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Introduction 
In this lab, you will learn to write MIPS assembly language programs and test them on a PIC32 
microcontroller.  You’ll learn about some of the assembler directives necessary to write a real 
program. You’ll also learn to use the PIC development environment to watch register values and 
debug your code. 
First, you will write a simple assembly language program to compute the Fibonacci numbers.  
Then you will write a more sophisticated program to perform floating point addition. 
The basic MIPS assembly language instructions should be familiar to you after reading Chapter 6 
of the textbook. Refer to Appendix B at the end of the textbook for a complete list of all the 
available instructions along with descriptions of their functions. 

MIPS Assembly Language Programming for the PIC32 
You will use the same MPLAB development environment for assembly language programming 
that you used for C programming. 

Create a new project named fact_xx, where xx are your initials.  Copy the fact.s assembly 
language file from \\charlie.hmc.edu\Courses\Engineering\E85\Labs\Lab8 to your fact_xx 
directory and add it to your project.  Look at the file and see how it works. 
 
Note: make sure the software knows which PIC you are working with by selecting 
“PIC32MX675F512H” from the Configure   Select Device menu. Also choose Project  
Select Language Toolsuite… and confirm that the Micorchip PIC32 C-Compiler Toolsuite is 
selected. 
 
MIPS assembly supports two types of code comments.  A # character will comment out any text 
after it on the same line, and /* block comments */ can be defined that span multiple 
lines.   
 
Every C program must contain at least one function, named main. The .global main  
directive tells the compiler that a function named main exists. Additionally, a code label   main:  
is placed at the beginning of the function.  Labels can be used as the target of jump and branch 
instructions and can be placed anywhere in your code.   
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Real MIPS assembly language has one idiosyncrasy called a branch delay slot.  For reasons 
related to the way the first pipelined MIPS processor was built, MIPS executes the instruction 
immediately after each branch or jump.  Unless you have an instruction that you want to perform 
here, you’ll need to put a nop after each branch or jump, as you see in the code. 

MPLAB Simulator 
MPLAB includes a good PIC simulator that lets you test your program without actually 
downloading it into hardware.  It behaves essentially identically to the real hardware. This is 
handy because it saves you from having to deal with hardware troubles while debugging. We’ll 
use the simulator instead of the PIC32 chip in this lab. Choose Debugger   Select Tool   
MPLAB SIM to select the simulator rather than the in-circuit debugger.   
 
The flow for assembling and testing your code is much like that for the C compiler.  Choose 
Build All and check that the build succeeded.  Because you are using the simulator rather than 
the ICD, you don’t need to program the code onto the hardware.  Instead, choose Debugger   
Reset   Processor Reset (F6) to reset the program to the start.  You should see the PC at the 
bottom of the MPLAB IDE window set to 0xbfc00000. 
 
Choose View   CPU Registers and View   Disassembly Listing.  Increase the size of the CPU 
Registers window and scroll down until you can see the main registers, such as a0, ra, s0, t0, and 
v0.  Look over the disassembly window, which shows how your program was translated into 
machine language and what address in memory holds each instruction.   
 
Observe that main begins at address 0x9D0000D8, which is not where the PC presently points.  
By default, the PIC32 assembler inserts a lengthy startup routine into memory before your 
program.  This code initializes the stack pointer, clears memory, and performs a number of other 
specialized jobs before jumping to main. You don’t have this code handy and you wouldn’t want 
to tediously single step through it anyway. Instead, click on the first line of the disassembly 
listing with the addi instruction.  Right-click and choose Run to Cursor. You should now see a 
green arrow pointing to this line, and the program counter should read 0x9D0000D8. 
 
Use Debugger   Step Into (F7) to single-step through the factorial program.  The first addi 
instruction should write the number 4 into $a0.  Check in the CPU registers window that this 
happens.  Step again. The jal instruction should jump to factorial.  However, the program 
counter instead increments to 0x9D0000E0 to execute the nop in the branch delay slot first.  
Step again and observe the PC change to 0x9d0000F0 to begin factorial.  Continue stepping 
through the code, watching the disassembly listing, the PC, and the CPU registers, and be sure 
you understand how the program behaves.  Eventually, you should reach the infinite loop with 
0x18 in $v0. 

Fibonacci Numbers 
Refer to your Lab 6 for information about the Fibonacci numbers. Write an assembly language 
program to calculate the 8th Fibonacci number. To get you started, here is a template for the body 
of the assembly program that you should write: 

main: addi $a0,$0,8 # n = 8 
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 addi $s0,$0, 1 # jump-start loop with 

 addi $s1,$0, 0 # fib(-1) and fib(0) 

loop: <add your code here> # <your comments here> 

 . . .  

done: j done # infinite loop 

 add $0, $0, $0 # branch delay slot 

Don’t forget to include all of the other assembler directives that you had in the fact.s program.  
An easy way to start is to make a copy of the fact.s, rename it to fib.s, and start modifying the 
body.  Don’t forget to add fib.s to a new project and select the MPLAB simulator. 

