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In this video we’re going to start using Smith Charts to make unruly loads behave well at RF 
frequencies.  We’re also going to discover that we need to have a good handle on second 
order RLC circuits to do that.

2



Department of Engineering

Matching Networks Make Loads Look Like Z0

• Can we pick a circuit that makes Zm look like Z0 for any Zl?
• Equivalently, can we pick a circuit to make Γm=0?
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The idea of building circuits to make loads behave better is captured by the schematic I’ve 
drawn here.  I’ve added a box in between the load impedance and the transmission line 
which represents a circuit we will design that’s called a matching network.  We’ve seen that 
adding components in shunt or series changes where a load is represented on a Smith 
Chart, and we’re going to use that fact to make loads look like 50 ohms by adding the right 
shunt and series components.  We’re calling the impedance looking into a matching 
network Zm, and we’re calling the reflection coefficient looking into a matching network 
Gamma m. We’re trying to put a circuit in the matching network box that will set Gamma m 
to zero or, equivalently, set the value of Zm equal to Z0.
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If Rn=1, Cancel Xn with Opposite Component
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So let’s consider one of the simplest examples of matching networks.  Here our load has 
some inductance in series with it, maybe from a poorly designed via that connects it to 
ground.  We’re going to put our unmatched load on the Smith Chart, which, as a reminder, 
we do that by calculating Rn and Xn.  CLICK So we divide both the resistance and reactance 
of the load by Z0 and find Rn is equal to 1 and Xn is also equal to 1.  Note that I’m using 
some goofy notation here for the drive frequency and L, where I write the unit prefixes 
Giga as G and nano as n, which means G times n is one.

This Zn value is promising.  Because Rn=1, we almost have a good match, we just need to 
take care of the non-zero Xn with our matching network.  Fortunately, capacitors have 
negative reactance, so we might consider a network that looks like this CLICK to cancel out 
the positive reactance from the inductor.  I’ve picked this value of capacitance strategically, 
and we can see why by computing the normalized match impedance, Zm CLICK.  It’s given 
by almost the same expression as the normalized load impedance, but we have to add the 
capacitor’s impedance in series, and we find the capacitor reactance exactly cancels the 
inductor reactance.  That means Zm is 50 and Gamma m is 0 as we desired.  We can see 
that on the Smith Chart too: adding the capacitor has moved the load along the Rn=1 circle 
to the origin of the Gamma plane.

This is great!  We achieved our goal!  However, you might wonder whether this network 

4



will work at any other frequency.  Answering that question requires us to take a close look at 
the load we’ve made, which is a series RLC network.  You might recall that series RLC 
networks are governed by second order differential equations that often have interesting 
behavior, including resonance. CLICK I mention this because we’re relying on resonance in 
this matching network: if we calculate the resonant frequency of it, we discover that it’s the 
same as the drive frequency.  Because of that property, this technique of cancelling a 
reactance with an opposite value is referred to as “ringing out” an impedance. 

As a final note, it’s worth noting that you can ring out shunt components too.  You can just 
write an admittance equation instead of an impedance to find a very similar set of equations.   
Also, just as a bit of vocabulary, it’s common to refer to an RLC circuit as a tank.

4



Department of Engineering

Summary

• Matching networks are circuits we design to make loads look like Z0.

• You can cancel out series (or shunt) reactance by adding the other 
component in series (or shunt).

• Cancelling impedances relies on resonance, which has implications for 
bandwidth and other performance parameters.
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In this video We’re going to take a closer look at RLC circuits because their behavior is so 
central to matching networks.

6



Department of Engineering

ω0 and Q Describe RLC Circuit Behavior
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One easy place to start analyzing the behavior of a series RLC circuit is its impedance.  I’ve 
written the input impedance of an RLC network, Z_RLC here.  We can tell just looking at it 
that there’s some frequency where Z_RLC is purely real, so we can start defining some 
interesting properties. CLICK First, we call the frequency where the imaginary part is zero 
w0, the natural frequency. We’ll also call this the resonant frequency, even though that’s a 
slight misnomer in circuits with a lot of loss. CLICK We can check that I calculated w0 
correctly by calculating w0*L and 1 over (w0*C), which are both the square root of L over 
C.  This quantity shows up a lot, so it’s often referred to, confusingly, as the characteristic 
impedance of a RLC circuit.  We’re not going to use that term much more in this class, but 
I’ve given it a different symbol than the characteristic impedance of a transmission line just 
in case. Finally, note that the reactance changes sign above and below resonance, so the 
system looks a little inductive above resonance and a little capacitive below resonance.

