E157 Lecture 22 Day Plan

Any questions before quiz
Quiz + Team Quiz + Talk through solution
Quantization noise

- Clarification on quantization noise stdev - it's also OK to say $\sigma_{q}=L S B / \sqrt{12}$
- What is the LSB size of an ADC with Nbits and Vfs?
- LSB = Vfs / [2^{\wedge} (Nbits)-1], note you need a fencepost at VFS and at 0
- $\quad S Q N R=6.02 \mathrm{~dB} / \mathrm{bit}+1.76 \mathrm{~dB}$
- Psig $=(\mathrm{Vfs} / 2)^{\wedge} 2 / 2 R \rightarrow$ "stdev sig" $=\mathrm{Vfs} /(2 *$ sqrt(2) $)$
- "stdev quant" = LSB / sqrt(12)
- Dynamic Range = stdev sig / stdev quant= sqrt(12)/(2*sqrt(2)) * (2^Nbits -1$)=\operatorname{sqrt}(3 / 2) \ldots$
- SQNR = (Dynamic Range) $)^{\wedge} 2$
- SQNR_dB $=2 * 10 *[\log (\operatorname{sqrt}(3 / 2))+$ Nbits* $\log (2)]$ (ignoring the -1)

Processing Gain - a FFT sets the noise bandwidth

- In an FFT, each f0 captures frequencies from kf0-f0/2 to kf0+f0/2.
- Therefore, $\mathrm{Pn}=\mathrm{kTB}$ will often have B set by the value of f0
- If fO is narrower than the narrowest bandpass filter, fBP , then you have an apparent "gain" in SNR, because the noise floor is suppressed by the narrow FFT bandwidth

Are oscilloscopes limited by quantization or thermal noise?
https://www.keysight.com/en/pdx-x201837-pn-DSOX2024A?nid=-32542.1150190\&cc=US\&|c=eng
8 bits, 200 MHz front-end BW into 1 MHz termination, smallest $\mathrm{V} /$ div is 10 mV on 10 divs

- $\mathrm{Pn}=\mathrm{kTB}=\left(4.14 \times 10^{\wedge}-21 \mathrm{~J}\right) * 200 \mathrm{MHz}=8.28 \times 10^{\wedge}-13 \mathrm{~W}$
- $\quad v n^{\wedge} 2=4 * R * P n=3.31 e-6 V^{\wedge} 2$
- $\mathrm{vn}=1.8 \mathrm{mV}$
- $\mathrm{vq}^{\wedge} 2=\operatorname{LSB} \wedge 2 / 12=(100 \mathrm{mV} /(256-1))^{\wedge} 2 / 12=1.28 \mathrm{e}-8 \mathrm{~V}^{\wedge} 2 \rightarrow \mathrm{vq}=0.113 \mathrm{mV}$ @ tightest zoom
- Steeping out to wider gains increases vq, but also introduces more vertical gain to amplify vn

Noise spreadsheet

- Carrier frequency is 2.4 GHz
- Chain goes: T/R switch - amp - filter - amp
- Amplifiers: https://www.minicircuits.com/pdfs/ZRL-3500+.pdf
- Filter: https://www.minicircuits.com/pdfs/VBF-2435+.pdf
- T/R Switch: https://www.minicircuits.com/pdfs/ZFSWA-2-46.pdf
- Fill in spreadsheet below, sketch the spectrum at the output of this system, and pick how many ADC bits and what ADC sample rate you want.

Noise spreadsheet:
https://docs.google.com/spreadsheets/d/1a8tp4q8aZqqk zcnzNJ1Xu8owhBuvWTrAU nkpJs9Y8/edit?us $\mathrm{p}=$ sharing

