E157 Lecture 8 Day Plan

No quiz! Any questions?

Matching networks with transmission lines – impedance cancellation, single stub

- lambda/4 turns opens to shorts
- Draw a stub
- Imply existence of filters

Tapped Capacitors, Tapped Inductors and Transformers

-Tapped
$$L/c$$
 transform

- let $\frac{C_1}{c_1+c_2} = k$
 $c_1 = k$
 $c_2 = k v_i$

- pencer into R_L some as from v_i

- so $i_1 = i_1 n/k = 6$ does too!!

 $v_i = i_1 n/k = 6$

• For transformer – same but voltage boosted! vo = k*vi, k>>1

Run the VNA sim, work through it as a class, get everyone up and running with s1p import.

- Everyone do the VNA sim from lab 3
- Export in proper format.
 - Simulate
 - Right click in sim pane
 - o File -> Export Data as text -> Format Dropdown is Cartesion Re,Im
 - Name must have .s1p suffix
 - o Edit file in text editor, add
 - Import as Network using skrf, or use Matlab

Make a spreadsheet/script to design a T-match from 200 Ohms, 2*pi*100 MHz, Q=3

- Check vs. https://home.sandiego.edu/~ekim/e194rfs01/jwmatcher/matcher2.html
- Qoverall → Ri, 2Qoverall = sqrt(Ri/Zo-1)+sqrt(Rp/Zo-1)
- Ri and w0 → C1 and C2 through component Qs, Qdes1=1/(w0*Ri*C1s)
- Use w0 to find L, and come out frome series-parallel or parallel-series

Check-in, office hours for lab 3