CLICK we can calculate the magnitude of the impedance of this network, and we can see 
that the magnitude is minimized at resonance.  So we’re going to get the most current 
delivered to our resistor at resonance.  We also know from our first set of equations that 
the current delivered at resonance is purely real, so it will be in phase with the voltage V.  
This is because the reactive components have a net zero impedance at resonance, so it’s 
common to say “series LC tanks ring short” because of the cancellation effect between the 
inductor and the capacitor.  
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CLICK That calculation is great, but it overlooks some crazy things that are happening in the 
inductor and capacitor at the same time.  We know the current at resonance is going to be 
given by V/R because the total reactance is zero, but when we substitute that current into 
the expressions for inductor voltage, we see that it’s 90 degrees out of phase with the 
resistor voltage and scaled by a factor of the characteristic impedance of the RLC circuit over 
the resistance.  We’re going to call that factor Q, or the quality factor.  Q is often much 
greater than one, so a 1V peak-to-peak signal on the resistor can easily cause 10 volts peak-
to-peak on the capacitor, so be mindful of voltage and power handling ratings!  

It might seem crazy that we have this big voltage running around in our system but it doesn’t 
appear over our resistor at all.  CLICK However, if we calculate the capacitor voltage we find 
that it’s also amplified by Q and shifted by negative ninety degrees.  The inductor and 
capacitor voltages exactly cancel, leaving only the real resistor voltage.
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Q Describes the Bandwidth of Series RLC
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Our motivating question when asking about quality factor was finding the bandwidth of a 
series RLC circuit.  That quantity is very tightly related to the quality factor of the system, 
such that high quality systems have low bandwidth and low quality systems have high 
bandwidth.

We can see that by finding the voltage across the resistor using a voltage divider as shown 
here.  CLICK if we find the magnitude of the voltage, we can observe that it will be reduced 
by the square root of 2 when plus or minus the reactance is equal to the resistance.  
Reducing voltage by the square root of two halves the power dissipated in the resistor, 
which is how we get the traditional -3dB definition of bandwidth.  CLICK That relation gives 
rise to a quadratic equation, and I’ve shown it and the solution here.  CLICK Converting 
from Ls and Cs to omega noughts and Qs requires some creative substitution as shown, but 
after some aggressive factoring you get a nice relationship that shows the upper and lower 
3dB frequencies.  Those two frequencies, which fully specify the bandwidth of the RLC 
circuit, are a Q dependent fraction of the natural frequency.

CLICK We find our bandwidth by looking at the difference between the upper and lower 
3dB points, which we call delta omega.  In this line we divide the result on the previous line 
by omega nought and subtract the upper 3dB frequency from the lower one.  CLICK The 
last assumption we make is that Q is kind of big, which allows us to neglect these two 
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terms for a clear relation: our bandwidth as a fraction of the natural frequency is 1/Q.  This 
type of description of bandwidth is often called fractional bandwidth.
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It Takes ~Q Cycles for a Transient to Die Out

• Each cycle takes 𝑇 ≈ 2𝜋/𝜔଴, so Q cycles  V0*exp(- π)*(a phase)
• Similar result: amplitude decay from peak to peak is ~exp(-π/Q)
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Because our bandwidth is related to Q, you might expect a handy time domain 
interpretation of Q as well.  Q affects rise time in some interesting ways, but my favorite 
stupid Q trick is that you can get an approximate measure of Q by counting how many 
cycles an RLC circuit rings through before it settles to about 5%.  You can see this because 
the envelope of the decaying exponential in a step response is set by the natural frequency 
and Q.  If you set the time t to be one period of 2 pi over omega nought, the argument of 
the exponential becomes –pi/Q.  That’s handy, but not nearly as handy as remembering 
that after Q cycles the envelope will have shrunk to e to the minus pi, which is about 4% of 
the initial step.  Humans can usually eyeball that value pretty well, so you can pick Q off of 
second order transient responses just by counting peaks.  This slide has some example 
transient responses for you to practice with.
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Parallel RLC is Almost the Same as Series
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Finally, we’ve been focusing on series RLC circuits in this video, but parallel RLC circuits are 
a natural dual to them.  You find the input admittance instead of the input impedance to 
define  resonance, and you drive them with a current source instead of a voltage source 
because a voltage source would just see three, fairly-boring, independent branches.  The 
natural frequency is calculated the same way as a series RLC circuit, but the quality factor is 
the inverse.  We’ll talk about an easy way to remember these quality factors soon.

