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In this video we’re going to start talking about filters by defining a language that we use to 
describe them.
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Filters are Like Extended Matching Networks
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Filters are a natural follow on after talking about matching networks because you can think 
of them as an extension of the same idea.  We showed that an L-match lets us absorb 
energy at one frequency (which is resonance) and reflect it at every other frequency, so we 
could think of an L match as a type of filter.  That’s particularly obvious if we define a 
transfer function across an L match network from Vin to Vout, which would look like a 
narrow resonant peak.  Adding more components in a pi match allowed us to control the 
shape of that peak and smear it out over more frequencies.  So it stands to reason that by 
adding even more components to our matching network, we could control whether a signal 
is passed or reflected over a wider frequency.  That turns out to be true, and the type of 
circuit that achieves this frequency response is referred to as an LC ladder filter.  We opt to 
make LC ladder filters out of inductors and capacitors for the same reason we use inductors 
and capacitors in matching networks: lossless components make the filter lossless.
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Filter Responses Described by Many Terms

4

ω0 ωhωl ωshωsl

Insertion Loss
Pass-band Ripple

Pass band
BW=ωh-ωl

Stop band Transition 
Region

Stop-Band Rejection

Stop-Band Ripple
(only in some filters)

Band edges, 
specified by ε

land at 1/(1+ε^2), 
usually ε=1, so -3dB

Stop band edges, 
specified as 1/As^2

𝐻 𝑗𝜔 ଶ =
1

1 + 𝜖ଶ𝐹௡
ଶ 𝜔/𝜔௣

Band edges symmetric, so
ωh=ω0+ωp, ωl=ω0-ωp

ω0dB

The exact shape of the filter transfer function can be captured by this equation, which we 
call the filter prototype because it is highly customizable.  The epsilon parameter affords 
some flexibility, but the real special sauce is the Fn function, which represents a ratio of nth 
order polynomials that varies between zero and one for a while, then flies off to infinity.  
The order of this polynomial affects the steepness of the filter behavior and the complexity 
of the filter design, so it’s important.  The order of that polynomial is also referred to as the 
order of the filter.  

CLICK this is a general picture of what this transfer function might look like. You can see 
that the x-axis indicates that filter behavior changes with frequency, and that the y-axis is 
has units of dB, which means that we’re framing our discussion in terms of how much 
power gets through a filter.  That’s consistent with the picture painted by our equation, 
which represents a transfer function squared, and accordingly describes a ratio of powers 
rather than a ratio of voltages or currents.

CLICK the filter is described by a center frequency w0, which sits in the middle of a 
frequency region called the pass band.  The upper and lower edges of this band are 
described by frequencies wh and wl, and they are symmetric about w0, so we can specify 
wh=w0+wp and wl=w0-wp.
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CLICK There is some loss in the pass band, which is referred to as insertion loss.  The transfer 
function also varies in the pass band, and that behavior is referred to as pass-band ripple.  
The pass band ripple measurement is the difference between the insertion loss and the 
lowest allowed value of the pass band.  Some filters have pass bands that only ever 
decrease, which means we can use the vocabulary word monotonic to describe them.  Those 
filters don’t have ripple in the sense you might think of it, but we still call the steady decay of 
the transfer function ripple.

CLICK  In a properly designed filter, the maximum level of pass-band ripple will occur at the 
edges of the pass band, wh and wl.  You can pick exactly how much ripple you want to allow 
in the pass band by setting the epsilon parameter because the Fn function stays between +/-
1 in the pass band.  That means the band edges are defined by the point at which Fn=1, and 
the transfer function is 1/(1+e^2) at the band edge.  Usually epsilon is set to 1 so that the 
squared transfer function has a value of 1/2 at the band edge, signaling that the power has 
been cut in half.

CLICK You are free to pick how much rejection you want outside of the pass band, and that 
quantity is called the stop-band rejection.  You usually specify this with a quantity As, so a 
stop band rejection of 20dB would correspond to an As of 10.  Stop band rejection is 
measured relative to the top of the pass band.

CLICK The frequencies at which the transfer function reaches the stop band rejection are 
called the stop-band edges, and we give them the symbols wsh and wsl.  The frequencies 
between the pass band edge and the stop band edge are called the transition region.

