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In this video we’re going to find the reflection coefficient of a new load, which is a finite 
transmission line terminated in Zl
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Transmission Lines Change Reflection Coeff.
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Zl

V(-S,t) V(0,t)Zs

Γ_g(S)

Γ = Γ௚ 0 =
𝑉 0, 𝑡

𝑉ା 0, 𝑡
Definition of reflection coefficient  & sub in wave solution

Γ௚ 𝑆 =
𝑉 0, 𝑡 𝑒ఊௌ

𝑉ା 0, 𝑡 𝑒ିఊௌ
= Γ𝑒ଶఊௌ Use propagation to add phase back to –S, then relate to Γ

Γ௚ 𝑆 = Γ𝑒ଶ௝௞ௌ If lossless

This slide includes a picture of this new load, which we’ll call a delayed load.  We’re going 
to calculate the reflection coefficient looking into this delayed load, so CLICK we’re going to 
calculate Gamma at this spot on a transmission line.  We’re going to call this Gamma the 
generalized reflection coefficient and give it the symbol Gamma_g.

We’re going to find that Gamma_g depends on S, the length of the transmission line on the 
delayed load.  That fact suggests the driving point impedance of this load changes as S 
changes, which has applications for circuit design.  This fact allows us to impedances that 
would difficult to build as lumped circuits.  So we’re motivated by using transmission lines 
to make interesting looking load impedances.  Put a pin in that for now, we’ll talk more 
about how to calculate the impedance of delayed loads soon.

In the mean time, we know that Gamma_g(S) is going to be V+ of (-S, t) divided by V- of (-
S,t) , but using that as the starting point for our derivation will lead us in circles because we 
usually calculate V- using Gamma, which we don’t know yet.  Instead, we’re going to figure 
out our regular old Gamma at Zl, which is Gamma_g of 0, and then we’ll propagate the 
signals we used to find Gamma backwards along the transmission line.

CLICK We’ve started that strategy here by remembering the definition of Gamma.  There 
are two equations on this line, and the first on is just pointing out the cute fact that regular 
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old Gamma is the generalized Gamma with a zero-length transmission line.  The second 
relation reminds us that Gamma is the ratio of the left-travelling wave to the right-travelling 
wave at the termination.

CLICK We can then make a quick leap to a formula for the generalized reflection coefficient.  
We know that the voltage at location S is going to be given by scaling our voltage at zero by e 
to the propagation constant. The right-travelling wave loses phase when we travel backwards 
by S, while the left-travelling wave gains phase travelling backward, so the propagation 
constant has different signs on the top and bottom of this expression.  We get the final 
expression on this line by recognizing two things.  First, the ratio of V- of 0,t and V+ of 0,t still 
appears in this equation, and it’s still equal to Gamma.  Second, the phases of the two 
exponentials add together to double the propagation constant. 

CLICK We’ll be looking at lossless lines a lot of the time, and if we do that gamma is equal to j 
times the wave number and Gamma_g is revealed to just be a phase-shifted version of 
Gamma.  You might recognize this expression: a similar term appeared when we were 
deriving our voltage standing wave pattern.  That’s because the changes in impedance we 
see looking into a generalized load are caused by voltage standing wave patterns.  We’ll 
explore that very soon.
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Summary

• Delayed loads have transmission lines attached to them.  They can 
make interesting impedances.

• The generalized reflection coefficient is a phase-shifted version of the
load reflection coefficient (in a lossless line).
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Γ௚ 𝑆 = Γ𝑒ଶ௝௞ௌ
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In this video we’re going to try to figure out how the driving point impedance of 
transmission lines changes when we add different lengths of transmission line to a load.
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Reflected Sinusoids  Zdp Periodic in x
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Zs

Zl

V(-S,t) V(0,t)

𝑉௜௡ 𝑡 = 𝑉௭௣𝑒௝ఠ௧𝑒ି௝௞ௌ

Zs

Zl

V(-S,t) V(0,t)

𝑉௜௡ 𝑡 = 𝑉௭௣𝑒௝ఠ௧𝑒ି௝௞ௌ

t=0 ns x [cm]|V(x,t)| [V]

t=0 ns x [cm]|V(x,t)| [V]

We’ve already looked at how the reflection coefficient changes when we add transmission 
lines to a load, and this video is tightly related to that idea.  Here we’re looking at how 
impedance changes with lengths of transmission line, which is what causes our generalized 
Gamma to change as we add lengths of a transmission line to a load.

