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In this video we’re going to briefly revisit the full Telegrapher’s equation to examine how 
lossy transmission lines differ from lossless lines.
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Loss in Telegrapher Causes Pulses to Shrink

• This is called attenuation.  
• The “missing” voltage is turned to heat in the r and g elements.
• Derivation later (w/ sine waves), but V(x,t) = exp(-αt)V(x-vt,0)

𝑑ଶ𝑉(𝑥, 𝑡)

𝑑𝑥ଶ
= 𝑟𝑔𝑉(𝑥, 𝑡) + 𝑟𝑐 + 𝑔𝑙

𝑑𝑉 𝑥, 𝑡

𝑑𝑡
+ 𝑙𝑐

𝑑ଶ𝑉 𝑥, 𝑡

𝑑𝑡ଶ

“Dissipation Term”
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I’ve included the full Telegrapher’s equation on this slide, and I’ve highlighted a term called 
the dissipation term.  Solving tricky partial differential equations is outside the scope of this 
class, so you either have to take my word that this term causes dissipation, or read the 
article I’ve linked on the course site.  

The effect of this term is a behavior called attenuation, where energy in a moving wave 
gets turned to heat in the transmission line’s lossy elements. This results in a smaller 
version of the wave driven into the transmission line, which I’ve illustrated on the right: the 
wave at the middle node is a tiny replica of the wave that was driven into the left node.

We can be more specific about how small an attenuated wave becomes. We’ll do a full 
derivation later, but it turns out that attenuation introduces an exponential scaling factor to 
the shape of the wave that makes it smaller and smaller as the wave propagates further.
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Loss in Telegrapher Causes Pulses to Spread

• This is called dispersion, comes from ω dependent velocities
• No dispersion if rc = gl, which is called the Heaviside Condition
• ~No dispersion if r and g small, which is called the low-loss condition

𝑑ଶ𝑉(𝑥, 𝑡)

𝑑𝑥ଶ
= 𝑟𝑔𝑉(𝑥, 𝑡) + 𝑟𝑐 + 𝑔𝑙

𝑑𝑉 𝑥, 𝑡

𝑑𝑡
+ 𝑙𝑐

𝑑ଶ𝑉 𝑥, 𝑡

𝑑𝑡ଶ

“Dispersion Term”
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The last remaining term in the Telegrapher’s equation is referred to as the dispersion term.  
It causes waves to smear out, like the pulse shown at the middle node of the transmission 
line on the right.  This happens because waves of different frequencies move at different 
velocities in a dispersive transmission line.  In this example, we know by Fourier that a 
square pulse is made of an infinite sum of sine waves, and the dispersed pulse represents 
the fast sine waves running ahead of the slow ones.

Dispersion is tough to analyze by hand, so we are going to focus on a few conditions that 
effectively eliminate dispersion.  One condition that eliminates dispersion is when rc=gl, 
and this is called the Heaviside condition.  Another condition that eliminates dispersion is 
when r is much smaller jwl and g is much smaller than jwc, which is called the low-loss 
condidtion.  We’ll take a closer look at these conditions when we drive sine waves onto the 
transmission line.
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Summary

• Loss causes pulses to shrink exponentially, which is called attenuation

• Loss causes pulses to spread out, which is called dispersion

• We can cancel dispersion with certain combinations of t line 
parameters, which we called the Heaviside and Low-loss condition.

• More on all of this later
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In this video we’re going to try to figure out the relationship between voltage and current 
in a transmission line.
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We find Current in T Lines with Differential Z

r*dS l*dS

g*dS c*dS

+
V(x,t)

-

+
V(x+dS,t)

-

I(x,t) I(x+dS,t)

x

Z0

𝑍଴ = 𝑟 + 𝑗𝜔𝑙 𝑑𝑆 +
1

𝑔 + 𝑗𝜔𝑐 𝑑𝑆
||𝑍଴

𝑍଴ = 𝑟 + 𝑗𝜔𝑙 𝑑𝑆 +
1

𝑔 + 𝑗𝜔𝑐 𝑑𝑆 + 1/𝑍଴

𝑍଴ 𝑔 + 𝑗𝜔𝑐 𝑑𝑆 + 1 = 𝑟 + 𝑗𝜔𝑙 𝑑𝑆 𝑔 + 𝑗𝜔𝑐 𝑑𝑆 +
1

Z଴
+ 1

𝑍଴ 𝑔 + 𝑗𝜔𝑐 𝑑𝑆 = 𝑟 + 𝑗𝜔𝑙 𝑑𝑆/Z଴

𝑍଴ = ±
𝑟 + 𝑗𝜔𝑙

𝑔 + 𝑗𝜔𝑐

𝑍଴ = ± 𝑙/𝑐

 Characteristic impedance!
(+/- for fwd/reverse wave solutions)

 Lossless characteristic impedance!
(a constant)

7

We need to think about this because the telegrapher’s equation solutions tell us the 
voltage on the transmission line, but not the current.  We’d like to be able to find the 
current anywhere on the line too.