CLICK Finally, the frequency band outside of the transition region is called the stop band.  
Some filters still have finite transfer function values in this region, and that behavior is 
referred to as stop-band ripple.  The stop band ripple sets a maximum value for stop-band 
rejection.
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There are Four Types of Filters
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Low Pass Band Pass

High Pass Band Stop (or Notch)

The picture we’ve been looking at thus far is a band pass filter, but the filter prototype can 
be used to describe all four common types of filters, which, as a reminder, are low-pass, 
high-pass, band-pass and band-stop.  You can build lossless LC ladder versions of each of 
these filters, and I’ve drawn them on this slide.

Thinking about the asymptotic impedance of each component can give you some intuition 
about how the low-pass and high-pass filters I’ve drawn exhibit the low-pass and high-pass 
behavior.  Consider the low pass filter as a starting point: at low frequencies the capacitors 
are open and the inductors are shorts, allowing input voltages to reach the load easily, and 
at high frequencies the capacitors are shorts and the inductors are open, which zeroes the 
voltage on the load.  

Intuition for the band-pass and band-stop circuits requires thinking about the behavior of 
their LC tanks at resonance.  Parallel tanks ring open and series tanks ring short, so the 
band bass will have series short circuits and shunt open-circuits at resonance, which allows 
voltages to reach the load.  Off resonance, either the inductor or the capacitor will block 
signals in the series elements and absorb signals in the shunt elements.

It’s worth noting that all the filters on this slide are 3rd order, they would produce 3rd order 
polynomials in the filter prototype transfer function.  This is related to the fact that the low-
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pass and high-pass filters have three independent energy storage elements, which are the 
three shunt elements.  The series elements aren’t independent of the shunt elements 
because they are part of LC tanks.
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Summary

• Filters absorb power over a frequency band and reflect it elsewhere.

• Filters are described by a prototype w/ a polynomial and an order

• Filter have many parameters: bandwidth, stop-band rejection, etc.

• There are four types of filters, they are made by rearranging L and C
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In this video we’re going to look at a graphical method of calculating the magnitude of 
transfer functions that sheds some light onto how filters work.  Filter design can be a little 
opaque because the circuit theory requires calculating the values of loaded components 
that give rise to weird polynomials in transfer function, but I find this graphical 
interpretation makes filters simpler to understand.

7



Department of Engineering

You Can Calculate |H(jw)| Graphically
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The graphical method for calculating filter behavior has its roots in pole-zero plots.  So 
we’re starting to understand this method by drawing a pole-zero plot for this transfer 
function.  I’ve taken the liberty of doing the quadratic equation for you on this first line, 
which reveals that we have poles at -1-j and -1+j, and I plotted those on the left.  As a note, 
this is an example of a second order filter because there are two poles on the pole-zero 
plot.  We’re only looking at H(s) and not |H(s)|^2, so we can’t say for sure what Fn is yet, 
but it’s probably also quadratic.

CLICK If we want to find the value of this transfer function at a point jw, then we can just 
substitute jw for s in our transfer function.  This is equivalent to evaluating the transfer 
function at some point on the imaginary axis because jw is just a locus of points on the s 
plane.  That’s cool enough that it bears repeating: the frequency response function for this 
transfer function is just the values along the imaginary axis, and we can find the frequency 
response function by evaluating the transfer function at every point on the imaginary axis.  

CLICK We can group like terms in the denominator of this expression, which starts to have a 
geometric interpretation.  Each of these regrouped poles specifies a vector that points from 
a pole to the point jw.  For instance, the bottom pole is a distance 1 from the jw point in 
the real direction, and a distance 1+w from the pole in the imaginary direction.
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CLICK  We can take the magnitude of this expression, and in doing so we find that the 
denominator of this magnitude is the product of the lengths of the vectors from the poles to 
jw.  CLICK That generalizes to any transfer function: the magnitude at a point on the s-plane, 
which I’ve labeled as jw in our case, is the product of the lengths of the vectors that point 
from zeros to the point in the question divided by the product of the lengths of the vectors 
pointing from poles to the point in the question.  So we can understand the behavior of our 
magnitude just by looking at the lengths of a bunch of vectors on the s-plane.

