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In this video series we’re going to be reviewing linear circuit theory.  We’ll also think 
carefully about how linear circuit theory relates to matrix and graphical representations of 
linear systems, and that will help us come up with some very quick ways to solve circuits.  
This practice of relating circuits to mathematical concepts is one of the recurring habits of 
mind that shows up in this course, so watch out for it!
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In this video we’re going to review how to solve linear circuits and we’ll relate those 
techniques to a matrix representation of a linear circuit.
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Find i2 in 3 Ways
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We’re going to start off with an exercise.  Pause the video and try to calculate i2 for this 
circuit in three different ways.

One way uses Kirchoff’s voltage law, abbreviated KVL, as a starting point.  There are several 
variations on this theme, but we can imagine drawing a KVL loop around the left mesh of 
this circuit to find our first equation: V=i1R1+i2R2.  CLICK Then we can use Kirchoff’s
current law, abbreviated KCL, to express i1 in terms of i2 and I because those three currents 
add together at node v2.  CLICK Finally, we do some algebra to arrive at a solution.

Another way uses Kirchoff’s current law as a starting point.  We write the currents adding 
together at node v2 in terms of the voltages on adjacent nodes, which gives us an equation 
in two unknowns right away.  CLICK Then we can rearrange that eqatuion by cross 
multiplying R1 CLICK and finally arrive at the same answer that we found using KVL. 

The third way I thought of was using superposition, which is a technique that always 
seemed a little magical to me.  We draw two superposition subcircuits, calculate i2 in each 
of them, then add the superposition subcurrents to find the final value of i2.  As a 
reminder, we drew the superposition subcircuits by “zeroing out” all but one power source 
in each subcircuit, where zeroing voltage sources looks like shorting them (setting V=0, like 
a wire) and shutting off current sources looks like opening them (setting I=0, like an open 
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circuit).  This is a super slick technique that lets you solve circuits very quickly because the 
superposition subcircuits are often very simple.

This technique of drawing multiple circuits to represent some mathematical manipulation is 
a common tool that we’ll come back to often in this class.  We do this because it lets us 
calculate quickly by simplifying circuits so we can analyze them in our heads.  Keep an eye 
out for it!
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Circuits Can Be Represented as Matrices

• Each superposition circuit represents a set of vectors and/or 
submatrices you can add back together to get a solution.
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The magic of superposition can be explained by looking closely at the matrix 
representation of a linear circuit.  On this slide I’ve drawn a matrix equation that 
summarizes all of the voltage-current relationships enforced in the circuit.  You can see an 
example by multiplying the first row by the input vector, which results in the equation 
V=i1R1+i2R2, our first KVL loop from the last slide.  There’s a lot of depth in this 
representation that we’re only going to glance at – for instance, the matrix is actually an 
adjacency graph which shows how much resistance is connected between different nodes 
– CLICK but we are going to do one quick manipulation to help justify superposition 
without fully proving it.  This second representation shows that the current source I 
controls just one vector term in a matrix equation, and because that equation is linear, you 
could imagine calculating the contribution of the other two vectors with I set to zero, then 
adding in the effect of the I vector.  That ability to analyze terms of a linear equation 
separately is at the heart of superposition.

Aside: there are many different formulations of this circuit matrix, which each correspond 
to different circuit solving techniques.
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Summary

• You can solve circuits with KVL, KCL or superposition

• “Zero Out” supplies in to make superposition subcircuits
• Current source becomes open (i.e. I=0)
• Voltage source becomes short (i.e. V=0)

• Superposition subcircuits correspond to subsets of the matrix 
representation of a circuit.
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In this video we’re going to review finding Thevenin equivalent circuits.  We’ll also relate 
finding Thevenin circuits to a graphical representation of current-voltage relationships 
called, creatively, an IV plot.
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Thevenin Lets Us Analyze Circuit Connections
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I’ve brought the circuit we analyzed in the previous video over to this slide. We are now 
very capable of solving the circuit, finding every voltage and current in it, either using 
matrix math or standard node-by-node circuit analysis techniques, but just knowing what’s 
going on inside of a circuit is a little uninteresting.  Ultimately, we’re going to want this 
circuit to interact with the rest of the world, either by hooking it to another circuit or to 
some transducer that cares about the voltage and current it provides.  CLICK We represent 
this connection to the rest of the world using a port.  