Fortunately, we have an easy tool to do that because each differential segment of a 
transmission line has some impedance.  If we find this differential impedance, then we can 
just divide V(x,t) by it to get I(x,t).  We give this differential impedance a special name, the 
characteristic impedance, and we give it the symbol Z_0.  You might notice that we’ve 
opted to use a capital Z, which suggests that this has units of impedance, not impedance 
per unit length.  

As a side note, we’re assuming constant values of r, l, g and c across the transmission line in 
this derivation.  That’s a safe assumption for most modern transmission lines, but some 
people violate that assumption on purpose to build microwave devices.  It’s also a property 
that sets transmission lines apart from random wires on a breadboard.

OK, to get started I’ve included an expression for the impedance seen by V(x,t) up here.  
You can see that it is the sum of the impedance of the series elements and some 
complicated shunt element.  The shunt element is made of two parts.  
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The first part describes the effect of the capacitance and conductance. This equation opts to 
represent the impedances of the conductor and capacitor as one over their admittance. 
Admittance is 1/impedance, so it’s like a complex version of conductance just like impedance 
is a complex version of resistance. The admittance of a conductor is just g, the admittance of 
a capacitor is one over the impedance, so its jwC, and finally admittances add for parallel 
elements just like impedances add for series elements.  So we’re left with an impedance of 
1/(g+jwC).

That impedance is in parallel with Z0, which might seem surprising.  That Z0 term comes 
from the fact that our wire model is a two-port model, so we have to hook something up in 
parallel with the conductor and capacitor to represent what the V(x+dS,t) port is connected 
to.  The trick here is that the segment we’re looking at is differentially small, so removing it 
won’t change the impedance seen looking into the rest of the transmission line. That means 
we see Z0 looking into the V(x+dS,t) port too.

Alright, with that equation set up we can do a bunch of tedious algebra.  I’m going through 
the details of it because there’s one step in the middle that is a good reminder of some a 
common physics approximations, but overall this is just turning the crank.  CLICK first we 
make an algebraic expression for two things in parallel CLICK then we multiply both sides by 
the denominator of the second term on the right.  This leaves us with a messy equation, but 
there are a bunch of ways to simplify it.  CLICK we can subtract 1 from both sides, and we can 
also throw away the first term in this sum because it will wind up multiplied by dS^2, and a 
squared differential is too small to care about. CLICK so we’re left with a much more 
tractable equation CLICK which can be solved for our characteristic impedance!  

Note that the dS variables cancelled, so this is not multiplied by a differential.  It’s an actual 
impedance that happens to be a ratio of two impedance densities.  Also note that the 
plus/minus means we have two impedance solutions.  That’s because each solution 
corresponds to one of our candidate wave solutions: one is for right-travelling waves and the 
other for left-travelling waves, and the negative sign just means left travelling waves send 
current in the minus x direction.

Finally, as usual, making our line lossless yields a really nice expression.  In a lossless line Z0 is 
sqrt(l/c), and it doesn’t change with frequency.
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Types of Impedance in This Class

• Lumped Impedance

• Characteristic Impedance

• Driving Point Impedance

• Radiation Resistance

Z, Normal impedance, a discrete R, multimeters

Z0, t line property, only seen by waves, 50 ohm

Zdp, Thevenin at the t line input, time varying

Rrad, Honorable mention, More on this later
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Before we go any farther, it’s important to get some definitions straight.  We use the word 
impedance a lot in this class, but it can refer to several different things.  

Lumped impedance is normal impedance.  It refers to a discrete capacitor.  This is what 
multimeters measure (because they only measure DC things).

Characteristic impedance is a property of transmission lines that describes how a 
differential segment behaves.  The only things that interact with our distributed model are 
waves, so we can only infer the value of Z0 by looking at how waves propagate and 
interact. We’ll talk about some tools to measure waves soon.  Also, note that 50 ohms is a 
common characteristic impedance for rather silly historical reasons.  So if someone says a 
cable is 50 ohms, that’s referring to a characteristic impedance and not a lumped 
impedance: a multimeter won’t measure 50 ohms on a 50 ohm cable.