Like in the series RLC case, the L and C branches of this circuit experience very high stresses 
at resonance.  In this case, the currents in the L and C branches are Q times higher than the 
R branch, but they are in opposite directions so they sum to zero and the resistor doesn’t 
perceive the big currents running around it in the system.

These big currents suggest an interesting piece of physics.  The impedance in the L and C 
branches has been reduced by a factor of Q compared to the resistor, which is similar 
behavior to quarter wave transmission lines or various types of transformers, all of these 
circuits appear to reduce impedance.  We’re going to describe these impedance 
transformations soon using a mathematical construct called a series-to-parallel 
transformation, and we’re going to make use of this impedance transformation to build 
matching networks for systems where Rn is not equal to one.  Stay tuned!
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Summary

• Impedance is real at resonance

• L and C experience large V (or I) in series (or parallel) resonance

• Natural frequency and quality factor describe 2nd Order systems

• Q sets the bandwidth of second order band pass: 
11
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In this video we’re going to look at a few more definitions of quality factor.  These are 
particularly handy when you’re thinking about the behavior of individual components.
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Real Components Have Losses

• Inductors: winding resistance, magnetization losses in core 
• Capacitors: dielectric losses from polarizing dipoles
• Often see parallel capacitors to deal w/ high ESR

13
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And we like the idea of looking at the quality of individual components because real 
inductors and capacitors have some loss associated with them.  For instance, Inductors are 
usually made of loops of wire, which has resistance.  It’s also common to boost inductance 
by using ferromagnetic materials as inductor cores, and magnetization of materials has 
some energy loss associated with it.  Capacitors have a similar behavior where polarization 
of the dielectric has a little bit of loss associated with it.

In all of these cases, we model the loss in the component as a series resistor.  For 
capacitors, this is commonly called the equivalent series resistance or ESR.

The main point of this slide is that ESR exists, but while we’re talking about ESR, we can 
explain some puzzling design practices.  CLICK In particular, you often see networks of 
bypass capacitors made of one big capacitor, like a microfarad, in parallel with a much 
smaller capacitor, like 10nF.  If you’re just looking at capacitance values, this design choice 
is puzzling, the smaller capacitor only changes your capacitance by about 1%.  However, if 
you think about ESR, the smaller capacitor can become significant.  CLICK This is because 
big capacitance values tend to come with big ESR values, which means impedance stops 
dropping with frequency and flattens out at a relatively low corner frequency as pictured in 
this diagram.  CLICK Adding another capacitor in parallel with a lower ESR can extend the 
effective bandwidth of your capacitor.  The overall impedance of the parallel combination 
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will trace out the bottom of these two curves because the parallel operator is dominated by 
the smaller impedance.
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The Physics Definition of Quality Factor

• Handy for remembering definitions of series/parallel RLC Q
• Can be used to define Q for individual components
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𝑄 = 2𝜋
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We quantify these losses by going back to the most fundamental definition of quality 
factor, which is 2 pi times the maximum of the energy stored during one cycle divided by 
the energy dissipated in one cycle.  This definition means that a system that stores lots of 
energy without losing much will have a high quality factor. You might note that energy per 
cycle has units of power, and there are other definitions of Q that rewrite the denominator 
as an average power.

I like this definition for a few reasons.  First, it can help us to remember the Q for series and 
parallel systems.  In series RLC circuits you get a high Q with a small R because current runs 
back and forth through it every cycle, and a small value will reduce power dissipation.  In 
parallel RLC circuits you get a high Q with a big R because very little current will run in the 
resistor to be dissipated.  This reasoning can help you remember to put R in the numerator 
or denominator when calculating RLC tank Q values.

Second, I find the definition aesthetically pleasing.  It links the behavior of systems to 
fundamental physical quantities. That’s nice.

