I1 I2

𝑉ଵ = 𝑍ଵଵ𝐼ଵ + 𝑍ଵଶ𝐼ଶ

𝑉ଶ = 𝑍ଶଵ𝐼ଵ + 𝑍ଶଶ𝐼ଶ

The left side of this slide shows a generic two port while the right side shows a divider, 
which is a specific example of a two port network.  I’ve drawn ports 1 and 2 on the divider 
so that we can make a comparison to the generic two port throughout this video.  Note 
that we define all the currents in a two port as pointing into the network for consistency, 
and we see that in both the generic two port and the divider.

By way of review: I’ve promised that the voltages of a two port can be described by a 
weighted sum of the port currents, and I’ve shown that in a pair of equations here.  We 
called the coefficients of these weighted sums Z parameters.
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+
V
-

There’s a Thevenin-like Circuit for the Z Matrix
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R1

R2
+
V2
-

+

V1

-

I2

I1

I R1

R2

+

V

-

I

Zth Voc

+
V1
-

+
V2
-

I1 I2

Z11 Z22

Vtr1=Z12*I2 Vtr2=Z21*I2

𝑉ଵ = 𝑍ଵଵ𝐼ଵ + 𝑍ଵଶ𝐼ଶ

𝑉ଶ = 𝑍ଶଵ𝐼ଵ + 𝑍ଶଶ𝐼ଶ

Any one-port linear network can be described by a Thevenin equivalent circuit.  And I’ve 
drawn a generic Thevenin equivalent on this slide.  Once we find the one-port 
representation of a linear network, the we can draw either the circuit or its Thevenin 
equivalent in any schematic we make because the two are electrically identical.  So, for 
instance, the Thevenin impedance of the one-port version of our divider, shown on the 
right, is R1+R2, and the open circuit voltage, Voc, is zero.  (We know Voc is zero because 
the circuit on the right is passive, and you only get non-zero Voc in active circuits.)  That 
means we can put Zth in place of R1+R2 anywhere and get the exact same I-V behavior.

OK, maybe not so impressive – that’s just the definition of series resistors after all – but this 
in an important analogy for two port networks.

CLICK Two port networks have their own Thevenin-like circuit that you can drop into a 
circuit in place of a two port.  That equivalent circuit is electrically indistinguishable from 
the resistor divider on the right of the slide, and the heart of two-port analysis is 
substituting two port models with well defined interaction and loading rules in place of 
complex circuits.  The two port equivalent circuit consists of two resistors, Z11 and Z22, 
and two current-dependent voltage sources -- Vtr1 and Vtr2, so named after the archaic 
term “transresistance” -- that are carry port currents across to the other port.  The Z12 and 
Z21 are the control coefficients for these current dependent voltage sources.  
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CLICK This circuit may seem a little opaque, but it just directly implements the Z-parameter 
equations we saw on the last slide.  It says V1 is a weighted sum of I1 and I2, because the 
value of the Vtr1 is equal to the Z12*I2 term, and the voltage across Z11 will be Z11*I1.
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Measure Z Params w/ Test Current + Open Ckt
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R1

R2
+
V2
-

+

V1

-

I2

I1

+
V1
-

+
V2
-

I1 I2

Z11 Z22

Vtr1=Z12*I2 Vtr2=Z21*I1

It1

𝐼ଵ = 𝐼௧ଵ

𝐼ଶ = 0
𝑉ଵ = 𝑍ଵଵ𝐼௧ଵ

𝑉ଶ = 𝑍ଶଵ𝐼௧ଶ

𝐼ଵ = 𝐼௧ଵ

𝐼ଶ = 0
𝑉ଵ = (𝑅ଵ + 𝑅ଶ)𝐼௧ଵ

𝑉ଶ = 𝑅ଶ𝐼௧ଶ

𝑉ଵ

𝑉ଶ
=

𝑅ଵ + 𝑅ଶ 𝑅ଶ

𝑅ଶ 𝑅ଶ

𝐼ଵ

𝐼ଶ

Now that we have an equivalent circuit, we can think about how to measure or calculate 
the Z parameters for it.  

CLICK The most straightforward way is to drive a current into one port while leaving the 
other port open circuited.  That means we’ve set the value of I1 to our test current It1, and 
we’ve set the value of I2 to zero, because no current flows in an open circuit.  We then 
measure the voltage on port 1, which is all created by the voltage drop on Z11 because I2 is 
zero, which makes Vtr1 0V accordingly.  Using that voltage, we can find Z11.  Similarly, if we 
measure the voltage across port 2, we know that it is all created by Vtr2 because I2 is zero, 
and there can’t be any voltage drop across Z22.