Note that the first line of code places the value 8 into register a0 ($a0).  This is the n argument 
to the fib function.  It is wise to test your program on several different values (not just 8). 

The second and third lines of code load the values of fib(-1) = 1 and fib(0) = 0 into 
$s0 and $s1, respectively.  These can be used to “bootstrap” your loop. 

After looping the number of times specified by the value placed in $a0, your code should leave 
the resulting value of fib(n) in register $v0 and go to done.  The last line of code is simply a 
way of ensuring that your program terminates in a predictable manner. 
Fill in the missing lines of code to complete the loop that computes fib(n).  You should be 
able to do this in fewer than 10 lines of code.  Use only the following instructions: add, sub, 
and, or, slt, addi, j, beq, lw, and sw.  Don’t forget to fill the branch delay slot with an 
instruction that does nothing.  Since we aren’t using the nop instruction, try something like add 
$0, $0, $0 instead. You should use comments to include your name and the date at the top 
of the file.  Please add comments after every line of code also, explaining clearly what the code 
does.  Make sure your comments are meaningful.  A comment like “loads value from address in 
$a0 into $t0” for lw $t0, 0($a0) doesn’t tell the reader anything more than the original 
instruction itself and is therefore not meaningful. 
Build your program. Run it and check the value in $v0.  If it doesn’t match your expectations, 
debug your code. One good approach is to view the CPU Registers window and to single-step 
through your code, checking at each step that the registers match your expectations. When you 
find a discrepancy, you’ve located your error. 

Floating Point Addition 
Next, write a MIPS assembly language function that performs floating-point addition.   

You should be familiar with the IEEE 754 Floating-Point Standard, which is described in the 
text. Here we will be dealing only with positive single precision floating-point values, which are 
formatted as in Figure 1 (this is also described in Section 5.3.2 of your book). 

Sign Exponent (8 bits) Fraction (23 bits) 

31 30 29 28 27 26 25 24 23 22 21 20 19 . . . 0 

Figure 1: IEEE 754 Single-Precision Floating-Point Format 
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Remember that the exponent is biased by 127, which means that an exponent of zero is 
represented by 127 (01111111).  (The exponent is not encoded using two’s complement.) 

The mantissa is always positive, and the sign bit is kept separately.  Note that the actual mantissa 
is 24 bits long: the first bit is always a 1 and thus does not need to be stored explicitly.  This will 
be important to remember when you write your function! 
There are several details of IEEE 754 that you will not have to worry about in this lab.  For 
example, the exponents 00000000 and 11111111 are reserved for special purposes that are 
described in your book (representing zero, denormalized numbers, and NaN’s).  Your addition 
function will only need to handle strictly positive numbers, and thus these exponents can be 
ignored. Also, you will not need to handle overflow and underflows. 

To implement floating-point addition in assembly language, there are some MIPS instructions 
you will need to be familiar with.  

• and instruction: First, you will need to make use of the and instruction to extract the 
exponent and fraction bits out of the floating-point numbers.  This technique is called 
masking, because it involves the use of a 32-bit number that is used as a mask over 
another number to allow only certain bits of the result to be non-zero.  For example, if 
you want to extract a number that is stored in bits 5-13 of a full 32-bit word, you could 
use the code in Figure 2.  Observe that the hexadecimal mask 0x00003FE0 is the binary 
value 0000 0000 0000 0000 0011 1111 1110 0000, a mask with bits 5 through 13 set to 1.  
Also, note that the mask label is an address in memory.  The lw command is necessary to 
load the mask value from that memory address into a register before it can be used.  A 
command such as and $t1, $t1, mask is illegal because the mask is not a register. 

        .data  

mask:   0x00003FE0 # mask for bits 5-13 

        .text 

        . . . 

xtract: lw $t0, mask 

        and $t1,$t1,$t0 

        srl $t1,$t1,5      . .  

Figure 2: Example Bit Masking Code 

• or instruction: The or instruction is useful for combining bits. 

• shift instructions: Other instructions that you will need to be familiar with are the shift 
instructions.  You should take careful note of the difference between a logical right shift 
and an arithmetic right shift.  The logical right shift simply shifts the bits right by the 
specified amount, always shifting in zeros from the left.  The arithmetic right shift, 
however, keeps bit 31 the same and shifts all the other bits to the right, copying bit 31 
into all of the bits vacated by the shift.  This allows negative two’s-complement numbers 
to be shifted right without changing their sign. There is another shift instruction available 
in MIPS that you should find quite useful: the variable shift.  The instruction srav 
allows you to perform right shifts by a distance specified by the value in a register. As 
always, you should refer to Appendix B in your book for a complete reference on the 
MIPS instruction set. 
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Hand Analysis 
Before implementing floating point addition, refamiliarize yourself with the representation of 
floating point numbers and with carrying out addition by hand by answering the following 
questions.  Give your answers in binary and hexadecimal.  For example, 1.0 is written as an 
IEEE single-precision floating point number as: 
1.0 = 0 01111111 00000000000000000000000 = 3F80000016 

a) Write 2.0 as an IEEE single-precision floating point number. 

b) Write 3.5 as an IEEE single-precision floating point number. 
c) Write 0.50390625 as an IEEE single-precision floating point number. 

d) Write 65535.6875 as an IEEE single-precision floating point number. 
e) Compute the sum of the numbers from (c) and (d) and express the result in IEEE floating 

point format. Truncate the sum if necessary. 
 