CLICK We’re going to apply that result to filters on the next slide, but I need to put in a 
sidebar about calculating phase graphically.  There’s a similar graphical technique for finding 
phase, where the phase of the transfer function is the sum of the angles from zeros to the 
point in question minus the sum of angles from poles to the point in question.  That’s a cool 
thing to remember, and it explains the baffling behavior of right half plane zeros.  Right half 
plane zeros contribute positive magnitude and negative phase to Bode plots, which is weird, 
and also really bad for stability in feedback.  You can see that behavior on this plot, because 
increasing omega will make the angle from the right half plane pole smaller, shrinking the the
total phase of the transfer function.
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Filters Have Many Poles at Same Frequency
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We can apply this graphical technique to understand how filters work.  I’ve copied over the 
second order filter from the previous page and drawn a point omega in between the two 
poles.  

CLICK When I look at a different input frequency between the poles, we can see that the 
distance to one pole gets larger while the distance to the other pole gets shorter.  That 
results in the overall transfer function staying flat.
CLICK However, if I look at a value of j*omega outside of the two poles, we find that both of 
the vectors to the poles are getting longer as omega increases.  That means the value of 
the transfer function will start falling off quickly.
CLICK And if I wanted to take advantage of that behavior, I could add a lot more poles at 
about the same distance from the origin.  In this example of a fifth order filter, five poles 
have vectors that cancel out for omega points inside a circle in the s-plane, and if the 
j*omega point moved outside the circle, we’d have five vectors getting longer and 
decreasing the transfer function.
CLICK This change, where we add more poles to cause transfer functions to fall off more 
quickly, corresponds to increasing the order of the filter, and I’ve included the Fn
polynomials for these filters to show that. The second order filter uses the F2 polynomial, 
while the fifth order filter uses the F5 polynomial.
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This is a low-pass filter, which we’ve seen because the transfer function gets small when 
omega gets big.  We’d have to move poles and zeros around in a dramatic way to make a 
high-pass filter – in fact we usually do that by inverting omega and omega p in the prototype 
function, which is a non-linear transform.  We’d need a different dramatic change for a 
bandpass or band stop filter: either of those would require twice as many poles.
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Different Filters Space Poles/Zeros Differently
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Last slide we saw how changing the filter order changed the behavior of filters.  We can 
also change the behavior of filters by changing the location of the poles.  In the filter on the 
right, the poles are located on an ellipse instead of circle, which will result in the length of 
the vectors to the omega point cancelling imperfectly in the pass band, but it also means 
that vectors get longer faster outside of the pass band, so we’ve traded some pass band 
ripple for a faster rolloff in this arranagement of poles, even for filters with the same order.  
Positioning poles in this way required us to change the prototype polynomial to something 
called an nth order Chebyshev polynomial, which we’ll talk more about soon.
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Summary

• Frequency responses can be calculated graphically as a product of 
magnitudes of distance from poles to points jω on the imaginary axis.

• Filters have many poles at similar frequencies to achieve quick rolloff.

• The arrangement of those poles is determined by the filter prototype 
polynomial.
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In this video we’re going to look at a few common filters and we’ll compare their frequency 
responses, pole-zero plots and filter prototype functions.  I’d like you to pay special 
attention to features of these filters that will let you pick them out on sight.
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Butterworth Poles Are Roots of Unity

• Flat pass band, then rolls off at -20n dB/decade.
• “maximally flat”, Though Chebyshev II filters technically flatter.
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Nth roots of unity (on LHP)

The Butterworth filter is one of the most common filters, and one of the easiest to 
understand.  Butterworth filters have prototype polynomials of omega over omega_p
raised to the nth order, which means that the poles are going to be given by half of the 2n 
roots of unity on the omega p circle.  We know that because the roots of the filter 
prototype’s denominator are given by 1=(w/wp)^2n .  The filters are represented by the 
half of the roots of unity on the left half plane, which is perhaps unsurprising because the 
right half plane roots of unity would indicate an unstable system.

The roll off of the butterworth filter is just the combined effect of a bunch of co-located 
poles, so the transfer function rolls off at order * 20 dB/decade.

