The Microprocessor as a Microcosm:

A Hands-On Approach to VLSI Design Education

David Harris

David_Harris@hmc.edu

November 2002

Harvey Mudd College

Claremont, CA

Outline			
 Introduction Course Organization CAD Laboratories Projects Testing Assessment Conclusion 			

Introduction

Changing face of Very Large Scale Integration (VLSI) design education Level of instruction

- Primarily graduate-level in early 1990's
- Transition to junior/senior level elective

Maturing design tools and methods

- Move in industry from custom layout to synthesized designs
- Yet still a strong need to understand fundamentals from the mask level

Project-based VLSI Education

- Best way to understand VLSI design is to design and build a chip
- Also plays role as major team design experience for undergraduates

Instructor-Defined vs. Student-Defined Projects

- Instructor-defined projects allow more guidance in good design practices
- But students mature more by taking a project from definition to completion
- This paper describes an approach seeking the best of both worlds
- Series of 5 labs to build an 8-bit microprocessor followed by team projects
- Microprocessor serves as microcosm to illustrate larger design issues
- Relates back to computer engineering class and is highly motivational

Course Organization

E158: Introduction to CMOS VLSI Design

Enrollment:

- Mostly junior and senior Engineering majors (60 in each senior class)
- A few from CS, Physics, and Chemistry
- Spring 2001: 42 enrolled, 9 dropped
- Spring 2002: 15 enrolled, 0 dropped (conflicted with required class)

Prerequisites:

- E84: Introduction to Electrical Engineering
- E85: Introduction to Computer Engineering

Textbooks

- Weste & Eshraghian: Principles of CMOS VLSI Design
- Sutherland, Sproull, & Harris: *Logical Effort*
- Harris: Skew-Tolerant Circuit Design

Schedule: MW 2:45-4:00

Credit: 3 units

Grading: 40% labs, 45% project, 10% problem sets, 5% in-class activities

Spring 2002 Schedule

Date	Торіс	Due
23 Jan	Introduction & overview	
28 Jan	Circuits, fab, layout	
30 Jan	Microprocessor example	Lab 1: Gate Design
4 Feb	ISSCC: No Class	PS1
6 Feb	CMOS transistor theory	Lab 2: Full Adder Design
11 Feb	DC gate characteristics	
13 Feb	CMOS processing	Lab 3: Datapath & Zipper Assembly
18 Feb	Logical effort	PS2
20 Feb	Interconnect	Lab 4: Synthesized Controller
25 Feb	Simulation	Preliminary proposal
27 Feb	Combinational circuits	Lab 5: Chip Assembly
4 Mar	Circuit Families	Final proposal
6 Mar	Sequential circuits	
11 Mar	Adders	PS3
13 Mar	Datapath functional units	Floorplan

Schedule (continued)

Date	Торіс	Due
18 Mar	Spring Break: No Class	
20 Mar	Spring Break: No Class	
25 Mar	Memories I	
27 Mar	Memories II	Schematics complete
1 Apr	Control system design	PS4
3 Apr	Design for test	
8 Apr	In class design reviews	Leaf cells complete
10 Apr	In class design reviews	
15 Apr	Power & clock distribution	
17 Apr	Skew-tolerant circuits	Final project & report
22 Apr	Asynchronous design	
24 Apr	Low power design	PS5
29 Apr	Scaling & economics	
3 May	Microprocessor slideshow	PS6
6 May	Presentation Day	Project presentations

CAD

VLSI CAD tools are an issue for a small teaching college

- Computer labs are primarily Windows, limited Solaris servers
- Cadence & Mentor Tools are very time-consuming to maintain
- Tanner Tools are less powerful and relatively expensive
- Magic has clumsy interface and is primarily available on Unix

Seminar has used the Electric CAD system

- Open source free CAD system
- Developed by Dr. Steve Rubin at Sun Microsystems Laboratories
- Schematics, layout, simulation, DRC, LVS, ERC capabilities
- Support Windows, Solaris, Macintosh
- Required close work with Dr. Rubin to improve tools
 - 397 bug / feature enhancement reports since Spring 2000
 - Over 350 of these have been addressed
 - Often next-day response!
- Tools are now reasonably stable
 - Nine chips successfully fabricated in 1.5 and 0.6 μ processes

Synopsys Design Analyzer for HDL synthesis

Laboratories

Objectives:

