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In this video we’re going to learn about the noise temperature contributed by some 
common of components, specifically lossy passive systems and antennas.
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Reminder, we know noise temperature of R
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𝜎௩
ଶ = 4𝑘𝑇𝑅Δ𝑓

𝑃ே =
𝜎௩
ଶ

4𝑅
= 𝑘𝑇Δ𝑓 = 𝑘𝑇௡Δ𝑓

𝑇௡ = 𝑇

𝜎௜
ଶ = 4𝑘𝑇Δ𝑓/𝑅

Noise temperature equal to physical temperature

To start off, we should review the noise temperature of a resistor.  We know from earlier 
videos that we can say resistors have a noise current variance or a noise voltage variance as 
shown on this slide.  I’ve also introduced a new schematic notation here, which is how 
noise sources are usually indicated.

CLICK We also know from thermodynamics that the noise power is given by the noise 
voltage variance over 4R, and that noise power is equal to kT delta f.  Finally, noise power is 
equal to k Tn delta f by the way we defined Tn, the noise temperature.

CLICK Looking at the last two of those equations it’s pretty easy to see that the noise 
temperature of an individual resistor is just equal to the physical temperature, T.
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Temperature of Lossy Passives is (1/L-1)*T
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Linear 
Power 

Gain is L

Tp

Tl=T

𝑇௢௨௧ = 𝑇௟௢௔ௗ

𝐿(𝑇 + 𝑇௣) = 𝑇

because they’re in equilibrium

𝑇௣ =
1

𝐿
− 1 𝑇

Ts=T
Rs

Works for any passive: attenuator, filter, splitter, couplers some mixers, etc.

If we have a lossy, passive two-port network, we can try to calculate the contribution it 
makes to a noise temperature.  This schematic shows a source with a source resistance Rs 
driving a lossy two-port network that is terminated with a load. By convention, we define 
noise temperature of a two-port at the input in order to explain the noise power at the 
output.  We know the temperature of the source resistor and the load resistor, and we’re 
hoping to use that fact to figure out temperature of the noise introduced by the lossy two 
port.

CLICK To do so, we can observe that we are assuming that we’re in thermal equilibrium, 
which means the noise emitted by the two-port has to be equal to the noise emitted by the 
load.  If that wasn’t true, one resistor would be providing power to the other.

CLICK We can calculate the noise power at the output by multiplying the input powers by 
the power gain.  As a reminder: The power gain is like the transfer function squared, so this 
is consistent with our previous finding that we refer noise to different places in the circuit 
using the transfer function squared.  Also noise temperatures are linearly related to 
variance densities, so it’s fine for us to add them. We’re using the symbol L for power gain 
here to indicate that this system is actually going to have a loss, which means L is expected 
to be less than 1.
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CLICK Rearranging a little lets us calculate the temperature of the passive in terms of L and 
the physical temperature, Tp is equal to 1 over L minus 1 times the physical temperature.

CLICK It’s worth noting that this is a very powerful equation.  We can use it for any lossy 
passive, so this works for attenuators, filters, splitters, couplers and some mixers.  If it has an 
insertion loss, this equation will tell you its noise temperature.
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Antenna Temperature is Incident Radiation
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Noise temperature of night sky is 4-30K

https://commons.wikimedia.org/wiki/File:The_Earth_seen_from_Apollo_17.jpg

Apollo 17, Public domain, via Wikimedia Commons

Noise temperature of earth from space is 290K
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Antennas are a different case.  They’re passive structures, just pieces of metal, so you could 
expect them to behave like passives, but it turns out that their noise is much more 
dependent on the radiation that is incident on them.  Various sources in the universe emit 
broadband radiation, and the antenna’s radiation pattern will absorb that noise, so you 
calculate antenna temperature by integrating the radiation pattern, R, times the received 
radiation temperature, T, over spherical coordinates.  In other words, you sum the total 
noise incident on the antenna to determine the antenna’s temperature.

That temperature depends a lot on what the antenna is looking at, especially if the antenna 
is high gain so that it’s whole field-of-view is occupied by one radiator.  For example, the 
night sky, depending on where you look, will have a noise temperature of 4 to 30 Kelvins.  
The lower limit of 4K in that case is the cosmic microwave background radiation, which is a 
famous scientific result.  On the other hand, looking at earth from space will give you a 
noise temperature of 290K.   It’s just a coincidence that the 290K number is close to room 
temperature.
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Summary

• Resistor noise temperature is equal to the physical temperature: Tn=T.