CLICK If we apply this to our resistor divider, we can find its Z-parameters.  If I1 is It1, then 
we can see V1 will be R1+R2 times It1 and V2 will be R2 times It1.  That tells us the value of 
Z11 is R1+R2 and the value of Z21 is R2.

CLICK we can repeat that test on the other port to find the values of Z22 and Z12, and I’ve 
summarized them all in the Z-parameter matrix here. We can verify these Z-parameters are 
right by showing that this matrix gives rise to standard divider behavior: if I2 is zero, which 
would make this circuit act like a normal voltage divider, then  V2 would be I1*R2, V1 
would be I1*(R1+R2), and the ratio of V2/V1 would be R2/(R1+R2).

9



Finally, notice that Z parameters have units of impedance, which is why they’re given the 
symbol Z.
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Y Parameters are a 2 Port Version of Norton

• To measure: Probe with voltage source, observe with short circuit.
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+
V1
-

+
V2
-

I1 I2

Y11 Y22

Itc1=Y12*V2 Itc2=Y21*V1

Vt1

𝑉ଵ = 𝑉௧ଵ

𝑉ଶ = 0
𝐼ଵ = 𝑌ଵଵ𝑉௧ଵ

𝐼ଶ = 𝑌ଶଵ𝑉௧ଶ

𝐼ଵ

𝐼ଶ
=

𝑌ଵଵ 𝑌ଵଶ

𝑌ଶଵ 𝑌ଶଶ

𝑉ଵ

𝑉ଶ

R1

R2
+
V2
-

+

V1

-

I2

I1

𝐼ଵ

𝐼ଶ
=

1/𝑅ଵ 1/𝑅ଵ

1/𝑅ଵ 1/(𝑅ଵ||𝑅ଶ)
𝑉ଵ

𝑉ଶ

𝑉ଵ = 𝑉௧ଵ

𝑉ଶ = 0
𝐼ଵ = 𝑉௧ଵ/𝑅ଵ

𝐼ଶ = 𝑉௧ଵ/𝑅ଵ

There are lots of other types of parameters, for instance Y parameters are an important 
analog to Z parameters.   In a Y parameter representation, we represent the port currents 
as a weighted sum of port voltages, so the Y values are each like conductances.  That 
behavior is captured by a Norton-like equivalent circuit, and we probe its behavior by 
applying a voltage source to one port and shorting the other port to prevent it from having 
a voltage value.  I encourage you to pause the video and try to find the Y parameters for 
this divider.

CLICK I’ve included the answers here.  
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Other Parameters

• H paramters – “hybrid” parameters, show up on BJT datasheets

• G paramters – “inverse hybrid” parameters

• All equivalent representations, transforms exist between them.

11

𝑉ଵ

𝐼ଶ
=

𝐻ଵଵ 𝐻ଵଶ

𝐻ଶଵ 𝐻ଶଶ

𝐼ଵ

𝑉ଶ

𝐼ଵ

𝑉ଶ
=

𝐺ଵଵ 𝐺ଵଶ

𝐺ଶଵ 𝐺ଶଶ

𝑉ଵ

𝐼ଶ

Y parameters are popular enough that they deserved special attention, but there are still 
other sets of parameters that we’ll just skim over.  H parameters are useful for describing 
the output current of bipolar junction transistors, so much so that you still see evidence of 
them on many BJT datasheets.  Often the gain parameter on the BJT datasheet is labeled 
hFE, which stands for “forward emitter h parameter”.  G parameters also exist, and they are 
like backwards versions of H parameters that can be used to invert H parameter networks.  

One take away from these many transformations is that they are all ways of representing 
the same circuit.  At heart, these are all linear summations of port variables that represent 
a linear, passive circuit.
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Summary

• Z-parameters are represented by a Thevenin-like model

• You can measure Z parameters with a test current on one port and 
open circuit loads on all other ports.

• Many other types of parameters exist, notably Y parameters
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+
V1
-

+
V2
-

I1 I2

Z11 Z22

Vtr1=Z12*I2 Vtr2=Z21*I2
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In this video we’re going to learn about yet another set of linear parameters called S 
parameters, where the S is short for scattering.  Though we’ve already got two perfectly 
good sets of linear network parameters – Y and Z parameters – S parameters are important 
because they’re easy to measure at high frequency.  Accordingly, many types of test 
equipment report S parameter values as their outputs.
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We Can’t Measure Z Parameters at High Freq.

