E157 Lecture 10 Day Plan

Any questions before quiz

Quiz + Team Quiz + Talk through solution

Measuring Q from return loss! Lab 3 debug

- Log plots are tricky, what would S_{21} be for the S_{11} shown (show a filter)
- If lossless and terminated $1+S_{11}^2=S_{21}^2$
- Therefore, -3dB on S_{11} plot corresponds to 3dB off peak in S_{21} plot
- For very low S_{11}, less than -3dB, can use pseudo -3dB point based on S_{11} min
 Effective S_{21} peak, linear = $\sqrt{1-|S_{11},\text{min, linear}|^2}$
 Effective S_{21} -3dB, linear = Effective $S_{21}/\sqrt{2}$
 Effective S_{11} -3dB, linear = $\sqrt{1-\text{Effective } S_{21},-3\text{dB,linear}}|^2$
- Potentially discuss loaded and unloaded Q & weak coupling

What VNA to use for DP1

- Siglent S_{11} with filter board input TG, output terminated \Rightarrow easy export, easy calibration
- Siglent S_{21} with filter board input TG output RF \Rightarrow easy export, calibration harder
- Anechoic VNA \Rightarrow Export is tricky (see Xavier plotter script), do full 2 port cal, watch cables

S-parameters of filters – insertion loss, return loss, Smith Charts

- Can class (1) sketch a Chebyshev II filter response function, (2) draw S_{21} and S_{11} for it.
- $|S_{21}|^2 = |H(j\omega)|^2$ roughly, both measure power flow
- S_{21} in band is insertion loss
- S_{21} out of band is stop-band rejection
- S_{11} is high out of band, signals bounce off of filters. Transfer over at 3dB corners

Calculate Z parameters for quiz problems