Butterworth filters are often called maximally flat because they have monotonically 
decreasing ripple in the pass band.  However, type II Chebyshev filters are technically a little 
flatter in the pass band for any given value of epsilon.
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Chebyshev I Poles Are On an Ellipse

• Ellipse causes faster roll off at cost of ripple in pass band.
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Chebyshev Polynomials.

𝐶௡ 𝑥 = 2𝑥𝐶௡ିଵ 𝑥 − 𝐶௡ିଶ 𝑥

Type I Chebyshev filters have poles that are placed on an ellipse, which results in ripple in 
the pass band, but contributes to a sharper rolloff than Butterworth filters.  The prototype 
polynomial for a Chebyshev filter is a nth order Chebyshev polynomial, which is recursively 
defined as shown on the slide.  That definition fails for the first two polynomials, but, for 
reference, C0=1 and C1=x.
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Chebyshev II Adds Zeros to the Filter

• Synthesized by taking 1-Cn(ωp/ω) to swap pass and stop band
• Zeros provide nulls for fast roll off, but create stop band ripple.
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Type II Chebyshev filters are notable because they let us introduce two new ideas: low-to-
high pass transformations and nulling zeros.  The motivation for Type II Chebyshev filters is 
to swap the ripple in the pass band of the type I filter for ripple in the stop band.  You can 
do that by taking 1 minus the Type I Chebyshev transfer function, but that gives you a high 
pass filter.  However, if you make your Chebyshev polynomials a function of omega p over 
omega, you swap high and low frequencies in the filter prototype function again.  This 
results in the Type II Chebyshev, which has poles placed according to the inverse of an 
ellipse, and also has zeros on the y axis.  

The zeros on the y axis are interesting, because our transfer function has to be zero when 
our omega point is on one of those zeros.  That means you can use them to cause the value 
of the function to collapse very quickly, and the zeros are responsible for the sharp rolloff
of this filter.  However, zeros also cancel out poles in the transfer function at some 
frequencies, which results in a finite stop band instead of one that rolls off forever.
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Elliptic Filters Have Ripple in Pass & Stop Band

• Ripple in pass band and stop band  very sharp rolloff
• Reduces to Chebyshev I, Chebyshev II, or Butterworth as ripple drops
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Elliptic filters, which are also called Cauer filters sometimes, combine the features of type I 
and type II Chebyshev filters to achieve very sharp rolloff in the transition region.  They 
have ripples in the pass band from poles placed on an ellipse and they also have nulling 
zeros.  These features are specified by their prototype function, which is called an elliptical 
rational function.  The elliptical rational function has a selectivity factor which we label xi, 
and tuning that selectivity factor can cause the behavior of elliptic function to reduce to a 
Chebyshev I filter, a Chebyshev II filter or a Butterworth filter.
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Other Filters

• Bessel(-Thomson) Filters have flat phase responses, constant delay.

• Can make filters out of transmission lines of different widths called 
constant-k filters.

• Q minimizing filter variants reduce the effect of component variation

17

We’ve only done a quick tour of filters here and there are other types in the world.  Bessel 
filters have flat phase responses that give rise to constant group delay.  Constant-k filters 
can be built out of transmission line segments, and Q-minimizing filters try to reduce the 
quality factor of the resonators comprising a filter in order to make it more resistant to 
randomly varying components.
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Summary

• There are many kinds of filters that can be identified by steepness of
roll off and presence of ripple in pass/stop bands

• Butterworth: no ripple
• Chebyshev I: pass band ripple
• Chebyshev II: stop band ripple
• Elliptic: ripple in both pass and stop bands

• Zeros null functions quickly, but result in stop band ripple

• Filter shapes are linked to the filter prototype polynomials

18
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Filter Tables
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In this video we’re going to talk about designing a filter, which is going to require us to use 
a calculation tool called a filter table.
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Pass & Stop Ripple, ε, As, ωp Type, Order

• Get epsilon from allowable passband deviation: 𝜖 = 10଴.ଵఋ − 1

• Convert As and ε to filter order from equation or plot
• Butterworth  𝑛 = ln 𝐴௦/𝜖 / ln 𝜔/𝜔௣

• Chebyshev  𝑛 = coshିଵ 𝐴௦/𝜖 / ln 𝜔/𝜔௣

• Elliptic  elliptic integrals

• Can double check by looking up or simulating filters (lots of resources)

20

The first step in design is to pick the features we want in our filter, which includes the size 
of the passband ripple, the stopband rejection, and the bandwidth.  We’ll put these 
features through a mathematical transformation to find the filter order.

