
Implementation of a 64-bit Jackson Adder

Tynan McAuley, William Koven, Andrew Carter, Paula Ning, and David Money Harris
Department of Engineering

Harvey Mudd College
Claremont, CA, USA

{Tynan_McAuley, David_Harris}@hmc.edu

Abstract—In 2004, Robert Jackson and Sunil Talwar published a
novel method of decomposing binary prefix addition. Their work
sought to balance the complexity of the generate and propagate
terms that bear the computational load in parallel prefix adders.
This paper presents an implementation of a 64-bit adder based
on this method, as well as an improved method of expressing this
complex decomposition. This adder is compared to the optimized
Sklansky architecture produced by Design Compiler in a 45 nm
process. The 64-bit Jackson adder is 5% faster than the
DesignWare adder, but uses 80% more energy.

I. INTRODUCTION
Binary addition is a heavily-studied field because adders are

often in the critical paths of computing systems [1]. High-
performance adders of 16 bits and larger typically use a prefix
tree to compute group generate and propagate signals before
calculating the sums from the generate prefixes.

Ling described a way to factor out some complexity from
the initial stage of group generate logic, saving one transistor
from the critical path [2]. This comes at the cost of more
complex logic on the non-critical path to precompute inputs to
a sum-selection multiplexer. Several teams have explored Ling
adder implementations using standard cell libraries.
Dimitrakopoulos and Nikolos and Lakshmanan and Othman
report better results than conventional adders, but they either
don’t compare directly with the output of Design Compiler or
they don’t report a normalized FO4 inverter delay [3, 4]. Zhu
et al. describe a linear programming technique for exploring
the design space, but report delays of 10 FO4 inverters for a
16-bit adder [5]. In comparison, the industry-standard Design
Compiler logic synthesis tool and IC Compiler layout tool
from Synopsys generate highly optimized prefix adders with a
post-layout delay of about 11 FO4 inverters for a 64-bit adder.

Jackson and Talwar proposed a generalization to the Ling
technique that factors out complexity from subsequent group
generate stages as well [6]. The complexity is transferred into
the propagate logic as well as into the precomputed sums. The
technique is applicable to valency-3 or higher cells. Burgess
offers notes on implementation issues and concluded that
Jackson adders could be superior to conventional designs [7].
At least two designers have indicated that they have built
Jackson adders exceeding the performance of conventional
architectures, but these results have not been published [8, 9].
Our group published a 32-bit adder using the flow described in
this paper, but it showed a speedup of only 1% over Design
Compiler at a 45% increase in energy [10].

This paper investigates the implementation of a 64-bit
Jackson adder and compares it to the behavioral adder
produced by Design Compiler. We demonstrate small
performance gains over Design Compiler at the expense of
considerable energy. Section II defines our terminology for
conventional prefix addition and shows how the Ling technique
or higher-valency cells can be used to reduce the number of
logic levels. Section III defines the Jackson recursion. Section
IV describes the 45 nm process and standard cell library used
in the comparison. Section V presents the Jackson adder
implementation. The results are summarized in Section VI.

II. BACKGROUND
Consider adding two N-bit numbers A = {aN, aN-1, …, a1}

and B = {bN, bN-1, …, b1}, along with a carry-in Cin to produce
an N-bit sum S, discarding any possible overflow. A
conventional prefix adder first defines signals for each bit
defining whether the bit would generate a carry out (g) or
propagate a carry. The propagate term can be computed using
either an XOR (x) or OR gate (p); it is often handy to use both
because the OR is simpler and results in a faster prefix tree,
while the XOR is needed in the final sum logic:

gi aibi (1)

pi ai � bi (2)

i i ix a b � (3)

The carry-in can be handled with the special case that g0 = Cin.
Group generate (G) and propagate (P) signals indicating

whether a group spanning bits i-1 through j generate or
propagate a carry are then obtained with a valency-2 recursion
(i > k > j):

G(i: j] G(i:k] � P(i:k]G(k: j]
 (4)

P(i: j] P(i:k]P(k: j]
 (5)

The sums are then determined from the generate prefixes as
si xi �G(i:0] (6)

Equations 4-6 make use of set notation to indicate
inclusivity and exclusivity of the bits covered by each term.
For instance, G(i:j] is the group generate term covering bits i-1
through j, as “(“ indicates exclusive and “]” indicates

��������������������������������������,((($VLORPDU�����

inclusive. This notation will be used for the rest of this paper,
and will simplify the notation of Jackson recursion.