CLICK We’d like to abstract away the details of this circuit, and we can take advantage of 
the fact we connect at a port to do so.  If we can describe the relationship of port voltage 
to port current, then whatever we’re connecting to the circuit can just use the port I-V 
relationship instead of representing the whole circuit.  This graph does so, and we know 
that a simple line on the iPORT-vPORT plane suffices to describe the circuit because every 
element in it is linear.  When we change vPORT, iPORT has to change in a linear way 
because there’s no element that would cause it to change in any other shape.  

I’ve labeled a few details of this IV plot. The x-intercept is called the open-circuit voltage 
and labeled vOC. This is because open circuits have no current running through them, so if 
you connected an open circuit to the port you would have a port current of zero and a port 
current of the x-intercept.  The y-intercept is called the short circuit current and labeled iSC.  

7



This is because short circuits have zero voltage across them, so if you connected a short 
across the port terminals you would have a port voltage of zero volts and a port current of 
the y-intercept.  The slope of the line is named after a special resistance called the Thevenin 
resistance.  The slope is labeled as 1/RTH because the rise-over-run on this plot would have 
units of amps-per-volt, which is the inverse of resistance.

CLICK We can represent this linear graph using some equivalent circuits, either the Thevenin 
equivalent (pictured on top) or the Norton equivalent pictured on the bottom.  I think it is 
particularly clear how the Norton equivalent relates to the graph because it directly 
implements the slope-intercept form of the IV relation for the port.
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I’d like you to pause the video and find the Thevenin resistance for this circuit in two 
different ways.

CLICK One way is to very directly find the rise and run of the line on the previous page.  Two 
convenient points to use for a rise-over-run eqauation are Isc and vOC, which I calculated 
here using superposition.  Calculating their ratio turns into some messy math for this 
symbolic representation, so I didn’t follow it through.  However, this calculation technique 
can be very useful when you have measured values of iSC and vOC.

(As a side note, though you’ll do a lot of algebra in learning analog design, I’m trusting you 
as learners to go through the steps by yourself when you need to.  I’ll vary the level of 
detail I show to try to highlight important concepts or common circuit solving techniques.  
You should always feel free to pause the video and work algebra out for yourself.)

CLICK A much faster way is zeroing out all of the sources in the circuit and then calculating 
the equivalent resistance seen by the port.  I’ve drawn a copy of the circuit with the sources 
zeroes, which makes the current source open and the voltage source short, and calculated 
the equivalent resistance.  This algorithm can seem as magical as superposition, but the 
reasoning behind it is anchored in the linear IV curve we just looked saw.  CLICK This curve 
can be reduced to a slope-intercept equation, but we can trace the existence of the 



intercept to the power sources I the circuit.  The power sources must create the intercept 
because resistors have zero current when zero voltage is applied.  So when we zeroing the 
power sources in the circuit we eliminate the intercept, which lets us calculate the slope 
directly from the remaining resistors.

One quick definition: IV curves where the curve passes through zero and only exists in 
quadrants 1 and 3, like resistor networks, are called passive.  They’re called passive because 
they can’t generate power at the port, which can happen when the curve passes through 
quadrants 2 and 4.
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Test Sources Also Let You Find 

• Apply a small test signal and resulting small signal port behavior
• eg: apply 𝑖 and calculate 𝑣
• OR: apply 𝑣 and calculate 𝑖

• Shut off supplies because they don’t experience differential changes
• Identical to calculating 𝑅 for simple linear networks, helpful later.
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There is one other way to calculate Thevenin resistance that you may not have been 
explicitly taught, which is applying a test source.  As a preview of how this method works, 
the mathematical analog to solving a circuit with a test source is taking a derivative of the 
IV curve.  Keep that in mind as we discuss them.

Test sources are differentially small sources that you attach to a port.  You apply a 
differential signal to a port, either a voltage or a current, using the source, which sets one 
of your two port variables.  You then calculate the other variable, for example finding 
vPORT if you apply a test iPORT, and use that second variable to find RTH by taking the ratio 
it with your test variable.