• Parasitic capacitances (and antennas) ruin high frequency opens.
• This model neglects transmission line phenomena, fixturing.

14

+
V1
-

+
V2
-

I1 I2

Z11 Z22

Vtr1=Z12*I2 Vtr2=Z21*I1

It1

We need S parameters because we can’t measure Z parameters at high frequency.  We 
established that we measure Z parameters by driving a current source into one port and 
then measuring voltages.  Unfortunately, making a high frequency current source is really 
tough, and making a high frequency open circuit is almost impossible.  CLICK That’s 
because any open circuit we make will look like two pieces of metal sticking out into space, 
and all pieces of metal have some capacitance between them.  Pieces of metal in space 
also look like antennas, which can cause us trouble too.

Further, this model doesn’t account for the transmission lines that we need to hook our 
equipment up to this two-port circuit, so it doesn’t help us understand reflections off of our 
ports.
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Measuring High-f 2 Ports Requires T Lines

• Could technically have different Z0 on every port.
• S-parameters relate incident and reflected waves a and b.

15

+
V1
-

+
V2
-

I1 I2
a1

b1

a2

b2

Char. Imp Z01 Char. Imp Z02
Let Z01=Zs1=Z0

Zs1 Zs2

Let Z02=Zs2=Z0

𝑏ଵ

𝑏ଶ
=

𝑆ଵଵ 𝑆ଵଶ

𝑆ଶଵ 𝑆ଶଶ

𝑎ଵ

𝑎ଶ

V2V1

S parameters fix these problems by bolting a pair of transmission lines to the ports of the 
two port.  These transmission lines could technically each have different characteristic 
impedances, and they could each be driven by different source impedances, but we’re 
going to assume that everything is matched to a value Z0 for now.

We’re going to assume that each of these transmission lines has a sinusoidal incident wave 
on it, and we’ll say the wave incident on port 1 has amplitude a1, while the wave incident 
on port 2 has amplitude a2.  We’ll call the amplitudes of the reflections of these waves b1 
and b2.  All of these a and b values could be complex in the general case.

The S parameter matrix relates the a and b waves in this model such that the b vector is 
equal to the S matrix times the a vector.  These parameters are called Scattering 
parameters because they indicate how waves scatter when they hit a network. 

This seems like a promising model: S parameters incorporate transmission lines, and we 
can make pretty good 50 ohm terminations, even at high frequency
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a and b Waves Defined to Calculate Power
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+
V1
-

+
V2
-

I1 I2
a1

b1

a2

b2
Char. Imp Z0 Char. Imp Z0

Zs1 Zs2

𝑎ଵ =
𝑉ା

𝑍

 → < 𝑃ା >=
𝑎ଵ

ଶ

2

Analytic representation of power, “complex power”

𝑉ାଵ(𝑥, 𝑡) = 𝑉ାଵ𝑒 ௫ିఠ௧

𝑃ା 𝑥, 𝑡 = Re 𝑉ାଵ𝐼ାଵ
∗ =

𝑉ାଵ
ଶ

𝑍
Re{𝑒ଶ ௫ିఠ௧ }

< 𝑃ାଵ >=
𝑉ାଵ

ଶ

2Z

Pick a definition of a that makes P easy to calculate 

V2V1

Average over sinusoid squared is 1/2

(Presuming Z0 is purely real here)

The a and b amplitudes are defined in a special way that makes the calculation of power 
flow in the system easier.  

CLICK So we’ll start to figure out a good value for a by calculating the power carried in our 
right travelling wave on port 1, V+.  I’ve included our complex exponential representation of 
V+ here.

CLICK We can find the power dissipated at point x of a transmission line by taking voltage 
times the complex conjugate of current.  Because we’re using an analytical representation 
of voltage, we need to multiply by the complex conjugate of current to make sure our 
power result turns into a real number. That means our real power will be set a coefficient --
the magnitude of the right-travelling wave squared divided by the characteristic impedance 
– which I’m assuming is purely real for now – multiplied by a sinusoid.  

CLICK If we average the power over time and space to find the average power delivered to 
the right traveling wave, we get half of that coefficient, because we’re averaging over a 
sinusoid squared.

CLICK We pick the size of the a wave to easily calculate this coefficient. We set it to the 
magnitude of the right travelling wave divided by the square root of characteristic 
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impedance.  That means the power carried by the wave is given by the magnitude of a^2 
divided by 2.  We’ll circle back to power flow soon, and this calculation will be handy.  Note 
that a can be complex in the general case where Z0 is complex, but its real under our current 
assumptions.