Many alternatives exist for combining the group generate
and propagate signals. Design Compiler generates the
modified Sklansky architecture [11] (sometimes called
Ladner-Fischer [12]) because it has a minimal number of logic
levels and no redundant logic, providing high speed at
moderate energy. Fig. 1 shows a 16-bit modified Sklansky
adder similar to the one produced by Design Compiler. The
top row contains the logic to compute g, p, and x for each bit.
The middle of the tree contains the group logic. Note that
black cells compute both G and P, while gray cells compute
only G for cases where P is unnecessary. The bottom row
computes the sums with a final XOR. The design is called
modified Sklansky because some of the non-critical P and G
signals (such as G(4:0], G(5:0], and G(6:0]) are buffered to reduce
the fanout on the critical path.

Fig. 1: 16-bit modified Sklansky tree

One logic level could be removed by directly computing
pairwise group generates and propagates G(i+2:i] and P(i+2:i]
from the primary inputs a and b. However, the generate logic
is overly complex, requiring three series transistors:

G(i�2:i] gi�1 � pi�1gi
 ai�1bi�1 � ai�1 � bi�1� �aibi

 (7)

 Ling proposes defining a pseudogenerate signal, H, such
that

H(i�1: j] gi �G(i: j]
 (8)

This is simpler than the conventional generate because it strips
out one propagate term:

G(i�1: j] gi � piG(i: j]
 (9)

G can be recreated from H with an AND gate:
G(i�1: j] piH(i�1: j]

 (10)

Now the pairwise group pseudogenerate logic is simpler and
requires only two series transistors

H(i�2:i] gi�1 � gi
 ai�1bi�1 � aibi

 (11)

Ling also defines a psuedopropagate signal, I, that is a
shifted version of the conventional propagate:

I(i: j] P(i�1: j�1]
 (12)

Now, the valency-2 recursion can be expressed using exactly
the same logic as with G and P in EQs (4-5), and can be
computed using exactly the same prefix tree:

H(i: j] H(i:k] � I(i:k]H(k: j]
 (13)

I(i: j] I(i:k]I(k: j] (14)

The sums are computed as
si xi �G(i:0]

 xi � pi�1H(i:0]

 (15)

Because the group pseudogenerates are the critical signal, the
sum logic can be refactored to use H to select a sum based on
precomputed options using a multiplexer, thus shifting logic
off the critical H path:

si H(i:0] ? xi� pi�1ª¬ º¼ : xi (16)

Sparse trees seek to save energy and area by computing the
prefixes for every mth bit. Meanwhile, they perform short m-
bit ripples to precompute the results for each m-bit block
assuming the prefix is 0 and 1. Ling adders naturally benefit
from a sparseness of 2 by computing prefixes only in the even-
numbered columns (e.g. H(2:0], H(4:0], H(6:0], …, H(14:0]). The
sum selection logic now contains a pair of multiplexers as
shown in Fig. 2. Note that the a and b inputs may be buffered
before computing x, p, and g to reduce the load on the critical
path.

H(2k:0] s2ks2k+1

0101

x2kp2k-1x2k+1g2k

Fig. 2: Ling sum selection for sparseness-2

Yet another option for reducing the number of logic levels
in an adder is to combine more than two groups at a time in
the prefix tree. For example, the valency-3 recursion (i > k > l
> j) gives:

G(i: j] G(i:k] � P(i:k]G(k:l] � P(i:k]P(k:l]G(l: j]
 (17)

P(i: j] P(i:k]P(k:l]P(l: j]
 (18)

The complexity of these terms is high enough that higher
valency adders tend not to be beneficial in static CMOS
circuits. Domino gates are more amenable to complex stacks;
Hewlett-Packard built very fast domino adders using a valency-
4 Ling design [13, 14], but domino has been phased out due to
its high power consumption.

����

III. THE JACKSON DECOMPOSTION
Jackson and Talwar generalized the Ling technique to

reduce the complexity of the entire prefix tree, rather than just
the first stage. The simplification makes higher-valency cells
more attractive in static logic. Observe that the valency-3
generate logic is significantly more complex than the
propagate logic in EQs (17-18). Jackson defines reduced
generate, R, and hyperpropagate, Q, signals that balance these
complexities and simplify the worst case. This section reviews
the Jackson decomposition using a new notation that we
believe is easier to read. First, we must introduce two
intermediate signals, D and B.

D(i:j] indicates that the group spanning bits i-1 through j
either generate or propagate a carry:

D(i: j] G(i: j] � P(i: j]
 (19)

Because P(i:j] covers the case of generating in bit j and
propagating through the rest, the logic can be simplified to

D(i: j] G(i: j�1] � P(i: j]
 (20)

and in the common special case of one-bit blocks,
D(i�1:i] pi (21)

B(i:j] indicates that the group generates a carry in at least one
bit:

B(i: j] gk
k j

i�1

� (22)

Now, the group generate signal can be rewritten as

G(i: j] D(i:k] B(i:k] �G(k: j]
ª¬ º¼ (23)

In other words, the group generates a carry if the upper part
either generates or propagates and either at least one bit of the
upper part generates (indicating that the upper as a whole
generates), or the lower part generates.