- CAD tool tutorial:
 - schematics, icons, layout
 - switch-level simulation (IRSIM)
 - synthesis & place & route
 - Design Rule Checker (DRC)
 - Electrical Rule Checker (ERC)
 - Network Consistency Check (NCC, aka LVS)
- Illustrate good design practices
 - design of a complex system: regularity, modularity, hierarchy
 - datapath, control, memory
 - methodical verification

Lab overview:

- Implement 8-bit subset of MIPS processor (from Hennessy & Patterson)
- Building a processor from scratch takes the entire semester, is repetitive
- Students begin with library with much of the processor
- Complete one of each interesting type of component on their own
- Work in campus computer labs or from home PCs

Lab Assignments

Lab 1: Gate design

- Guided through schematics, icon, & layout of datapath NAND2 & AND2
- Learn simulation, DRC, ERC, NCC, hierarchy
- Independently design NOR2 and OR2

Lab 2: Full adder design

• Open-ended design & test of datapath full adder cell, optimizing for size

Lab 3: Datapath & zipper assembly

- Combine AND2, OR2, FULLADDER with provided mux to build ALU
- Attach ALU to datapath bitslice & add mux select drivers to zipper

Lab 4: Controller design

- Layout standard cell NOR3
- Manual design & layout of ALUCONTROL using standard cells
- Modify Verilog model of CONTROLLER to support ADDI instruction
- Synthesis, place & route

Lab 5: Microprocessor assembly

- Full chip assembly, pad frame, test vector generation
- CIF out & tapeout checks

Projects

Objectives:

- Major team design experience (groups of 2)
- Take VLSI system from specification through tapeout
- Teamwork & leadership
- Technical documentation, design review, & presentation practice
- Emphasize management of complexy rather than heavily optimizng circuits

Schedule:

- Tapeout before clinic consumes last weeks of students' attention
- Work expands to fill time available so milestones are strictly enforced
- Milestones
 - Preliminary Proposal
 - Final Proposal
 - Floorplan
 - Schematics Complete
 - Leaf Cells Complete
 - Design Review
 - Project Complete
 - Formal Presentation

Microprocessor as Microcosm

Fabrication

Projects target MOSIS TinyChip

- AMI 0.6µm 3-level metal process
- 1.5 x 1.5 mm² die in 40-pin DIP
- 3400 x 3400 λ of core area excluding padframe

MOSIS / Semiconductor Industry Association Fabrication Grants

- Support fabrication of 3-4 projects / semester
- Team must include a junior who commits to testing the chip in the fall

Page 12 of 19

Testing

Testing on breadboards used to take students all semester

Now use TestosterICs chip tester built at HMC

- Low speed functional testing
- Reads IRSIM vectors from pretapeout test
- 45 minutes to learn tester and test chips
- www.onehotlogic.com

2001 Test results

- 1 chip fully operational
- 3 chips had opens or shorts in global routing that could be worked around
- Electric extraction incompatible with old pad frame so top level had not been verified

2002 Test results

• all 3 chips fully operational

Microprocessor as Microcosm

David Harris

Page 14 of 19

David Harris

Page 15 of 19

David Harris

Page 16 of 19

David Harris

Page 17 of 19

Assessment

Hands-on VLSI design is time consuming but within reason for a 3-unit elective

Students reported time spent on each lab

Lab 1	5.4
Lab 2	8.9
Lab 3	17.0
Lab 4	7.8
Lab 5	7.5

• Project effort varied widely, but 100 hours/team over 6 weeks was typical

Project Success

- 2001: 13 of 17 projects completed, remaining 4 showed significant effort
- 2002: 8 of 8 projects completed

Teaching Evaluations were very positive

- 6.5 6.6 / 7; campus average 5.8 / 7
- Students supported combination of labs and project
- "great that the class ended in early April so we didn't have to worry about it."
- Desire more opportunity to apply high-performance design

Conclusion

The MIPS processor labs served as a microcosm to illustrate design issues

- CAD tutorial
- Good design practices for complex systems
- Connection to prerequisite course
- Highly motivational

Most of the processor was provided and students focused on unique cells

- Reduced repetitive work
- Allowed completing microprocessor in first third of the semester
- Left time for in-depth final team projects

Class will continue to be tuned

- Split lab 3 over two weeks
- Apply more high-speed design techniques on short problem sets

Page 19 of 19