Driving Point Impedance is a fancy version of Thevenin impedance.  This is the impedance 
that a driver perceives when it looks into a length of transmission line.  It’s important 
because we’re going to see that driving point impedance can change with time as left-
travelling waves go back and hit the driver.

Finally, radiation resistance gets an honorable mention here even though it uses the word 

8



resistance and not impedance.  Radiation resistance is a property of antennas, and we won’t 
see it for a while, but keep an eye out.
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Driving Point Impedance of Infinite T Line
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… infinitely long

x Let v = 5 cm / ns  

Vin(t) [V]

t [ns]1 2

1

V(0,t)

t=1 ns

t=2 ns

t=3 ns

5 10 15 x [cm]

V(x,1) [V]

5 10 15 x [cm]

V(x,2) [V]

5 10 15 x [cm]

V(x,3) [V]

𝑍ௗ௣ 𝑡 =
𝑉 0, 𝑡

𝐼 0, 𝑡
=

𝑉 0, 𝑡

𝑉 0, 𝑡 /𝑍଴
= 𝑍଴

Zs

Constant V(0,t)  Zdp(t) = Z0

I(0,t)

1V*(Z0/(Zs+Z0))

We’re going to start exploring different kinds of impedance by calculating the driving point 
impedance of a transmission line.  To do that, I’ve drawn a schematic here that shows a 
step function being driven into a transmission line.  The function generator in this case has 
a source impedance of Zs.  We’re calling the node between Zs and the transmission line 
V(0,t) and the current flowing into the transmission line I(0,t).

The driving point impedance is V(0,t) over I(0,t) by definition, and I(0,t) is V(0,t) over Z0, 
which means the driving point impedance is equal to Z0 in this example.  Even though I’ve 
promised driving point impedance can vary with time, it isn’t doing so here because the 
transmission line is infinitely long.

This value of driving point impedance has a few other effects. CLICK  First, If we look at the 
wave propagating down the line, we see that the height is set by a voltage divider between 
Zs and Zdp.  Second, we might also notice that Zdp is a real impedance, which suggests that 
our power supply is dissipating real power in it.  That’s weird since this is a lossless 
transmission line made entirely out of lossless inductors and capacitors.  We can resolve 
that paradox because power appears to be lost from the perspective of Vin: it flows down 
the transmission line forever and never comes back.
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Summary

• We find the current in a transmission line by taking V(x,t)/Z0

• Z0 is called the characteristic impedance, and for lossless lines  

• The driving point impedance of an infinite transmission line is Z0

• Impedance can mean a lot of things in this class, be specific

10

𝑍଴ = ± 𝑙/𝑐
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In this video we’re going to find the voltage in a transmission line with a finite length that is 
loaded with an impedance.
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Resistive Loads Create Left-Travelling Waves

12

Zs

Zl

V(0,t) V(S,t)

I(S,t)

𝐼 𝑆, 𝑡 = 𝑉(𝑆, 𝑡)/𝑍௟ 𝐼 𝑆, 𝑡 = 𝑉 𝑆, 𝑡 /𝑍଴AND  Apparent contradiction for Zl≠Z0

𝑉 𝑥, 𝑡 = 𝑉ା 𝑥 − 𝑣𝑡 + 𝑉 (𝑥 + 𝑣𝑡)  Resolved by general solution

𝑉ା 𝑆, 𝑡

𝑍଴
−

𝑉 𝑆, 𝑡

𝑍଴
=

𝑉 𝑆, 𝑡

𝑍௟
 Current and voltage continuity at SAND 𝑉ା 𝑆, 𝑡 + 𝑉 𝑆, 𝑡 = 𝑉(𝑆, 𝑡)

𝑉 𝑆, 𝑡

𝑉ା 𝑆, 𝑡
=

𝑍௅ − 𝑍଴

𝑍௅ + 𝑍଴

Called Reflection Coefficient, Γ  Some algebra

I’ve put our usual transmission line picture on this slide, with a source impedance Zs and a 
load impedance Zl.  I’ve also added variables describing the voltage and current at the end 
of the line: V(S,t) and I(S,t)

CLICK This termination presents us with a thorny math issue though.  We need current 
continuity at S, but we have two different equations defining the current.  The transmission 
line thinks I(S,t) should be V(S,t) over Z0, while the load thinks I(S,t) should be V(S,t) over Zl.  
CLICK We resolve this using the full, general solution for waves on a line, which is a sum of 
both of our candidate solutions.  If we introduce a left travelling wave at the load, which we 
usually call a reflection, then we can get the math to work out.  Note that I’ve used 
different symbols for the shapes of the right travelling and left travelling waves: I called 
them V+ and V- respectively.  That’s because our solution never guaranteed that the right 
and left travelling waves would be the same shape, and some boundary conditions can 
require the two waves to be shaped differently.