• In two-ports, noise temperature is input-referred.

• Lossy passives add noise with a temperature of Tp=(1/L-1)T.

• Antenna temperature depends on where the antenna is pointing.
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In this video we’re going to figure out the noise temperature of amplifiers.  We’re going to 
be doing so in terms of a commonly listed datasheet specification called the noise figure, 
which requires us to introduce a new metric called signal-to-noise ratio as well.
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An Amplifier Adds Noise to Noisy Inputs
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Signal-to-Noise Ratio defined as:

𝑆𝑁𝑅 =
𝑃௦௜௚௡௔௟

𝑃௡

Power gain G

Pin

Tin Ta
Signal: GPin

Noise: G(Tin+Ta)

𝑆𝑁𝑅௜௡ =
𝑃௜௡

𝑘𝑇௜௡𝐵
𝑆𝑁𝑅௢௨௧ =

𝐺𝑃௜௡
𝑘𝐺(𝑇௜௡ + 𝑇஺)𝐵

=
𝑃௜௡

𝑘 𝑇௜௡ + 𝑇஺ 𝐵

Noise factor and noise figure defined as:

𝑛𝑓 =
𝑆𝑁𝑅௜௡
𝑆𝑁𝑅௢௨௧

𝑛𝑓 =
𝑆𝑁𝑅௜௡
𝑆𝑁𝑅௢௨௧

=
𝑆௜௡
𝑆௢௨௧

𝑁௢௨௧
𝑁௜௡

=
1

𝐺

𝐺(𝑇௜௡ + 𝑇஺)

𝑇௜௡
= 1 +

𝑇஺
𝑇௜௡

𝑁𝐹 = 10 log 𝑛𝑓

Noise temperature of amplifier 𝑇஺ = 𝑛𝑓 − 1 𝑇
(Let Tin=T as if it’s a normal Rs)

This is our picture of an amplifier, and it’s worth noting that the amplifier’s noise 
temperature adds to any noise temperature that’s already present in our input signal.  
That’s true of passives networks too, but we need a special formula for amplifiers because 
the active devices in them create noise in a different way from resistors.  Accounting for 
those noise sources is tricky, but we’re going to discover that we can skip that step using a 
number that shows up in most datasheets called the noise figure.

CLICK We can evaluate the impact this amplifier noise has on our signal by defining a 
measure called the signal-to-noise ratio.  The name of signal-to-noise ratio is surprisingly 
expressive, it’s literally just the ratio of signal power to noise power.  Notice that the signal 
power is a total power, not a density, so we have to assume our system has some 
bandwidth B in order to calculate our total noise power.  I’ve calculated the SNR of our 
input signal, which is comprised of everything left of the blue dashed line in the schematic, 
and the SNR of our system’s output.  The amplifier has clearly reduced our SNR.

CLICK That leads us to another important metric of performance, the noise factor, which is 
the ratio of SNR at an amplifier’s input to SNR at the output. It measures how much worse 
an amplifier makes your SNR.  The noise figure, which is denoted with the capital letters NF, 
is the noise factor expressed in dB.
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CLICK We can find the noise factor for our example amplifier with this calculation.  This 
derivation includes a fun step where we express the SNRin over SNRout as signal in over 
signal out times noise out over noise in, which we can do because SNR is just a ratio of 
powers.  Because we’re looking at a very generic amplifier model, our final expression for 
noise factor isn’t terribly insightful.  Our equations say that noise factor is equal to one plus 
the ratio of amplifier temperature over the input temperature.  Sure, this is just another trite 
way of saying that the amplifier adds some noise.  However, it is telling that the amplifier’s 
noise is added to one; the one term in that equation comes from the fact that input 
temperature gets amplified and sent to the output, which means that noise factor always has 
to be greater than one.  Every practical amplifier adds some noise, so it will always make 
your signal to noise ratio worse.

CLICK  We can improve on our expression for noise factor by using it to find the noise 
temperature of the amplifier’s noise.  We do this the same way that we did with a passive 
network, by assuming that our input noise is produced by a source resistor, which has a 
temperature T.  Substituting the physical temperature T into our expression for noise factor 
gets us an expression for antenna temperature, it’s equal to noise factor minus 1 times the 
physical temperature.
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Summary

• Signal-to-Noise Ratio is SNR=Psig/Pnoise

• Noise factor of a two-port, usually an amplifier, is nf=SNRin/SNRout

• Noise figure is dB version of noise factor

• Amplifiers add input-referred noise with temperature TA=(nf-1)T

9
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In this video we’re going to look at the other source of random noise we’ll consider in our 
receivers: quantization noise.
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If Amplifiers Hurt SNR, Why Use Them?