The voltage standing wave pattern is what causes of changes in impedance with 
transmission line length.  I’ve drawn two transmission lines with standing wave patterns on 
them to show that.  The driving point impedance is set by the ratio of V(-S,t)/I(-S,t) on this 
line, which is equivalent to saying that the driving point impedance is the impedance such 
that the voltage divider Zdp/(Zs+Zsp) results in the voltage at V(-S,t).  That second 
definition is handy when we’re thinking about Zdp for a sinusoidal wave on a finite line, 
because we know the amplitude of waves is going to be set by the voltage standing wave 
pattern, and so we pick a Zdp that divides us down to the standing wave pattern.  

Because the standing wave pattern is periodic, Zdp is going to vary periodically as a 
function of the length of the transmission line. You can see a suggestion of that on this 
slide, the driver sees a antinode in the voltage standing wave pattern on the top 
transmission line, which means Zdp needs to be big.  The bottom line contains more of the 
standing wave pattern such that the driver sees a node, which means Zdp needs to be 
small.  If the line length were somewhere between these two, you would tap into a 
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different spot in the standing wave pattern, which would require a different Zdp. Or if the 
lines were exactly one wavelength longer you’d be tapping into the same spot in the pattern, 
implying the same Zdp.

That’s a little complicated, but there’s a silver lining.  Even though the standing wave pattern 
makes Zdp change with length, the fact the pattern is a standing wave means Zdp doesn’t 
change with time.   Also, though these pictures are great, we need a mathematical model to 
let us do more interesting calculations. 
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Find Zdp(S) By Propagating Back From Zdp(0)
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Zs

Zl

V(-S,t) V(0,t)

𝑉௜௡ 𝑡 = 𝑉௭௣𝑒௝ఠ௧𝑒ି௝௞ௌ

t=0 ns x [cm]|V(x,t)| [V]

I(-S,t) I(0,t)

𝑍ௗ௣ 0 =
𝑉 0, 𝑡

𝐼 0, 𝑡
=

𝑉ା 0, 𝑡 + 𝑉 0, 𝑡

𝐼ା 0, 𝑡 − 𝐼ି 0, 𝑡
=

𝑉ା 0, 𝑡

𝐼ା 0, 𝑡

1 +
𝑉 0, 𝑡
𝑉ା 0, 𝑡

1 −
𝐼ି 0, 𝑡
𝐼ା 0, 𝑡

= Z଴

1 + Γ୥(0)

1 − Γ୥(0)

𝑍ௗ௣ 𝑆 = Z଴

1 + Γ୥(−S)

1 − Γ୥(−S)
=

1 + Γ𝑒ଶఊௌ

1 − Γ𝑒ଶఊௌ

I’ve brought over an image of the transmission line to help us start making that 
mathematical model. I’ve also added some arrows indicating the current flow at the source 
and the load.

We know that Zdp(S) is given by V(-S,t)/I(-S,t), but that’s a tough place to start this 
calculation because we don’t know the voltage and current at -S.  Instead we’re going to 
use the same approach we used on the generalized reflection coefficient: we’ll calculate 
the voltage and current at the load, and then propagate those back to the driver to find the 
ratio there.  

CLICK our first set of equations is all about rearranging the voltage and current at the load.  
We know Zdp of S=0 is given by V of (0,t) over I of (0,t), and we rewrite those as left and 
right travelling waves.  We can factor V+ out of the top of the equation and I+ out of the 
bottom, to get the equation in some handy forms.  The V+ over I+ ratio in front becomes 
Z0, while the V- over V+ and I-over I+ ratios are each given by the reflection coefficient, 
which I’ve chosen to write as the generalized reflection coefficient at zero.