While we’re here, I want to make a note about real and imaginary power.  Real power is the 
this we’re used to, electrical energy that gets dissipated as heat.  Real power comes from 
voltage and current that are in phase, and multiplying voltage by the complex conjugate of 
current is one way to calculate the phase relation between voltage and current.  We’re going 
to mostly ignore the imaginary part of the power, but it has an interpretation too: it comes 
from voltage and current that are out of phase, which means that it corresponds to current 
and voltage getting stored in inductors and capacitors, then released again during each cycle.
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Measure S-Params by Terminating Ports in Z0
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+
V1
-

+
V2
-

I1 I2
a1

b1

a2

b2

Char. Imp Z0 Char. Imp Z0

Zs1 Zs2

Let Zs2=Z0 
and V2=0 V2V1

𝑏ଵ

𝑏ଶ
=

𝑆ଵଵ 𝑆ଵଶ

𝑆ଶଵ 𝑆ଶଶ

𝑎ଵ

𝑎ଶ

𝑏ଵ = 𝑆ଵଵ𝑎ଵ + 𝑆ଵଶ ⋅ 0

𝑏ଶ = 𝑆ଶଵ𝑎ଵ + 𝑆ଵଶ ⋅ 0


𝑆ଵଵ = 𝑏ଵ/𝑎ଵ = Γଵ ቚ
ଶ ௧௧ௗ

𝑆ଶଵ = 𝑏ଶ/𝑎ଵ = 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑔𝑎𝑖𝑛

𝑆ଶଶ = 𝑏ଶ/𝑎ଶ = Γଶ ቚ
ଵ ௧௧ௗ

𝑆ଵଶ = 𝑏ଵ/𝑎ଶ = 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛

We measure S parameters by terminating one port in Z0 and turning off the wave going 
into that port.  In other words, CLICK we let Zs2=Z0 and V2=0.  That means there will be no 
a2 wave incident on port 2, so we know reflections b1 and b2 both have to be caused by 
a1.  CLICK this is that statement in equation form: the a2 terms in both of our linear S-
parameter equations have been set to zero.  CLICK this lets us observe some interesting 
things about S parameters.  S11 is the ratio of b1/a1, which is the ratio of the reflected 
wave over the incident wave.  We already have a name for that, and it’s the reflection 
coefficient.  So S11 is the reflection coefficient when port 2 is terminated.  S22 is similar: 
it’s the reflection coefficient off of port 2 when port 1 is terminated.  S21 and S12 measure 
types of gain in our system: S21 measures how much of an incident wave crosses from port 
1 to port 2, and the often undesirable S12 discusses how much of a wave incident on port 2 
makes it back to port 1.

17
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Summary

• We need S-parameters because they’re easy to measure at high f

• S-parameters are ratios of incident and reflected waves

• a and b waves are sized to make power calculation easy: 

• S11 is the reflection coefficient (if port 2 is terminated)
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𝑏ଵ

𝑏ଶ
=

𝑆ଵଵ 𝑆ଵଶ

𝑆ଶଵ 𝑆ଶଶ

𝑎ଵ

𝑎ଶ

𝑎ଵ =
𝑉ା

𝑍
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In this video we’re going to try to find the S-parameters of a simple circuit.  
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S-Parameters Don’t Map Cleanly to Circuits

20

R1

R2
+
V2
-

+

V1

-

I2

I1

Z0

𝑆ଵଵ = Γଵ ቚ
ଶ ௧௧ௗ

=
(𝑅ଵ + 𝑅ଶ| 𝑍 − 𝑍

(𝑅ଵ + 𝑅ଶ| 𝑍 + 𝑍

𝑆ଶଵ =
𝑏ଶ

𝑎ଵ
= ⋯

While S-parameters are easy to measure, we’re going to find they are tough to analyze.  If I 
was trying to find the S-parameters of our divider, I could start by attaching Z0 to port 2.  
Making that connection ignores the transmission line connecting port 2 to the termination, 
but this is OK because the driving point impedance of a transmission line with a matched 
load is always Z0 anyway.  So we can find reflection coefficient of this structure from the 
Thevenin impedance of the load.