CLICK Armed with another degree of freedom from V-, we can define current continuity 
and voltage continuity conditions at S.  The V+ and V- voltages are added together, so their 
sum needs to equal V(S,t).  The right travelling and left travelling currents are subtracted 
from one another, which you can understand from a physics point of view (beacuse the 
current wave is being reflected from the load and charge is going backwards) or from a 
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math point of view (because the impedance for a reverse-going wave is –Z0, which makes 
V(S,t) divided by the impedance a negative number).  CLICK If you then do some algebra to 
rearrange these equations, you can find the ratio of the left travelling wave amplitude to the 
right travelling wave amplitude, which is a useful quantity called the reflection coefficient, 
and we give it the symbol  Γ.  The left going wave will be generated at the boundary 
condition and propagate to the left just the like the forward going wave.
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Summary

• Resistive loads create left-travelling waves, which are reflections of 
the incident wave.

• This is because boundary conditions at a load requires current 
continuity.

• We describe the size of the reflected wave with a reflection 
coefficient

13

Γ =
𝑉 𝑆, 𝑡

𝑉ା 𝑆, 𝑡
=

𝑍௅ − 𝑍଴

𝑍௅ + 𝑍଴
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In this video we’re going to deploy our new knowledge of the reflection coefficient to look 
at some common terminations.  We’ll also try to get a physics understanding of what’s 
happening to charge in transmission lines.
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Zl = Z0 Has No Reflection

• Desirable for many designs, good power delivery, easy to understand.
• Intuition: looks just like an infinite line to a wave front.

15

Zs

Z0

V(0,t) V(S,t)

Γ =
𝑍௅ − 𝑍଴

𝑍௅ + 𝑍଴
= 0

Our first example is terminating a transmission line in Z0.  This results in a reflection 
coefficient of 0 because Zl minus Z0 is zero, so there are no reflections.  This is desirable for 
a lot of designs, and if you’ve ever heard anyone refer to impedance matching, that 
vocabulary word refers to attempts to create this condition.  An impedance matched load 
absorbs power well, and it doesn’t throw power back into your transmitter, which can 
cause problems.

I also like to think about the lack of reflections in an impedance matched line from the 
point of view of the wave in the wire.  The right-propagating wave is used to seeing an 
impedance of Z0, so it can’t tell the difference between a termination of Z0 and an infinite 
transmission line.  Driving V(S,t)/Z0 current into the load is just the same as driving 
V(S,t)/Z0 current into the next wire differential.
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Zl = Open Circuit Zeroes Current at Load

• Intuition: charge is piling up and going back, so double V and zero I

16

Γ =
𝑍௅ − 𝑍଴

𝑍௅ + 𝑍଴
= 1

V(0,t)Zs V(S,t)

x Let v = 5 cm / ns
Let S = 40 cm  

Vin(t) [V]

t [ns]3

1

Recall Z0=-sqrt(lc) for left-going wave

t=5 ns

t=9 ns

10 20 30
V(x,5) [V]

V(x,9) [V]

x [cm]

I(x,9) [A]

40

10 20 30 40

10 20 30 40

t=14 ns
10 20 30

V(x,14) [V]
40

Next we’re going to look at a transmission line terminated in an open circuit.  Because Zl is 
infinite in this case, we find that the reflection coefficient is 1, so the left-travelling wave is 
going to have the same amplitude as the right-travelling wave.  Also, just a reminder, left 
travelling waves have a negative value for their characteristic impedance, which indicates 
current flows in the left direction for left-travelling waves.  The transmission line we’re 
going to study is pictured here. Note that it’s being driven by a 2ns long voltage pulse.

CLICK I illustrate how voltage on the line will change as the pulse hits the load in theses 
figures on the right.  I’ve marked an arrow on each edge of the diagram to show which way 
the edges are travelling because in some subfigures we’ll see both right and left travelling 
waves.  At t=5ns, we see the pulse that we’ve launched into the line propagating right, just 
like in an infinite line.  At t=9ns we see the pulse is in the process of being reflected off of
the open circuit.  As the pulse is incident on the load, it creates a reverse going pulse.  
Because the pulse has been in contact with the load for 5ns, we see that a reverse-going 
wave has been generated for 5ns.  From a math standpoint, the left-travelling wave has the 
same voltage as the right-travelling wave, and our two voltage solutions add, so we see 
double the voltage at the load.  The currents subtract because the left-travelling wave has a 
negative characteristic impedance, so we see zero current at the load.  