CLICK That form suggests that finding Zdp at point S is as simple as substituting our 
expressions for generalized Gamma into the Zdp of S=0 equation.  We do that in this 
second set of equations and wind up with a tidy looking expression for Zdp.
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Terrible Math Reveals and Interesting Ratio
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𝑍ௗ௣ 𝑆 =
1 + Γ𝑒ଶ௝௞ௌ

1 − Γ𝑒ଶ௝௞ௌ From last page

Sub in Γ=(Zl-Z0)/(Zl+Z0), terrible algebra
𝑍ௗ௣ 𝑆

𝑍଴
=

𝑍௅
𝑍଴

𝑒ିఊௌ + 𝑒ఊௌ + 𝑒ିఊௌ − 𝑒ఊௌ

𝑍௅
𝑍଴

𝑒ିఊௌ − 𝑒ఊௌ + 𝑒ିఊௌ + 𝑒ఊௌ

𝑍ௗ௣ 𝑆

𝑍଴
=

𝑍௅
𝑍଴

− tanh 𝛾𝑆

1 −
𝑍௅
𝑍଴

tanh (𝛾𝑆)
Combine exponentials, awkward

𝑍ௗ௣ 𝑆

𝑍଴
=

𝑍௅
𝑍଴

− 𝑗 tan 𝑘𝑆

1 − 𝑗
𝑍௅
𝑍଴

tan (𝑘𝑆)
=

𝑍௅ cos 𝑘𝑆 − 𝑗𝑍଴ sin 𝑘𝑆

𝑍଴ cos 𝑘𝑆 − 𝑗𝑍௅ sin 𝑘𝑆
If lossless, still awkward

We can simplify this expression further, and we’re going to do so on this page.  CLICK first, 
we’re going to skip a lot of algebra in order to rearrange this expression in terms of Zdp/Z0, 
which we can call our normalized driving point impedance. CLICK second we’re going to 
combine complex exponentials into hyperbolic tangents, which gives us a general 
expression for the normalized Zdp.  One of the cool things about this derivation is that it 
works for lossy lines, and you’ll notice that this expression depends on gamma rather than 
just the wave number.  CLICK However, the expression for lossless lines is somewhat easier 
to deal with.  You can see from the combination of sines and cosines that we’ll be tracing 
out some kind of circle in the Z plane as S is increased.

8



Department of Engineering

This Formula Has Interesting Implications

• Zl=Z0 means Zdp is always Z0, independent of S.  
• ¼  wavelength on the line means kS= π/2  inverse impedance?
• ½  wavelength on the line means kS= π tan is periodic in π

9

𝑍ௗ௣ 𝑆

𝑍଴
=

𝑍௅
𝑍଴

− 𝑗 tan 𝑘𝑆

1 − 𝑗
𝑍௅
𝑍଴

tan (𝑘𝑆)

This formula has some wild implications.  The first, and most commonly used, is that 
matched loads always have a driving point impedance of Z0, regardless of what S is.  This is 
really useful when interconnecting RF systems, it means that the cabling or routing won’t 
affect your performance.  RF systems are often designed to be matched loads in order to 
take advantage of this.

Second, if you have a quarter of a wavelength on your line, then the tangent of kS is infinity 
and we find that Zdp = Z0^2 over Zl.  So, by adding some transmission line, we have 
inverted our impedance.  That’s weird for resistors.  That’s really weird for open circuits, 
which become shorts.  That’s really, really weird for capacitors, which start to look like 
inductors.  Those are all fun party tricks!

Finally, tangent is periodic in pi, so every additional half-wavelength we add to our 
transmission line gives us the same Zdp.
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Summary

• Driving point impedance of a line varies periodically as a function of 
the length of the line according to a tricky equation:

• The driving point impedance of terminated lines doesn’t change with 
length.

• This driving point impedance transform is capable of making some 
strange impedances.
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𝑍ௗ௣ 𝑆

𝑍଴
=

𝑍௅
𝑍଴

− 𝑗 tan 𝑘𝑆

1 − 𝑗
𝑍௅
𝑍଴

tan (𝑘𝑆)
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In this video we’re going to learn about a graphical tool that helps us relate reflection 
coefficients, generalized reflection coefficients, load impedances and driving point 
impedances.
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Hard to Go from Gamma_g to Zdp(S) or Back

• Can find Gamma(x) and Z(x), but can’t convert between them
• Zdp(S) expression is not suitable for hand calculations
• Would like to do the conversion in our head, ideally graphically

12

OK, so we have a problem.  We can calculate the generalized reflection coefficient pretty 
easily, and we can turn the crank on our driving point impedance formula if we have to, but 
these tools aren’t great for design.  We’d really like to have a fast way to switch back and 
forth between Gamma and perceived impedance, either a Zl or a Zdp depending on the 
load.  In a perfect world, this technique would be quick enough that we can apply it to 
measured data in our head.  That points to using graphical techniques because those don’t 
require us to do too many calcuations.