When you do this analysis, you need to shut off supplies because they don’t undergo 
differential changes.  It doesn’t matter if the values in a circuit underwent a tiny change: a 
votlage source will still have V across it and a current source will still have I through it.  I 
often pithily summarize this behavior as “voltage sources are where little wiggles go to 
die.”

You may  notice that shutting off supplies and calculating the voltage produced by  a test 
current is identical to the slope-intercept method we talked about on the last page.  That’s 
true for resistor networks, but this technique will prove useful later.  Another thing that will 
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prove useful later is the freedom to choose whether we’re applying a vTEST or an iTEST, 
sometimes on test source makes the math much easier than the other.
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A Note on Two-Port Networks

• What types of devices have two ports?
• Coaxial cables
• Resistor dividers
• Amplifiers
• Transformers

• Rich and interesting theory of modeling two-ports as matrices
• Don’t have 𝑅 !
• Requires the network to be linear and passive
• In general, port 1 can affect port 2 AND vice versa

• Terminating port 2 makes 2 ports into 1 ports: 
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Thevenin resistances and open circuit voltages are great ways to represent circuits with one 
port, but there are a lot of circuit elements in the world that have two ports.  I’d like you to 
pause the video and see if you can write down a few two port circuits.  As a hint, think 
about circuits that either have an input and an output, or which have two ends.

CLICK Some of the examples I came up with include coaxial cables, resistor dividers, 
amplifiers, transformers, and this crazy mutation of the circuit we’ve been looking at which 
has a second port bolted on to it.  The box I’ve drawn around the circuit indicates what the 
two port abstraction is trying to hide from the world: rather than having us worry about the 
guts of this circuit, the two port abstraction tries to just summarize how each port affects 
the other.

CLICK There are a lot of interesting things I could say about two ports, but we’re going to 
skip almost all of them in this class. RF delves into this topic much more deeply.  One detail 
that’s worth mentioning is that two ports don’t have just one Rth because two ports 
describe the relation among four variables – vPORT1, iPORT1, vPORT2 and iPORT2 – which 
requires more numbers to summarize.  Another is that the two-port I’ve drawn wouldn’t 
actually play well with two port theory because theory demands that two ports be linear, 
which this is, and also passive, which this is not.  Finally, it’s really important to take away 
that port1 can affect port2 AND port2 can affect port one, which is a property called 
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bilaterality.  So even if you’re only measuring port 1, things that are connected to port 2 can 
change your measurement.

CLICK That last detail is so important because the trick we’re going to use to bypass two-port 
analysis is terminating the second port of our two port networks.  That makes them into one-
ports – only vPORT1 and iPORT1 could get hooked up to the outside world in this example –
but bilaterality means that a bad choice of termination resistor can change our 
measurements or analysis.  Put a pin in that idea for when we start measuring amplifiers.
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In this video we’re going to introduce some circuit elements called dependent sources. 
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What’s a Dependent Source?

• Current or voltage is set by value somewhere else in the circuit, not 
across the terminals.

• Can’t eliminate with superposition in all cases, analyze w/ test source.

13

𝑖 = 𝑔 𝑣 𝑣 = 𝑘𝑣

Dependent sources are circuit elements that have a fixed voltage or current that is 
determined by a voltage that is not applied across their terminals.  I’ve drawn two 
examples on this slide, a voltage controlled current source that has a value of gm times 
some control voltage.  gm is the transconductance of the dependent source, and the word 
transconductance is a terrible portmanteau of transfer and conductance.  Old-timey 
electrical engineers really liked terrible portmanteaus, but they were usually talking some 
sense: in this case, gm has units of conductance because it turns a voltage into a current, 
and it transfers the effect of that voltage somewhere else in a circuit.

I’ve also drawn a voltage-controlled-voltage-source on this slide.  I’ve drawn it’s governing 
equation next to it.  Current-controlled-voltage-sources and current-controlled-current-
sources area also things that can exist, and they would be described by different governing 
equations, which are usually included next to the element on a schematic.