Third, this definition is useful for defining component Qs. Let’s do that.
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Components have Q that Depends on ω
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We’re going to start by imagining that we have a capacitor in series with a resistor.  The 
circuit is being driven by a current source with a zero-to-peak value of Izp.  We write down 
the standard equation for energy stored on a cap, but we run into a problem right away 
because we don’t know the voltage on the capacitor. However, we can find it by multiplying 
the peak current by the impedance of the capacitor.  We’re skipping over some subtlety 
around the fact that the capacitor impedance is imaginary, but we’ll circle back to that in 
greater detail later.

CLICK Finding the power dissipated in a resistor is simpler.  We find the average power by 
averaging I squared R over one cycle remembering that the average of cosine squared is ½, 
then we multiply that by one period to find the energy dissipated in a cycle.

CLICK Taking the ratio of these energies and including the factor of 2 pi from our definition, 
we find a frequency dependent value for the quality factor of capacitors.  That frequency 
dependence makes some sense because the peak capacitor voltage drops with frequency.  
Also note that this quantity is the reactance divided by the resistance, which is a fast 
pneumonic for calculating component Q for series losses in either inductors or capacitors.

CLICK The parallel version of this circuit behaves similarly.  We drive it with a voltage source 
for ease of computation because the voltage will be the same across both branches.  Our 
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final definition of Q is the inverse of the series case, and the pneumonic for parallel circuits is 
that you take the ratio of susceptance to conductance to find Q.
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Find Composite Q with Equivalent Circuits
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When you start mixing lossy components together, each of their losses contributes to the 
overall quality factor of your system, but the summing relationships for those losses 
depend on whether components are added in series or parallel.  I find it easiest to draw an 
equivalent circuit of the combined elements to calculate an overall Q rather than 
remembering four separate relationships for series and parallel inductors and capacitors.  
We’ll also see very soon that we can use a mathematical trick called a series-to-parallel 
tranform to make calculating the Q of groups of lossy components easier.
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Summary

• Q is defined by energy stored divided by energy dissipated

• Components have a ω-dependent quality factor

• Individual Q effects combine in bigger circuits.
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In this video we’re going to examine a funky mathematical construction that lets us 
calculate the behavior of arbitrary RLC networks at resonance very quickly.
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Parasitic R is Inconvenient for Analysis
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I’ve drawn this circuit to illustrate why we might want to use a series-to-parallel 
transformation on a circuit.  We have already worked out the math describing series and 
parallel RLC networks, but we can’t apply that math to this circuit.  Further, that math was 
kind of a pain that involved a quadratic equation.  So having to recalculate formulas for 
quality factor and natural frequency for every rearrangement of components seems like a 
headache.  However, if we could somehow swap in a model of the capacitor that had the 
ESR in parallel with the cap instead of in series, this becomes a simple parallel RLC circuit.

19



Department of Engineering

Fix: Make Parallel Circuit w/ Same Q at one ω
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We can make a parallel model of a component that matches the series behavior at one 
frequency by making sure the impedance and quality factors of the series and parallel 
models are equal.  This only works at one frequency because the series and parallel 
formulas are quite different from one another, but it’s OK because we often only really care 
about the behavior of RLC systems at resonance.  Also, note that though I’ve drawn some 
schematics using capacitors, we’re going to do our math with a generic reactance to make 
sure our results apply to inductors too.  

I’ve started computing the transformation by equating the impedance of the series 
combination with the parallel combination here.  We’re going to need to split this into real 
and imaginary parts soon, so CLICK we have to do some algebra to rationalize our parallel 
expression.  CLICK the second step in this process is equating the component quality factors 
for the series and parallel models.  Finally, we can split up the impedance into real and 
imaginary parts.  CLICK The imaginary part gives us a relation for the series reactance in 
terms of the parallel reactance and Q.  This expression is interesting when Q is high: our 
transform says we don’t need to change the value of reactance for big values of Q.  CLICK 
The real part gives us a relation between the series resistance and the parallel resistance in 
terms of Q.  For big values of Q we see that the series and parallel resistances are related 
by Q^2.
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This resistance equation can make resistors look substantially larger or smaller, which 
captures the underlying physics that current in capacitive and inductive branches of a parallel 
RLC circuit is amplified by Q compared to the resistive branch.  This is a useful impedance 
transformation that we can achieve just by putting a load resistance in series with a inductor 
or capacitor.  We’ll start using it very soon.
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Summary

• You can equate series and parallel RC or RL networks at one 
frequency, which is convenient for analysis.

• Do so by setting Z and Q equal in series and parallel networks

• Equations capture a resistance transform
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