It turns out that this technique exists, and it’s one of the most intimidating graphs in 
engineering.  You might say, “Prof. Spencer, I’m not intimidated by graphs.  I’ve seen it all at 
this point.  Heck, you’ve already showed me Bode plots.”  Well feast your eyes on the Smith 
Chart! CLICK

This does look bad, but it’s actually pretty reasonable.  This is a plot of the complex Gamma 
plane with resistance and reactance coordinates laid on top of it. We’ll figure it out in the 
next few slides.
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Im(Γ)

Re(Γ)
∠Γ + 2𝑘𝑆

It’s Easier to Plot Γ than Z

13

Pro: Can use phasors Con: Open circuit is infinite

We’re going to take a step back to build up to the full Smith Chart.  We know we’re making 
a graphical tool to relate Gamma and Z, so the first thing we need to decide is whether 
we’re plotting Gamma or Z.  I’ve plotted both on this page as functions of S to help us make 
our decision.  The main thing to point out is that Gamma_g(S) describes a circle in the 
complex plane, it’s just a vector rotating around in the Gamma plane, so it becomes a nice 
phasor.  

The plot of Z(S) isn’t too badly behaved either, it just turns into a circle somewhere else in 
the complex plane as S moves around. However, there’s a bigger problem with plotting Z: 
which is that sometimes we use open circuits.  So we’d have to figure out how to plot 
infinite values if we wanted to use a graph of Z

Both of these facts suggest we should build our tool by making a graph of the complex 
Gamma plane, and indeed that’s what the Smith Chart is.  In order to switch between 
Gamma and Z, we’re going to take the grid lines on the Z plot and superimpose them on 
the Gamma plane.  So CLICK we need to figure out what this line looks like when we put it 
on the left graph.
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Z Lines Become Circles on the Γ Plane
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Γ =
𝑍௅ − 𝑍଴

𝑍௅ + 𝑍଴
=

𝑍௅
𝑍଴

− 1

𝑍௅
𝑍଴

+ 1
=

𝑍௡ − 1

𝑍௡ + 1
This is a Mobius Transformation.  Turns circles to circles.  Lines are infinite circles

Re Γ + 𝑗Im{Γ} =
(𝑅௡ + 𝑗𝑋௡) − 1

(𝑅௡ + 𝑗𝑋௡) + 1
Substitute in complex representations.  Separate into real and imaginary parts.

Re Γ −
𝑅௡

1 + 𝑅௡

ଶ

+ Im Γ ଶ =
1

1 + 𝑅௡
ଶ

Re Γ − 1 ଶ + Im Γ −
1

𝑋௡

ଶ

=
1

𝑋௡
ଶ

Then rearrange ad nauseum to find loci of constant Rn and Xn.

We’re going to map those lines from Z to Gamma using a slight modification of our 
standard equation for Gamma.  By factoring Z0 out of the top and bottom, we get it in 
normalized form where Zn, which is equal to Zl/Z0, is called the normalized impedance.  
This form is an example of a mathematical function called a Mobius transformation.  
Mobius transformations have a special property, which is that they preserve circles, so 
anything that would describe a circle in Z space will become a circle in Gamma space.  This 
is true for very inclusive definitions of circles, most notably it includes lines, which can be 
interpreted as circles that pass through infinity.

We’re going to stretch this expression to the breaking point on this slide, but all of the 
manipulations are just high school algebra on the real and imaginary parts of it. CLICK So 
we get started by substituting Rn plus jXn for Zn, where Rn is normalized load resistance 
and Xn is normalized load reactance.  We also split Gamma into its real and imaginary 
parts.  Once we’ve done that, we have actually stealthily converted this equation into two 
equations: we know the real parts of the right and left side have to be equal and so do the 
imaginary parts.  We could rearrange this equation to split up the real and imaginary parts, 
but I’m not going to do the math here.  Instead, we’re just going to cut to the result CLICK.  
The derivation that gets you to these equations is actually pretty cool, but I don’t have time 
for it in this video.  I recommend you look through the derivation I’ve linked on the course 
site.  As enticement, it includes the only use of completing the square that I’ve seen out in 
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the wild.
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Overlaying Loci on the Gamma Plane
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Re Γ −
𝑅௡

1 + 𝑅௡

ଶ

+ Im Γ ଶ =
1

1 + 𝑅௡
ଶ

Re Γ − 1 ଶ + Im Γ −
1

𝑋௡

ଶ

=
1

𝑋௡
ଶ

Specify Rn  a circle on the Γ plane
center = (  -Rn/(1+Rn)  ,  0  )
radius =1/(1+Rn). 
Position on circle determined by Xn.