Dependent sources introduce some tricky problems into our other analysis techniques 
because they can create unusual dependencies in our circuit matrix.  As a result, it’s not 
always safe to remove them with superposition.  They’re also neither resistors nor power 
sources, so our techniques that rely on equivalent resistances don’t work well with 
dependent sources.  As a result, the only surefire way to analyze a circuit with a dependent 
source is to apply a test source to it.
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You Need to Use Test Sources to Find 

14
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Here’s an example of doing just that.  

I’ve chosen to apply a test current source to this circuit because it is in parallel with the 
dependent source and I can add their currents together.  That makes the math easier than 
if I’d chosen a test voltage source.  

CLICK, I start calculating the behavior of this circuit by finding the value of v2, which will let 
me write much simpler expressions for the test current source.  Trying to isolate the control 
variable is usually a good plan when analyzing circuits with dependent sources.  I do this by 
noticing that all the current from the parallel test and dependent sources will flow through 
R3, then it will split between R1 and R2 according to a current divider.  If I cheekily write i2 
as v2/R2, I can find an equation that is only in terms of v2.

CLICK You can rearrange this equation by cross multiplying the R2 and then gathering 
terms.

CLICK and finally you can express v2 in terms of itest.  I’ve simplified this expression by 
writing R1R2/(R1+R2) as R1||R2.

CLICK Using that expression, we can write the total current flowing out of our parallel 

14



current sources as a coefficient multiplied by itest.  That total current gets driven into the 
resistor network, which has an equivalent resistance of R3+R1||R2.  That resistance times 
the current gives us vtest.  vtest/itest is RTH, and it would be simple to divide itest off of this 
expression to reveal that the coefficients on the right hand side are the RTH for this network.

This RTH is a bit weird!  Most notably because there are values of resistance and 
transconductance for which it is infinite!  That corresponds to the case where raising vtest
causes the current flowing through R3 to exactly match the externally applied voltage, so 
there was never a current difference across R3 to pull down any itest.  This kind of situation 
can occur because the dependent source represents a kind of feedback in a circuit, and 
feedback can have surprising consequences including instability.  So be wary whenever you 
see a dependent source.
A form of Feedback … 
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Summary

• Dependent sources have their voltage or current set by a control 
voltage or current somewhere other than their terminals.

• Analyze dependent sources with test sources.

• Dependent sources can do weird stuff!

15
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In this video we’re going to learn or review a few theorems related to the Laplace 
transform to find very fast ways to analyze dynamics in circuits.
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We’re Revisiting Dynamics to Solve Steps Fast

• Common circuit inputs
• Sine  find a transfer function using impedance
• Step  Inverse Laplace? Pattern Match? Solve a DE?

• Some tactical advantages that will help us solve for steps faster
• most circuits are 1st order
• impedance makes it easy to find transfer functions

• Aside, there are other common inputs:
• Ramp:  Ignore the startup behavior, then it’s kind of a DC problem
• Exponential rise, like 1 − 𝑒 / :  Approximate as a ramp

17

To start this process, I’d like you to pause the video and try to write down the most 
common shapes for waveforms that are applied to circuits.

CLICK The two that sprang to my mind are sine inputs, which are easy to analyze using 
transfer functions or Bode plots, and step inputs, which require some more involved math.  
We could try an inverse Laplace transform or a differential equation, but those aren’t really 
fast enough to use in a lab.  Or we could lean on pattern matching in some cases, but 
circuits tend to present lots of variations on a theme that make pattern matching difficult.

CLICK We’re going to take advantage of a few facts about circuits in this class to come up 
with easy approaches.  First, most amplifier circuits can be approximated as first order, 
which simplifies the types of waveforms we’d expect.  Second, impedance makes it very 
easy to find transfer functions.  So if we can use transfer functions to quickly identify the 
distinguishing features of a first order circuit – the starting value, ending value and time 
constant – then we can easily describe our step responses.