This is a really good result because it agrees with our physics intuition.  First, the current at 
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the open circuit is zero, which is what we expect at an open circuit.  Second, though this 
picture is not quite physically correct, we can imagine this travelling voltage pulse as a 
moving pile of charge.  When the charge runs into the open circuit, it piles up, which 
increases the voltage, and creates an electrostatic force that pushes against other charges of 
the same time.  This causes charge to move in the reverse direction, and the right-travelling 
and left-travelling flows of charge cancel out to leave zero current.

Finally, at t=14ns we can see the voltage pulse propagating back towards the source.  At this 
time, there is only a left-travelling wave and not a right travelling wave.
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Zs Can Cause Reflections, Zdp is Consistent

• At 16ns Vin(t)=V(0,t), so no current through Zs.
• Zdp(6ns)=Z0, Zdp(10ns)=Z0, Zdp(16ns)=infinite  driving an open

17

Γୟ୲ ୧୬୮୳୲ =
௓ೄି௓బ

௓ೄା௓బ
= 0 in this case

V(0,t)Z0 V(S,t)

x Let v = 5 cm / ns
Let S = 40 cm  

Vin(t) [V]

t [ns]3

1

t=6 ns

t=10 ns

t=16 ns

10 20 30
V(x,6) [V]

V(x,10) [V]

x [cm]

V(x,16) [V]

40

10 20 30 40

10 20 30 40

0.5V

1V

On this slide we’re looking at a situation that’s a little different than last slide even though 
the transmission line is still loaded by an open circuit.  In this slide Vin(t) is now a step 
function, not a pulse.  Also, Zs is equal to Z0 on this slide.

We see the step propagating down the line in the 6ns figure, and it has a height of 0.5V.   
That’s because of a voltage divider between Zs and Zdp.  We’ve only technically figured out 
the driving point impedance for an infinite transmission line, but we can say that 
V(0,6ns)/I(0,6ns) is equal to Z0 because there is only a forward travelling wave right now, 
and each of our candidate waves has to individually obey V(x,t)/I(x,t)=Z0.  Because both the 
source and driving point impedances are Z0, we see a divider factor of one half.

In the 10ns figure, we can see that the wave front has reflected off the open circuit and the 
voltage doubles as the left-travelling wave is added to the right-travelling wave.  The 
current will be zero in the region with doubled voltage just like it was on the last slide.  

Finally, the wave front reaches the source at t=16ns.  There are two things to discuss about 
the wave front reaching the source.  First, the wave front could potentially reflect off of the 
source impedance.   In this example we’ve set the source impedance to Z0, so the left-
travelling wave doesn’t have a reflection.  But it’s important to remember that one can 
happen in a general case.  You’ll notice that if both the source and the load are impedance 
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mismatched, you could get a wave reflecting off the load, and then off the source and then 
off the load again, and that happens in the real world. It makes the voltage on the line very 
hard to predict, though attenuation in the real world also reduces the size of the waves 
during each trip so they don’t bounce around forever.  You’ll also notice that I ignore the 
voltage source when I’m calculating the reflection coefficient, which is because the Thevenin 
impedance of ideal voltage sources is 0.

The second thing to discuss is that the driving point impedance changes when the left-
travelling wave reaches the driver.  The right-travelling and left-travelling waves each have an 
amplitude of 0.5V and generate 0.5V/Z0 of current in the forward or backward direction, but 
the source sees the sum of the waves at t=16ns, which has an amplitude of 1V and pulls zero 
current.  The driving point impedance is always equal to V(0,t)/I(0,t), and because I(0,t) is 
zero, Zdp(t) is infinite, or said another way, the driving point impedance is now an open 
circuit.  This is actually really cool, because it matches with any previous experience you’ve 
had in a lab.  If you hooked a multimeter up to one side of a BNC cable with the other side 
open circuited, you would measure infinite resistance.  This changing value of Zdp(t) is 
consistent with that; 16ns after applying a voltage to measure how much current comes out, 
your multimeter would see an answer of 0, and multimeters don’t update fast enough to see 
what happens 16ns after they’re hooked up.

The changing value of Zdp(t) is also cool because you can think of it in terms of “information 
about the load” making it back to the source.  The driving point impedance has to wait for a 
left travelling wave before it changes, so the driver can’t perceive what the load is any faster 
than 16ns.  Here we see that after 16ns the driving point impedance becomes consistent 
with information about the load carried on the left-travelling wave.

17



Department of Engineering

Summary

• Terminating in Z0 causes no reflections

• Reflected I subtracts from incident I, reflected V adds

• Zdp(t) changes with time to reflect information at source about load

• Zs can cause reflections and voltage sources have zero impedance
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