Specify Xn a circle on the Γ plane
center = (  1  ,  1/Xn )
radius = 1/Xn. 
Position on circle determined by Rn.

Im(Γ)

Re(Γ)

Im(Γ)

Re(Γ)C

C

C

A quick glance at this result is promising.  In the Z plane, we had vertical grid lines with 
constant resistance and variable reactance, and our first equation describes a locus of 
points for a constant resistance and variable reactance.  The Z plane also had horizontal 
grid lines with constant reactance values and variable resistance, and our second equation 
describes a locus in the complex plane with constant reactance and variable resistance.

Both of the loci specified by these equations are circles.  The constant resistance circles 
have a center at Rn over 1 plus Rn and a radius of 1 over 1 plus Rn.  If you add the center 
and the radius together, you can see the point 1,0 is going to be included on every circle 
regardless of what Rn is.  I’ve drawn a picture of that below.  The constant reactance circles 
have some similar behavior. They have a center with a real value of 1 and a complex value 
of1 over Xn, and the radius is 1/Xn.  Subtracting the radius from the center shows that 1,0 
will be a part of this family of circles too, regardless of whether Xn is positive or negative.  
I’ve drawn that below too.  

These sets of circles make up our resistance and reactance grid on the Gamma plane.  If we 
overlay them, we’ll get a Smith Chart.

15
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16

Circle of Constant Rn

Circle of Constant Xn

Circle of Constant Gn
(from mapping Yn to Gamma)

Circle of Constant Bn
(from mapping Yn to Gamma)

Γ =

1
𝑌௡

− 1

1
𝑌௡

+ 1

We can see that here.  CLICK This circle is an example of constant resistance, and CLICK this 
circle is an example of constant reactance.  There’s also shadowy lines on this Smith Chart 
that look like a reversed version of the Smith Chart.  Those come from the same derivation 
we opted to write Gamma in terms of admittance instead of impedance.  The equation at 
the root of that parallel derivation looks like this CLICK.  It gives rise to circles of constant 
conductance like this CLICK and circles of constant susceptance like this CLICK.

16
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Summary

• The Smith Chart is a tool to convert between Γ and Z (or Y)

• It’s a plot of normalized Z (or Y) coordinates on the Γ plane

• The axes are made of circles of constant Rn and constant Xn

• You can flip it around to make a shadow Smith Chart for Gn and Bn

17
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Smith Chart Examples
Matthew Spencer

Harvey Mudd College
E157 – Radio Frequency Circuit Design
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In this video we’re going to see a few examples of Smith Charts to get some practice with 
them.

18
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Real Zl is on the Real Axis of Smith Chart

• Note: Point 1 is on the Rn=1 circle, on the Xn=0j circle.
• Outer ring is |Γ|=1

19

Zs

Rl

V(-S,t) V(0,t)

Let Z0=50 Ohm

Point Rl Γ Rn Xn

1 50 0 1 0j

2 100 1/3 2 0j

3 open 1 Infinite 0j

4 Short -1 0 0j

We’re going to start with some familiar resistive terminations.  We’re going to assume Z0 is 
a purely resistive 50 ohms in all of these examples.

The table on this page summarizes some common terminations, and I’ve drawn point 1 on 
the Smith Chart on the left already.  When we terminate a 50 ohm line in 50 ohms, we 
expect there to be no reflections.  That means both the real and complex part of Gamma 
are zero, so our point is at the origin of the Gamma plane.  It also means that Rn is equal to 
1 and Xn is equal to zero – as a reminder, we found those by dividing the real and imaginary 
parts of Zl by 50 ohms.  We can see that point 1 is on the Rn=1 circle and the Xn=0 circle, 
which is just the x-axis of the Gamma plane.

If we double the load resistance, Gamma becomes 1/3 plus 0j, and the normalized 
impedance becomes 2+0j.  Take a second and think about where you’d put that point on 
this plot.  CLICK This is the right spot.  We can certainly see that it’s on the Rn=2 circle and 
the Xn=0j circle.  It’s harder to tell that it’s at Gamma = 1/3 + 0j, but it’s plausible.  We’d be 
able to judge exactly what Gamma value it was more easily if we knew the radius of this 
outermost circle we keep drawing.