CLICK We’ll start that in just a second, but there are a few other circuit inputs I want to 
mention first. Ramp inputs have a DC character, where all of your slopes are constant, after 
overcoming a weird initial transition.  You can often analyze them using pseudo-DC time 
domain methods.  Exponential rise times are common in circuits because almost 
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everything in nature is some kind of low-pass filter.  Depending on your needs, you can often 
approximate these as funny looking ramp inputs.  
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Step Responses from Transfer Functions
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Focusing back in, we’d like to find the initial value, final value, and time constant of the step 
response that this first order circuit will have in response to the step input.  We know the 
response will be first order because there is only one energy storage element in the circuit, 
the capacitor, so there can’t be more than one power of s running around in our Laplace 
transform.

We can start doing that by finding our transfer function and putting it into factor form.  
CLICK we find our transfer function using an impedance divider, where the parallel 
combination of R2 and C is divided against R1.  CLICK Some only modestly tedious algebra 
will reveal this factor form, which I think is beautiful for a few reasons.  One is that the time 
constant is immediately visible in factor form because the denominator must be of the 
form tau*s+1.    Another is that factor form does a really good job of separating out DC 
behavior of a circuit, what it would do if signals weren’t changing, from dynamic behavior 
of a circuit, what happens in response to changing inputs.  For example, if this circuit were 
driven by a constant voltage, we could ignore the capacitor and the circuit would just 
behave like a resistor divider.  The DC term is just a resistor divider equation, which 
captures that behavior.  I think the factor form lends a lot of insight into the behavior of a 
dynamic system, and I encourage you to write your transfer functions in factor form in this 
class.

18



CLICK Next we’re going to find our initial and final values using the initial and final value 
theorems, which I’ve included here.  These theorems relate the limits of a time domain 
function to the limits of its Fourier transform times s.  One pneumonic I use to remember 
which is which, is that I think of s as a frequency, and remember that high frequency (or big 
s) corresponds to small time and vice versa.  That helps me recall whether taking s to infinity 
or zero will give me initial or final values.

CLICK In our example, the function we care about is vOUT(t), which is where we’ll see our 
step response.  We know the transfer function from our impedance analysis above, so we’ll 
take the limit of s*vOUT(s) and then write vOUT as the product of the transfer function and 
the Laplace transform of our input step.  One trick when you’re evaluating the initial and final 
value theorems for step inputs is to remember that the input itself, V0/s, cancels with the s 
that hangs out in front of F(s) by the IVT or FVT.  This means that your final value can be 
found just by letting s go to zero in your transfer function or the initial value can be found by 
letting s go to infinity in your transfer function (but again, this trick only  works for steps).  
Doing that gives us our initial and final values of 0 and a divided V0.

CLICK, so our waveform is going to be a first order rising shape from zero to a divided V0.  
I’ve also included a falling edge on this waveform, which hopefully will look familiar or seem 
to be common sense to you, but that falling edge doesn’t actually line up with the math 
we’ve derived thus far.  We could just put a negative sign in front of V0 to guess the initial 
and final values of a negative step response in our system, and that would predict a negative 
final value, which disagrees with what I’ve drawn here.

CLICK That’s because falling a falling edge of a square wave driving this system would be 
represented by the equation V0(1-u(t)), not just –V0*u(t).  So if you’re going to use the initial 
value theorem, remember that your initial value has to be added to any initial condition the 
system currently has.

This form separates DC and AC behavior, which is a really good plan.

18



Department of Engineering

Step Responses from Initial and Final Circuits

19
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𝑣 𝑡 = 0 = 𝑉

𝑣 (𝑡 = 0 )

𝑠 → ∞ when using the IVT, so 1/𝐶𝑠 shorts out resistors

𝑣 𝑡 = ∞ = 𝑉

𝑅

𝑅

𝑣 (𝑡 = ∞)

𝑠 → 0 when using the FVT, so 1/𝐶𝑠 is an open circuit

𝑅

𝑅

𝑅 seen from cap

If there’s one capacitor, then 𝜏 = 𝑅 𝐶 seen from the capacitor
(works for inductors.  Can work for 2 “non-interacting” elements)

The initial and final value theorems are nice, but we can punch them up by realizing that 
they have circuit interpretations that let us draw simplifying subcircuits.  We’re going to 
pursue that technique on this slide, and I’ve brought our transfer function from the last 
page so that you can compare our results to those implied by the transfer function.