11

G1=10dB

Stage 1 Stage 2 Stage 3

G2=10dB G3=10dB
NF1=1dB NF2=1dB NF3=1dB

Pin

Tin

Analog-to-Digital 
Conversion

SNRin = 10*log(kTinB/Pin) SNRout = SNRin - 3dB

Pout = G1*G2*G3*Pin = Vout^2/2R

w/ LSB

Our motivation for doing this is the observation that noise figure paints a disturbing picture 
of amplifiers: since noise figure is always going to be greater than 0dB (which is the same 
thing as saying noise factor is greater than 1), each amplifier we go through reduces our 
signal to noise ratio.  Why should we use amplifiers if they make our signal quality worse?  
In the example I’ve drawn here, we have very low noise amplifiers with a noise figure of 
1dB, and they still result in our SNR being halved at the output.

CLICK This analysis overlooks that our signal has been made much larger by this receive 
chain, which is very important when we’re comparing our signal against the resolution of 
an analog-to-digital conversion.  Analog-to-digital converters have a minimum signal that 
they can resolve called a least-significant-bit or LSB and that LSB can introduce significant 
noise into small signals.
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ADC Transfer Functions Introduce Error
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000
001
010
011
100
101
110
111

Vfs

LSB

Vin [V]

Dout

Vin Dout

Vin [V]

Error [V]

LSB/2

-LSB/2

Vin Vout

error

We need to take a closer look at the operation of analog-to-digital converters to 
understand why the LSB is such a big deal.  Quick aside, analog-to-digital converter is often 
abbreviated ADC, and I’m going to be using that abbreviation. 

I’ve drawn a transfer function for an ADC on this slide.  The x-axis is the input voltage and it 
has units of volts.  The y-axis represents a digital number that the ADC produces, and it’s 
referred to as a code.  So for an input voltage of 0 volts, the ADC produces the digital code 
000, which represents the number 0 in binary.  If the input is at the full-scale voltage Vfs, 
the ADC will produce the code 111, which represents the number 7 in binary.  Because the 
codes are discrete values, while the input is a continuous value, the transfer function has to
include cut-points where the output jumps from one code to the next.  That leads to the 
stair-step shape of the transfer function.  The width of each stair-step is called one least-
significant-bit, or LSB, because the code changes by 1 each time your input voltage changes 
by LSB volts.  

CLICK That stairstep is trying to approximate a straight line that would let the output codes 
linearly represent the input voltage.  CLICK at some voltages, the output stairstep does that 
well.  The voltage you get by multiplying Vfs by the ratio of this code to the max code is 
exactly the same as the input voltage.  CLICK  However, other input voltages pose a 
problem.  This input voltage is going to be assigned to the 100 code, but it isn’t at the 
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sweet spot on the stairstep where the stairs line up exactly with the linear approximation.  
That means the conversion has introduced some error when it measured this input voltage.

CLICK We tend to capture this behavior in signal-processing or control models by imagining 
that ADCs look like transfer functions of 1, which assumes they achieve their perfect stair-
step approximation and convert a continuous Vin in volts to a digital Vout in volts, but that 
the ADC also adds in some error to represent the process of quantization.  

CLICK The amount of error you add depends on how far your input is away from a code 
transition.   If your input falls right on a code transition, you’re guaranteed to be plus/minus 
LSB/2 away from a perfect linear relationship, but when your input falls halfway between 
code transitions you introduce zero error because you’re exactly on the linear relationship 
you were aiming for.
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Error is Uniform  Quant Noise = LSB^2/12
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Vin [V]

Error [V]

LSB/2

-LSB/2

Input Signal

Error [V]

Probability

LSB/2-LSB/2

1/LSB

𝜎௤
ଶ = 𝐿𝑆𝐵ଶ/12

Quantization Noise!

If we take this error vs. Vin plot and assume that our input spans a several LSBs and that it’s 
spectrally rich, meaning that we don’t just make the same pattern of codes every period of 
our input, then we can model the error as a uniformly distributed random variable.  That’s 
just saying that it’s equally likely for our input to land anywhere between two code 
transitions.  