As a way to figure that out, we could imagine drawing point 3, which changes Rl to an open 
circuit. That results in Gamma=1, Rn=infinity and Xn still being 0j.  Think about where you’d 
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put point 3.  CLICK There’s no Rn=infinity circle drawn on here, but we can see that Rn circles 
get smaller as we increase Rn (and you may recall the radius of them was 1/(1+Rn) ), and we 
know that all the constant resistance circles intersect at (1,0), so point 3 winds up all the way 
on the right side of the circle, which we’ve now identified as having a radius of 1.  To say that 
another way, the outer circle is the unit circle in the Gamma plane.   

Point 4 represents a short load, so Gamma is -1 and Rn is zero.  Where do you think that 
point will be?  CLICK That point winds up all the way on the left of this circle.  Points 3 and 4 
make point 2 look pretty reasonable, it’s about a third of the way to the outer circle.

Real load impedances result in real Gamma values, and we can see that all of these points 
fell on the real axis of the Gamma plane.

19
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Series Inductor Moves Along Constant Xn Arc

• On the Rn=1 circle, the Xn increases with ω.
• Capacitors have negative Xn because 1/j = -j

20

Zs

50

V(-S,t) V(0,t)

Let Z0=50 Ohm

The Smith Chart becomes really useful when we start making tricky loads like this one.  
Here we have an inductor in series with a 50 ohm resistor.  Because the impedance of an 
inductor is jwL, we’re going to see this load trace out a locus of points on the complex 
plane as we vary w.  For very low w, we know the inductor looks like a short, so we’d expect 
the locus to start at 0,0 on the complex plane in honor of Rl matching Z0.  For high w the 
inductor looks like an open, so we’d expect the locus to finish up at 1,0 on the complex 
plane.  In between, we’d move around the constant reactance circle for Rn=1 as our value 
of Xn becomes more and more positive.  We see exactly that on the smith chart: a locus 
that includes 0,0 and that climbs across different Xn values along the Rn=1 circle.

Series Inductors move around the positive half-plane like this because jwL is a positive 
reactance.  Series Capacitors would move around the negative half-plane because 1 over 
jwC is equal to –j/wC, if we multiply top and bottom by j, which is a negative reactance.

20
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Shunt Capacitor Moves Along Constant Bn Arc

• On admittance axes, positive jBn maps to negative complex Gamma

21

Zs

50

V(-S,t) V(0,t)

Let Z0=50 Ohm

Another tricky termination would be a shunt capacitor.  At low frequencies it would be 
open, so we’d expect a reflection coefficient of 0 at the middle of the Smith Chart.  At high 
frequencies it will be a short circuit, so showing up at the Gamma=-1 point on the left of 
the Smith Chart.  Describing what happens in between demands that we use the 
Admittance and Suscpetance lines instead of the Reactance and Resistance Lines.  Our load 
conductance Gl is 1/50 S, and our characteristic conductance is also 1/50 Siemen, so the 
normalized conductance is 1.  Our normalized susceptance is jwC over 1/50, so we’ll sweep 
out a path on the complex plane as w is changed.  One oddity of the admittance axes is 
that positive jBn on the Y plane maps to circles on the negative Imaginary Gamma half-
plane, so this curve moves across the positive jBn coordinates which are on the bottom half 
of the Smith Chart.  That’s a little weird to remember, but there’s a convenient pneumonic: 
the bottom of the Smith Chart is for capacitors (either in shunt or series) and the top half is 
for inductors (either in shunt or series).

21



Department of Engineering

Load T Line Rotates Reflection Coefficient

• Just the same as the Γ_g(S) equation, why we chose the Γ plane.
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100

V(-S,t) V(0,t)Zs

Γ_g(S)Let Z0=50 Ohm

Finally, if we look at our delayed load we can see that the locus of points it occupies as 
frequency changes is described by a circle that’s concentric with the unit circle.  This is just 
our generalized Gamma_g being swept around the plane as the phase it sees increases.  
We picked this representation because it would be easy to draw Gamma_g as a phasor, and 
we’re seeing that here.
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Summary

• Smith Charts let us translate easily between loads and reflection 
coefficients.

• Inductors and capacitors trace out loci of different reflection 
coefficients as frequency is varied.  C on bottom ½ plane, L on top.

• Admittance axes map positive jBn to negative j*IM{Γ}
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