CLICK When you’re applying the initial value theorem, you let s run to infinity.  If we did 
that with our impedances before we found our transfer function, we’d observe that 
capacitors all have negligibly small impedance compared to resistors.  That means you can 
draw an initial value circuit, also called an AC circuit, where many capacitors are replaced 
with short circuits.  Doing so for our example reveals that the output node is shorted to 
ground by the capacitor at time 0+, so we know our initial value will be zero.

I hedged my language when describing this technique because you can’t always just replace 
capacitors with shorts. You need to be mindful if there’s more than one that capacitor in 
the circuit because they aren’t going to be negligibly small impedance compared to one 
another.  However, capacitors will always short out resistors in initial value circuits.

CLICK We can use a similar technique for the final value theorem that lets us draw a final 
value, or DC, circuit. In final value circuits, capacitors are replaced by open circuits.  This 
reveals that  the final value of vOUT is given by a voltage divider on V0.
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CLICK Finally, we need to find our time constant.  If a circuit has only one capacitor, then the 
time constant is going to be given by the capacitance times the Thevenin resistance seen 
looking out from the capacitor.  This makes sense because any charge moves onto or off of 
the cap through that Thevenin resistance.  In this case, we can quicly see the equivalent 
resistance is R1||R2.

This technique works for single inductors in a circuit as well.  It can sometimes work when 
there are multiple energy storage elements in a circuit, but those elements need to be 
isolated from one another so that they don’t result in a second order transfer function.  That 
kind of isolation either tends to be a lucky case, like two caps that can be merged in parallel, 
or carefully designed.
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Summary

• We can calculate circuit responses to sine inputs with Xfer functions

• We can calculate circuit responses to step inputs two ways
• Xfer functions with IVT, FVT and pattern matching to find 𝜏
• Initial and final circuits and Thevenin resistance seen from the cap to find 𝜏
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Examples of Step Responses
Matthew Spencer

Harvey Mudd College
E151 – Analog Circuit Design
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In this video we’re going to get some practice with the dynamics tricks we just learned.
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Try to Draw the Response of These Circuits
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𝑣 𝑡

𝑅

𝑅

𝐶

𝑣 (𝑡)

𝑣 𝑡 = 𝑉 (𝑢 𝑡 − 𝑢 𝑡 − 𝑇 )

𝑣 𝑡

𝑡

𝑣 𝑡 𝑅

𝐶 𝑣 (𝑡)

𝑣 𝑡 𝐶

𝐶 𝑣 (𝑡)

𝑇

𝑉

I would like you to pause your video and draw the value of vOUT when the input on the top 
of this slide is applied to each of the circuits on the bottom.  This is a great practice 
exercise, so I’d really like you to take the time to do it, and maybe compare notes with a 
friend, before you keep watching.  We’ll go through the answers when your resume the 
video.
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High Pass Filter
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𝑣 𝑡

𝐶 𝑣 (𝑡)

𝑣 𝑠

𝑣 𝑠
=

𝑅

𝑅 + 1/𝐶𝑠
=

𝑅𝐶𝑠

𝑅𝐶𝑠 + 1

𝑣 (𝑡)

𝑡

𝑉

𝑣 0

𝑣 (0 )

𝑣 ∞

𝑣 (∞)

𝜏 = 𝑅𝐶

𝑅

𝑅

𝑅 IVT: 𝑉 , FVT: 0, 𝜏 = 𝑅𝐶

The transfer function for this high pass filter can be calculated from an impedance divider, 
and the initial and final value theorems give us values of V0 and 0 respectively.  Pattern 
matching gives us a time constant of RC.  

CLICK That suggests that our step response will rise to a value of V0 at the start and 
exponentially decay back down to zero.  The falling edge will cause the opposite effect.