Writing the FP Addition Program 
You can add your floating-point addition function into the fpadd.s file that is provided in the 
\\charlie.hmc.edu\Courses\Engineering\E85\Labs\lab8 folder. Carefully read the comments there, 
then add your code in the place indicated.  Remember that your code should not modify any $s 
registers because the program calling you expects that $s registers will not change across 
procedure calls. You should be able to use only $t registers to avoid saving and restoring $s 
registers on the stack. 
Notice that we have provided a number of masks (fmask, emask, etc.) at the top of the file for 
your convenience. 
Your addition function need only handle strictly positive numbers, and need not detect overflow 
or underflow.  Also, you need not perform rounding since it would be complicated and because 
truncation is also a valid option (although less accurate). 

Your code will never actually need to perform a left shift for normalization, because of the 
restriction that it only needs to handle strictly positive numbers.  Convince yourself that this is 
true before writing your code (think about the properties of the mantissas that get added and the 
properties that follow for the resulting sum). 

Again, it is important to note that the most significant bit of the mantissa is an implied 1.  After 
extracting the fraction bits by using masking, your code can use an or instruction to place the 1 
back into the proper bit of the mantissas before performing addition on them.  Having this 
implied 1 bit in place in the mantissas will make the normalization step more straightforward.  
Later, when your code reassembles a single floating-point value for its final result from a 
separate mantissa and exponent, you will need to remove this implied 1 bit from in front of the 
mantissa again. 

Since your code will add only strictly positive numbers, the sign bits in the numbers being 
summed can be ignored.  The sign bit of the resulting sum should be set to zero. 

In summary, your algorithm will need to do the following: 
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1) Mask and shift down the two exponents. 
2) Mask the two fractions and append leading 1’s to form the mantissas. 
3) Compare the exponents by subtracting the smaller from the larger.  Set the exponent 

of the result to be the larger of the exponents. 
4) Right shift the mantissa of the smaller number by the difference between exponents to 

align the two mantissas. 
5) Sum the mantissas. 
6) Normalize the result.  I.e., if the sum overflows, right shift by 1 and increment the 

exponent by 1. 
7) Round the result (truncation is fine). 
8) Strip the leading 1 off the resulting mantissa, and merge the sign, exponent, and 

fraction bits. 
As a guideline: you should be able to implement the floating-point addition algorithm in under 
50 lines of code; the solution uses 31 lines. 
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Testing your Program 
Test your program on the following examples: 

1.0 + 1.0 = 2.0 (0x3F800000 + 0x3F800000 = 0x40000000) 
2.0 + 1.0 =  

3.0 + 3.5 =  
0.50390625 + 65535.6875 = 

If your code is not working, don’t panic!  You now have the opportunity to practice debugging 
assembly language code.  Predict the result of each line of code for a known (and preferably 
simple) set of inputs. Step through the code one line at a time.  Check that after each step, the 
results are what you expect they should be.  When the results differ, you have found your bug.  
Correct your code, restart the simulation, and single step again until you verify that the correct 
answer is now produced. 

What to Turn In 
Include each of the following in the following order in your submission.  Clearly label each part 
by number.  

1. Please indicate how many hours you spent on this lab.  This will not affect your grade (unless 
entirely omitted), but will be helpful for calibrating the workload for next semester’s labs. 

2. Your completed, thoroughly commented fib_xx.s code.  Uncommented or hard to read code 
will lose points. 

3. What value did your program leave in $v0 for fib(8)?  

4. Your answers to the floating-point hand analysis questions. 

5. The code that you inserted into fpadd_xx.s, including your complete function that performs 
floating-point addition. 

6. The results of your four addition tests cases. 
7. EXTRA CREDIT: Add support for negative numbers to your function. This requires the 

following significant modifications, which could take approximately another 30 lines of 
code: 

 Extracting the sign bits from the arguments and handling them appropriately 
 Negating the mantissas for negative numbers before adding them. 

 Adding support for doing the proper number of left shifts (which will now be needed) 
in the normalization step 

 Setting the sign bit of the result properly and negating the mantissa of the result when 
needed 

If you do the extra credit, turn in a list of difficult cases that you tested and show that the 
algorithm produced the correct result. Choose the cases that are most likely to stress the 
algorithm.  Your score on this extra credit assignment can substitute for one entire homework 
grade. 