The maximum and minimum values of the uniform distribution are plus/minus LSB over 2 
to indicate the maximum and minimum values of error we could have.  The height of the 
distribution has to be 1/LSB to ensure that our total probability is 1.  The variance of this 
distribution is our quantization noise, and it has a value of LSB squared over 12.  

Great! We’ve got an expression.  Digging into it a little bit, we can notice that it has units of 
voltage squared because the LSB is a voltage.  So that means that quantization noise is a 
voltage noise variance, which means we can add it to the voltage noise variance of other 
elements of our system. We’ll see soon that increasing our gain reduces the effect of 
quantization noise, which is why we need amplifiers in our receivers.
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Summary

• Quantization noise comes from the difference between ADC transfer
functions and a perfectly straight line.

• Quantization noise is 𝜎௤ଶ = 𝐿𝑆𝐵ଶ/12
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In this video we’re going to talk about the noise performance of entire receiver chains.

15



Department of Engineering

Total Noise at Output Dominated by 1st Stage
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G

G1

Stage 1 Stage 2 Stage 3

G2 G3
T1 T2 T3

Pin

Tin

LSB

𝑇௢௨௧ଵ = 𝐺ଵ(𝑇௜௡ + 𝑇ଵ) 𝑇௢௨௧ଶ = 𝐺ଶ(𝑇௢௨௧ଵ + 𝑇ଶ)

𝑇௢௨௧ଶ = 𝐺ଶ𝐺ଵ𝑇௜௡ + 𝐺ଶ𝐺ଵ𝑇ଵ + 𝐺ଶ𝑇ଶ)

Stage 4

𝜎௩ସ
ଶ = 4𝐵𝑘𝑅 𝐺ଵ𝐺ଶ𝐺ଷ𝑇௜௡ + 𝐺ଵ𝐺ଶ𝐺ଷ𝑇ଵ + 𝐺ଶ𝐺ଷ𝑇ଶ + 𝐺ଷ𝑇ଷ + 𝐿𝑆𝐵ଶ/12

Bandwidth 
B

Can’t control T1 super important! Care less about these Gain reduces relative effect

Low noise amplifier 
(LNA)

I’ve drawn a receiver chain here that shows the noise sources of each amplifier stage.  Note 
that this is a pretty simplified receiver stage, most recievers would need transmit/receive 
switches, filters mixers and other components.  More news on those soon.

CLICK We can calculate the noise temperature that the first amplifier emits by referring Tin 
and T1 through the power gain of the first stage.

CLICK That output noise becomes the input for the second stage, so the output noise of the 
second stage is given by referring the output of the first stage plus the temperature of the 
second stage through G2.  This means Tin and T1 have an amplified impact on Tout2 
because they have seen two gains while T2 has only seen G2.

CLICK If we follow this through every stage, then we can finally come up with an expression 
for the total noise voltage variance of our system.  It consists of a thermal term and a 
quantization term. The thermal term is a big effective temperature that is multiplied by k, 
some assumed bandwidth B, and 4R to convert to a  a voltage variance.  We then add that 
voltage variance to our quantization term.

CLICK This expression shows us something really important about receiver design: the 
noise of the first stage matters much more than noise in the later stages.  We can see in 
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this effective noise temperature: the Tin and the T1 terms both see the full gain of the 
receiver, while T2 and T3 each see less gain.  We can’t do anything with the input noise 
temperature -- it’s part of our input signal – but we can do our level best to make T1 small.  
CLICK This concept is so important that there are a special class of amplifiers, called low-
noise amplifiers or LNAs, that are used as the inputs of the receivers to minimize the noise 
contribution of the first stage.

CLICK The quantization noise term in this expression is also interesting.  It isn’t multiplied by 
the gain of the receivers, so this noise term doesn’t get bigger as gain increases.  That means 
making a signal bigger will make the quantization noise a smaller fraction of the total signal.  
This answers the question of why we use amplifiers decisively: we make our signals bigger to 
overcome quantization noise.
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Referring Noise Lets us Make Simpler Models
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G

