E157 Lecture 11 Day Plan

Any questions before quiz
Quiz + Team Quiz + Talk through solution
Leftover from last lecture: S21 is voltage gain if input is matched

- Call out an intermediate formula: $\mathrm{S} 21=\mathrm{V} 2 / \mathrm{V} 1^{*}(1+\mathrm{S} 11), \mathrm{S} 11$ is zero if matched, port 2 ZO term
- Reminder, Calculate S11 as Gamma w/ Z0 term.
- Note that reflection Gamma_in won't necessarily be just $\mathrm{S} 11 \mathrm{~b} / \mathrm{c}$ of $\mathrm{S} 21 * \mathrm{~S} 12$ round trip
- Calculate S11 and S21 for amp w/ gain of A, Rin=50, Rout=50 // gain A, Rin=inf, Rout=50

Linear network matrix properties

- Linear vs. Affine - difference from Thevenin, (calculate Thevenin for 2 port w/ a Vsource)
- Let system be $f(x)=a x+b$, matches Thevenin model, note Rth=-Voc/Isc by port defn
- Linearity requires $f(x+y)=f(x)+f(y)$
- Passive - implies passive components, no power added
- Try w/ A=[2, 1+I ; 1-I, 1]
- \& lossless \rightarrow unitary: $S^{T *} S=I$, eg: $|\mathrm{S} 11|^{\wedge} 2+|\mathrm{S} 21|^{\wedge} 2=1$ for 2 port

○ \& lossy $\rightarrow S^{T *} S<I$, eg: $|\mathrm{S} 11|^{\wedge} 2+|\mathrm{S} 21|^{\wedge} 2<1$ for 2 port

- Reciprocal - implies made of uniform, reciprocal ("non-directional") material,
- $S^{T}=S \rightarrow \mathrm{Sij}=\mathrm{Sji}$
- Not true for circulators (b/c of magnetically biased core), amplifiers, diodes
- Symmetric - can plug in backwards, reciprocal and all Sii=Sjj (same match at input and output)
- Matched, lossless, reciprocal 3 port is impossible:
- Matched \rightarrow S11=S22=S33=0,
- Reciprocal $\rightarrow \mathrm{S} 12=\mathrm{S} 21, \mathrm{~S} 13=\mathrm{S} 31, \mathrm{~S} 32=\mathrm{S} 23$
- Lossless \rightarrow S unitary, so $|S 1 x|^{\wedge} 2+|S 2 x|^{\wedge} 2+|S 3 x|^{\wedge} 2=1$ for x in $\{1,2,3\}$ and Swx* Syz $=0 \mathrm{w}$ $w x=\{21,21,31\}, y z=\{31,32,32\}$
- 9 equations in only 6 unknowns, overconstrained

Finding length from a short cal

- Pick out f 1 of null 1 and f 2 of null 2 .
- $2 * \mathrm{k} 1^{*} \mathrm{~S}=2 \mathrm{n}$ *pi, $2 * \mathrm{k} 2 * \mathrm{~S}=2(\mathrm{n}+1)^{*}$ pi \leftarrow Every VSWR lambda, or every half wave lambda