The bracketed term is called the reduced generate signal, R:
R(i:k: j] B(i:k] �G(k: j] (24)

It can be viewed as G with the top i-1 through k propagate
signals stripped out. The special cases of k = i and k = i-1
correspond to the conventional generate and the Ling
pseudogenerate signals, while Jackson adders permit further
reductions of k < i-1.

R(i:i: j] G(i: j] (25)

R(i:i�1: j] H(i: j] (26)

 The ordinary group generate is recovered from the reduced
generate using D; greater reduction of R requires a larger D
term. EQ (23) can be rewritten using R as

G(i: j] D(i:k]R(i:k: j] (27)

Jackson also defines a hyperpropagate signal, Q, to
complete the recursion:

Q(i:k: j] P(i:k]D(k: j] (28)

The frequently used special case of k = j for two-bit groups
correspond to the ordinary propagate signal, while k > j
produces more complex logic.

Q(i: j: j] P(i: j]
 (29)

Jackson derives a valency-3 recursion using R and Q, using
the indices i > m > n > k > s > t > j:

R(i:k: j] R(i:m:n] � R(n:k:s] �Q(k:s:t]R(s:t: j] (30)

Q(i:k: j] Q(i:m:n]Q(n:k:s] R(k:s:t] �Q(s:t: j]
ª¬ º¼ (31)

As compared to EQs (17-18), these terms are better balanced,
and the larger of the two terms is less complicated.

The valency-2 recursion is needed for some of the
intermediate terms in a prefix adder. Unfortunately, the
recursion is no simpler than the ordinary valency-2 PG logic
from EQs (4-5).

R(i:k: j] R(i:k:s] �Q(k:s:t]R(s:t: j] (32)

Q(i:k: j] Q(i:k:s] R(k:s:t] �Q(s:t: j]
ª¬ º¼ (33)

The recursion for D over large groups can be shown to be
[10]:

D(i: j] D(i:l] R(i:l:k] �Q(l:k: j]
ª¬ º¼ (34)

The next two sections of this paper describe the first
published standard cell implementation of a 64-bit static adder
using the Jackson R/Q equations in a 45 nm process.

IV. COMPARISON METHODOLOGY
One of the challenges in comparing circuits is to ensure that

the novel circuit is fairly compared to the best known
implementation of the conventional circuit [15]. For this
reason, we use Synopsys Design Compiler and compare
against a synthesized version of a behavioral description,
assign y = a + b. We will refer to this as the
behavioral adder.

The adders are synthesized onto the ARM standard cell
library for a 45 nm partially-depleted SOI process. The library
uses regular-Vt transistors and a 12 track cell height (1.68
Pm). It contains a rich set of complex gates including the
AOI211 and OAI211 gates used in a valency-3 Jackson
recursion. Timing is characterized in the SS corner at 0.9 V,
125 ºC. The fanout-of-4 inverter delay (FO4) is 15.0 ps,
corresponding to W = 3.0 ps [1]. A unit-sized (X1) inverter has
an input capacitance of 1.6 fF and switching energy of 0.78 fJ.
The inputs are driven by an X4 inverter and the outputs are
loaded by the capacitance of X4 inverters.

Design Compiler recommends the compile_ultra
command for standard high-performance synthesis. To
accurately account for routing, the synthesized netlist was
passed to Synopsys IC Compiler for placement, routing, and

����

parasitic estimation. The inputs and outputs are constrained to
appear in 64 ordered rows with a pitch of one cell per row.
Layout utilization is set to 70%, which produces good timing
results.

When synthesizing a 64-bit behavioral adder to be as fast as
possible, Design Compiler produces the modified Sklansky
adder like that of Fig. 1 extended to 64 bits; we will call this a
conventional design. The gray cells are built using alternating
AOI21 and OAI21 cells according to DeMorgan’s Law.
Various gates are cloned to optimize the critical and non-
critical paths.

V. IMPLEMENTATION
Jackson adders have a huge space of possible architectures

and circuit implementations [7]. High-level architectural
decisions—such as setting the valency of each level in the
prefix tree as well as the adder’s sparseness—narrowed this
design space. A Sklansky architecture for the prefix tree was
chosen, starting with a valency-2 Ling first stage. The second
and third logic levels used valency-3 gates, taking advantage
of Jackson’s more balanced recursion. The final two stages
used a mix of valency-2 and 3 gates as needed to compute the
final R signals.

