E157 Lecture 4 Day Plan

Any questions before quiz
Quiz + Team Quiz + Talk through solution
Lab review -

- Assumptions, $D C=$ no caps, $\mathrm{AC}=$ linear, Transient=mostly honest
- Axes, $\mathrm{DC}=\mathrm{V}$ vs. $\mathrm{V}, \mathrm{AC}=\mathrm{V}$ vs. f, Transient=V vs. t
- S parameter experience
- Length calibration: how was this? Practical/theory? Keep me posted on lab 2

Complex number visualizations for VSWR, refer to sketch below -

- Phasor notation, everything spins at omega
- Let phi=0 be at load, let source be at -S
- Accrue negative phase as fwd wave propagates forward: $V(x, t)=V(-S, t) * \exp (-j k x)$
- Accrue positive phase as rev wave propagates backward: $\mathrm{V}(\mathrm{x}, \mathrm{t})=\mathrm{V}(0, \mathrm{t}) * \exp (-\mathrm{jkx})$
- Results in counterspinning vectors,
\rightarrow constant phase relationship between fwd and rev wave vs. time
\rightarrow amplitude at x is fixed by phase relationship
- _Also_ can accrue phase from the load. Just adds phase to relationship.
- VSWR has a Spinning Gamma plus one vector at 2jkx, twice as fast

Where are max/min in a standing wave for real Gamma? - for real Gamma, max/min at termination
Falling edges for square waves (has been 1 V forever and falls to OV) can be modeled as a superposition of a negative step propagating down the line + DC volts

Sketch

- we're omitting $\exp (w t)$ everywhere, per phasors)
- this line is less than lambda/2 long.
- The up/down minima is at lambda/4 (half a VSWR pattern).
- Fwd wave would be at an angle of pi at lambda/2 (1 VSWR pattern), and the up-left angle is less than that
- A full wave would be two VSWR patterns, bringing fwd in a full circle

Label	src+ZO (at x		line	line	line	load (at $\mathrm{x}=0$)
fwd	Vi*exp(kS)	Vi/2*exp(kS)	up-left	up	up-right	Vi/2*exp(0)
rev	term	$\Gamma^{*} \mathrm{Vi} / 2 * \exp (+$	down-left	down	down-right	$\Gamma^{*} \mathrm{Vi} / 2 * \exp (0)$

sum ... show both vectors, constant angle relation