G1

Stage 1 Stage 2 Stage 3

G2 G3
T1 T2 T3

Pin

Tin

Stage 4

G

G1

Stage 1 Stage 2 Stage 3

G2 G3
Tout

Pin

Stage 4

𝑇௢௨௧ = 𝐺ଵ𝐺ଶ𝐺ଷ𝑇௜௡ + 𝐺ଵ𝐺ଶ𝐺ଷ𝑇ଵ + 𝐺ଶ𝐺ଷ𝑇ଶ + 𝐺ଷ𝑇ଷ

Our receiver model, pictured on the top of this slide, is kind of complicated.  There are a lot 
of noise sources in it, which might be an unnecessary level of detail if we’re not trying to 
optimize the design amplifier-by-amplifier.  So we can make an equivalent model that just 
lumps all of the noise sources at the end of the receive chain.  From the perspective of the 
ADC, these two chains are identical, but the designer can think less about the version with 
all the noise at the output. This model is called an output-referred noise model.
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System Temp is Input-Referred Rx Chain Noise
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G

G1

Stage 1 Stage 2 Stage 3

G2 G3
Tsys

Pin

Stage 4

𝑇௦௬௦ = 𝑇ଵ +
𝑇ଶ
𝐺ଵ

+
𝑇ଷ

𝐺ଶ𝐺ଵ

Tin

𝑆𝑁𝑅 ≈
𝑃௜௡

𝑘 𝑇௜௡ + 𝑇௦௬௦ 𝐵
for high gain

Another popular, simplified noise model involves referring the noise of the amplifiers to the 
input.  This noise source is called the system temperature.  System temperature is popular 
because you can calculate your SNR very quickly if your gain is high enough to ignore 
quantization noise.
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There are Cascade Formulas for Noise Factor

19

G1

Stage 1 Stage 2 Stage 3

G2 G3
nf1 nf2 nf3

𝑇௢௨௧ = 𝐺ଵ𝐺ଶ𝐺ଷ𝑇௜௡ + 𝐺ଵ𝐺ଶ𝐺ଷ 𝑛𝑓ଵ − 1 𝑇 + 𝐺ଶ𝐺ଷ 𝑛𝑓ଶ − 1 𝑇 + 𝐺ଷ 𝑛𝑓ଷ − 1 𝑇

𝑛𝑓௧௢௧௔௟ =
𝑆𝑁𝑅௜
𝑆𝑁𝑅௢

=
𝑆௜
𝑆௢

𝑁௢
𝑁௜

=
1

𝐺ଵ𝐺ଶ𝐺ଷ

𝐺ଵ𝐺ଶ𝐺ଷ𝑇 + 𝐺ଵ𝐺ଶ𝐺ଷ 𝑛𝑓ଵ − 1 𝑇 + 𝐺ଶ𝐺ଷ 𝑛𝑓ଶ − 1 𝑇 + 𝐺ଷ 𝑛𝑓ଷ − 1 𝑇 
𝑇

= 1 + (𝑛𝑓ଵ − 1) +
𝑛𝑓ଶ − 1

𝐺ଵ
+
𝑛𝑓ଷ − 1

𝐺ଶ𝐺ଷ

𝑛𝑓௧௢௧௔௟ = 𝑛𝑓ଵ +
𝑛𝑓ଶ − 1

𝐺ଵ
+
𝑛𝑓ଷ − 1

𝐺ଶ𝐺ଷ
Confusingly, also the Friis Formula

Finally, we can use output referred noise to derive a cascade formula for noise factors in 
amplifiers. I don’t love using cascade formulas and instead usually prefer keeping a 
spreadsheet of the noise level at each stage, but these are good formulas to know about 
anyway.

CLICK We can calculate the total noise factor of this amplifier chain using the output noise 
temperature and the total gain.  We’re ignore k and the bandwidth in this equation 
because they’ll fall out of a ratio of noise temperatures, k and B would be on both the top 
and to bottom of the epression.

CLICK Cancelling gain terms simplifies this significantly.  

CLICK And, finally, cleaning up leaves us with the cascade formula for noise factor.  
Confusingly, this is also called the Friis formula, so you’ll just have to know from context 
whether people are talking about path loss or noise factor of cascaded amplifiers.  This 
formula also emphasizes how important the noise performance of the first stage is to the 
behavior of the whole amplifier.  We see all of nf1, while nf2 and nf3 are discounted by the 
gain of the preceding amplifiers.
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Summary

• The first amplifier in the chain (the LNA) has the most impact on the 
total noise in the system

• Gain can reduce the relative effect of quantization noise on SNR

• Noise temperature can be input and output referred

• System temperature is input-referred noise from the amplifiers
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