CLICK  We could get there with initial and final value circuits.   The initial circuit has vOUT
shorted to vIN, so you’ll see the full step at first.  The final circuit has an open circuit 
between vOUT and vIN, so vOUT will be pulled to ground by the resistor R.  The time 
constant is RC because the Thevenin resistance seen by the cap is R.
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Resistor Divider with Capacitive Feedthrough
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𝑣 𝑡

𝑅

𝑅

𝐶

𝑣 (𝑡)

𝑣 (𝑡)

𝑡

𝑉
𝑅

𝑅 + 𝑅
𝑉

𝑣 𝑠

𝑣 𝑠
=

𝑅

𝑅 + 𝑅

𝑅 ||𝑅 𝐶𝑠

𝑅 ||𝑅 𝐶𝑠 + 1

𝑣 0 𝑅

𝑣 (0 )

𝑣 ∞ 𝑅

𝑣 (∞)𝑅

𝜏 = 𝑅 ||𝑅 𝐶

We’ll take the opposite order of solutions for this resistor divider with capacitive 
feedthrough because the transfer function is rather involved.

CLICK the initial value circuit shows the input shorted to the output like the high pass filter, 
so we expect an initial value of V0.  The final value circuit shows a voltage divider that set 
the final value to a divided V0.  The Thevenin resistance seen from the cap is R1||R2, so 
the time constant is (R1||R2)*C.

CLICK  This lets us draw the step response, which has a few interesting features.  First, the 
waveform has high initial values after steps that decay down to smaller final values.  This 
behavior is called capacitive feedthrough.  Feedthrough happens whenever a capacitive 
and resistive path are in parallel, and it is also linked to having zeros in the numerator of 
your transfer function.  There are some deep links between Laplace math and circuit design 
that you can infer from that relationship, keep an eye out for them.

Second, the falling edge of this wave has a negative voltage.  On our falling edge, our initial 
value from the negative step, which is –V0, is added to the final value from our rising edge, 
which is a divided version of V0.  That means we have a brief negative value.  Don’t forget 
that the result of the IVT has to be added to the value of the wave right before the step you 
are analyzing.
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CLICK Finally, I reverse engineered the transfer function from the results of my circuits.  I 
knew the DC coefficient had to be a voltage divider, and I knew the denominator of the 
dynamics term had to be (R1||R2)Cs+1.  After I filled those in, I picked a numerator for the 
dynamics that would result in an initial value of V0.
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Capacitive Divider
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𝑣 𝑡 𝐶

𝐶 𝑣 (𝑡)

𝑣 𝑡 𝐶

𝐶 𝑣 (𝑡)

𝑣 𝑡

𝑣 (𝑡)

AC circuit same as we started with

DC circuit is missing!
𝑣 has an unknown DC value

𝑣 𝑠

𝑣 𝑠
=

1/𝐶 𝑠

1/𝐶 𝑠 + 1/𝐶 𝑠
=

𝐶

𝐶 + 𝐶
Contains no 𝑠, so IVT=FVT=𝑉 𝐶 /(𝐶 + 𝐶 ) 

𝑣 (𝑡)

𝑡

Finally, we’re left with the capacitive divider, which is a strange duck.   It’s easy enough to 
calculate it’s transfer function, which doesn’t have s in it!  That means the transfer function 
is claiming to have the same behavior for all input frequencies!  

CLICK Drawing initial value and final value circuits doesn’t help much.  The initial value 
circuit is the same as the circuit we started with.  The capacitors won’t short each other 
out, so we need to keep both of them.  The final value circuit just reveals that vOUT isn’t 
connected to any DC signals.  That means we have an unknown DC value at the output!

CLICK These facts point to the behavior of the ideal capacitive divider, which is that it will 
faithfully represent a divided version of the input signal at the output, just like an ideal 
resistor divider.  However, if there’s a DC value at the output of a capacitive divider, then it 
will stay there forever because there is no resistor to discharge the output.  Weird!

However, even though this seems weird, the behavior is real.  One thing to keep in mind is 
that capacitive dividers can transmit very sharp square waves without rounding their 
corners, faster even than resistive dividers because small parasitic capacitances attached to 
circuit output nodes are very common, while small parasitic resistances attached to circuit 
output nodes are quite rare.
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Summary

• Use initial and final circuits to find step responses, it’s fast and fun!

• Capacitive feedthrough comes from parallel resistive and capacitive 
paths to an output

• Ideal capacitive dividers have infinite bandwidth and will hold a DC 
value forever.
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