Epsilon tells you the total allowable ripple in the pass band, but it’s a linear representation 
and pass band ripple is often given by a deviation in dB. You can convert between the two 
by converting the dB representation back into a linear scale as shown on this slide, where 
delta is the amount of ripple in dB. This comes from setting 1/(1+e^2) equal to the 
maximum ripple.

Once you have epsilon and you’ve picked your stop-band rejection based on your 
application, you can combine those numbers to pick your filter order.  The calcaulations I 
show here are approximations based on filters rolling off at order times 20dB per decade.  I 
didn’t show an equation for elliptic filters because finding the order of an elliptic filter 
requires something called an elliptic integral.  

You can check your work in picking your filter properties with a variety of simulators and 
websites.  Lots of people have implemented filter calculators.
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Use a Filter Table to Synthesize a Low-Pass

• Need n energy storage elements to create n poles
• L and C values have already been found, codified in filter tables
• Filter tables are normalized to Zin=1 ohm and ωp=1 rad/s

21

OR

𝜔௣𝐿 = 𝑍଴ 1 rad/s 𝐿௡௢௥௠௔௟௜௭௘ௗ

1

𝜔௣𝐶
=

𝑍଴

1 rad/s 𝐶௡௢௥௠௔௟௜௭௘ௗ

𝑍(𝜔)/𝑍଴ = 𝑍௡௢௥௠௔௟௜௭௘ௗ 1 rad/s

Now that we have the order, we can use that to pick component values such that poles 
wind up in the right spot.  There’s a bunch of interesting polynomial math that goes into 
calculating L and C values, but it’s all been done before and we’re going to take advantage 
of that.  The results of these filter calculations are tabulated in resources called filter tables, 
which give you values for inductors and capacitors that will synthesize a low-pass filter of 
your desired order, with an input impedance of 1 ohm and a bandwidth of 1 rad/s.  Since 
we usually want different input impedances and bandwidths, we need to “un-normalize” 
the values in the filter table.  You do that using the formulas shown here, which I 
remember by thinking about impedance.  That is to say, the impedance I want at the 
bandwidth I want divided by Z0 has to equal the normalized impedance, has to equal the 
normalized impedance evaluated at 1 rad/s.

Also, as a note, there are two forms of low pass filter that you could choose to synthesize, 
an inductor first version and a capacitor first version.  Both are valid low pass filters and 
they actually use the same filter table values.  I’ve drawm examples of the two types of 3rd 
order filter you can make.  Also, for reference, this filter table is for Butterworth filters.
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Transform to high pass, band pass or notch

22
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2𝜔௣

𝐶௡

2𝜔௣𝑍଴

2𝜔௣

𝜔଴
ଶ𝑍଴𝐿௡

2𝜔௣𝑍଴

𝜔଴
ଶ𝐶௡

1

2𝜔௣𝑍଴𝐿௡

2𝜔௣𝐶௡

𝜔଴
ଶ𝑍଴

2𝜔௣𝑍଴𝐿௡

𝜔଴
ଶ

𝑍଴

2𝜔௣𝐶௡

If you want to make a high-pass, band-pass or band-stop filter, you do so by substituting 
new series and shunt elements into your low-pass filter.  This slide shows the components 
that you would use as series and shunt elements in each filter type, along with formulas for 
un-normalizing them.  Here the subscript n indicates the normalized impedance from the 
filter table.  Note that 2wp is the bandwidth of bandpass or band stop filters, and that w0 is 
the center frequency.
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Summary

• Find filter type and order from ripple, ε, As, ωp

• Make a low pass filter from filter tables

• Un-normalize filter tables according to Z/Z0=Zn(1 rad/s)

• Transform from low-pass filter to other filter types with substitutions
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