That was fine, but when we have to find S21, we’re kind of stumped.  S21 is defined in 
terms of wave amplitudes, but all we have in this model are port voltages and currents, 
which aren’t’ the same as the amplitudes of incident and reflected waves.
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a and b Waves Can Be Related to Port I and V

21

𝑉ଵ = 𝑉ା + 𝑉 = 𝑍 𝑎ଵ + 𝑏ଵ

𝐼ଵ =
𝑉ା

𝑍
−

𝑉

𝑍
=

𝑎ଵ − 𝑏ଵ

𝑍

𝑎ଵ =
𝑉ଵ + 𝑍𝐼ଵ

2 𝑍

, 𝑏ଵ =
𝑉ଵ − 𝑍𝐼ଵ

2 𝑍

+
V1
-

+
V2
-

I1 I2
a1

b1

a2

b2

Char. Imp Z0 Char. Imp Z0

Zs1 Zs2

V2V1

However, we know the port voltages and currents are given by sums of voltage waves and 
differences of current waves from our earlier study of transmission lines.  CLICK That means 
we can write a1 and b1 in terms of V1 and I1 by adding and subtracting the V1 and I1 
equations in the first two lines.  

As an aside: I found these definitions baffling when I first studied S parameters, because 
they’re often the first definitions given for a1 and b1, with no mention of transmission 
lines.  I mentioned earlier that you can think of S parameters without a transmission line 
around, and pick Z0 to be some arbitrary value, and many texts opt to do so.  However, 
now that I have the picture of S-parameters as describing a two-port with transmission 
lines bolted on the side, I make sense of these definitions as mathematical tricks to relate 
the incident and reflected waves to voltage and current in the load.
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S-Parameters Don’t Map Cleanly to Circuits

• Tricky to compute with S-parameters … but doable now.
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R1

R2
+
V2
-

+

V1

-

I2

I1

Z0

𝑆ଵଵ = Γଵ ቚ
ଶ ௧௧ௗ

=
(𝑅ଵ + 𝑅ଶ| 𝑍 − 𝑍

(𝑅ଵ + 𝑅ଶ| 𝑍 + 𝑍

𝑆ଶଵ =
𝑏ଶ

𝑎ଵ
=

𝑉ଶ − 𝑍𝐼ଶ

𝑉ଵ + 𝑍𝐼ଵ

Z0/Zl, so that V1=I1*Zl

Z0*I2=V2, see schematic

Independent of network, useful takeaway!

=
2𝑉ଶ

𝑉ଵ 1 +
1 − 𝑆ଵଵ
1 + 𝑆ଵଵ

=
𝑉ଶ

𝑉ଵ
1 + 𝑆ଵଵ =

𝑅ଶ

𝑅ଶ + 𝑅ଵ
1 + 𝑆ଵଵ

So, now that we’re armed with these port identities we can get one step farther with 
finding S21.  CLICK the step after requires some fancy circuit footwork.  First, we can see 
from the schematic that I2*Z0 is going to be equal to –V2 because I2 flows into the 
negative terminal of Z0.  So that means we can substitute –V2 for Z0*I2 in the numerator, 
which means we wind up with a total of 2V2 on top of the expression.  The bottom of the 
expression requires even more tortured reasoning, where we express the normalized load 
impedance in terms of S11.  CLICK However, simplifying this, we get a nice expression that 
relates the voltage gain of the network to S21, and because we haven’t put in any details of 
this particular divider yet, this expression is good for any two-port network.  It’s a handy 
tool, keep track of it. 

CLICK Finally, we substitute in the resistor divider equation for V2/V1, in order to find the 
S21 of this divider.
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Another Option is S-to-Z Conversion Formulas

• Easy to find Z parameters, and all linear representations equivalent
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𝑆 = 𝑍 − 𝑍𝐼 𝑍 + 𝑍𝐼 ିଵ

𝑍 = 𝐼 − 𝑆 ିଵ 𝐼 + 𝑆 𝑍

𝑆ଶଵ =
2𝑍𝑍ଶଵ

𝑍ଵଵ + 𝑍 𝑍ଶଶ + 𝑍 − 𝑍ଵଶ𝑍ଶଵ

If that all seems like a bit much, there’s another option.  Z parameters were pretty easy to 
calculate for the divider, and there’s a conversion between S and Z parameters.  I’ve 
included it on this slide.  It’s a bunch of matrix math, but it lets you do easy circuit analysis 
to build intuition, and then let a computer do the hard matrix calculations for you.  This is a 
reasonable approach if you don’t need to calculate S parameters in your head right now.  
I’ve included the specific calculation that relates S21 to Z parameters on this slide to give 
some context for how annoying these calculations would be to do by hand.

Before we leave the slide, I find it cute that the matrix versions of these equations kind of 
look like the scalar equations relating reflection coefficient and load impedance: you can 
see a Zl-Z0 divided by Zl+Z0 in the first equation if you squint.

23