This adder has a sparseness of 6 for the lower 60 bits, and
then a sparseness of 4 to compute the upper 4 sum bits. This
sparseness was chosen to take advantage of the valency-3
Jackson recursion, while balancing complexity between the
prefix tree and the carry-select adders, which compute the
final sum.

Fig. 3 shows a diagram of the adder, illustrating the signals
computed at each logic level. Fig. 4 defines the cells used in
the adder. The prefix tree was created by applying EQ (30)
and EQ (32) to calculate R prefixes, EQ (31) and EQ (33) for
Q prefixes, and EQ (34) for the D prefixes. The computation
of the following two prefixes was left out of Fig. 3 to reduce
clutter:

Q(9:6:5] (~Q(9:8:7])� (~Q(7:6:5]) (35)

R(42:39:38] (~ R(42:41:40])(~ R(40:39:38]) (36)

These simplifications can be proven by examining EQ (24)
and EQ (28). If the G and D terms in each equation are
reduced to a single bit, then they can be combined with their
adjoining B and P terms, respectively.

Since the adder will be fastest when the R and D paths that
help compute the sum are balanced, the width of the final D
signal never exceeds 27 bits. A 27-bit D signal is the largest
that can be computed in 4 stages of logic using EQ (34). Note
that while the final R prefix (~R(60:33:0]) is computed with a
valency-3 gate, a valency-2 computation of a final R prefix is
also possible. However, this results in slightly worse delay
performance due to extra loading of already heavily-loaded
signals in the third logic stage.

In parallel with the computation of the D and R prefixes, the
carry-select adders at the bottom of Fig. 3 calculate potential
sum signals over six bits using a small PG prefix tree, shown

in Fig. 5. Note that while the indices shown range from bits 0
through 5, this design can be applied to any 6-bit range, so
long as the appropriate R and D prefixes are used as select
signals. By using the R and D signals as selects for
multiplexers at the very bottom of the carry-select adders,
these signals can be the critical path in the adder while not
incurring a large extra delay through the carry-select adders.
While Fig. 5 shows the diagram for the 6-bit carry-select
adder, the 4-bit carry-select adder in Fig. 3 is constructed by
truncating the logic associated with the top two bits in Fig. 5.

VI. RESULTS
Table 1 summarizes the post-layout delay, energy, and area

results for the architectures considered.

Table 1: Comparison of 64-bit adder results
 Behavioral Behavioral Jackson
Compiler
Option

-ultra -ultra
-inc

-inc

Delay (ps) 166.6 165.3 156.8
Energy (fJ) 1663 1641 2959
Area (μm2) 1253 1232 2066

The behavioral adder results are quite good and took months
of design refinements to beat. The behavioral adder
synthesized with Design Compiler Ultra achieved 11.1 FO4
delays including layout parasitic. Applying incremental
resynthesis sped up the design by 0.8% and decreases energy
and area by 1.5%. The Jackson adder offers a further 5.1%
speedup at a cost of 80% more energy relative to the fastest
behavioral adder. The Jackson adder had to be specified as a
structural netlist; Design Compiler was unable to achieve such
good results with a more abstract description such as Boolean
equations. Moreover, the Jackson adder required initial sizing
in the structural netlist to achieve good results, and the energy
use in Table 1 was only arrived at by brute-force downsizing
gates in the adder to determine if they had any effect on the
critical path length.

VII. CONCLUSION
Design Compiler is the industry standard logic synthesis

tool. The quality of the arithmetic circuits it generates is now
very high. This paper has investigated applying the Jackson
technique to produce even faster adders.

This paper has presented the first published implementation
of a 64-bit Jackson adder with all details shown. The adder
also uses a sparseness-6 modified Sklansky tree with a mix of
valency-2 and valency-3 stages to minimize logic levels. The
synthesis results are 5% faster than the behavioral adder but
consume significantly more energy.

Ideas for future work include optimizing this adder for
energy. The adder was carefully designed for delay but not
tuned for energy; potential remains to reduce the energy by
optimizing noncritical paths.

ACKNOWLEDGMENT

����

This work was supported by the Clay-Wolkin Fellowship at
Harvey Mudd College.

REFERENCES
[1] N. Weste and D. Harris, CMOS VLSI Design, 4th ed., Boston, MA:

Addison Wesley, 2011.
[2] H. Ling, “High-speed binary adder,” IBM J. Research and Dev., vol. 25,

no. 3, May 1981, pp. 156-166.
[3] G. Dimitrakopoulos and D. Nikolos, “High-speed parallel-prefix VLSI

Ling adders,” IEEE Trans. Computers, vol. 54, no. 2, Feb. 2005, pp.
225-231.

[4] A Lakshmanan and M. Othman, “High-speed hybrid parallel-prefix
carry-select adder using Ling’s algorithm,” Intl. Conf. Semiconductor
Electronics, 2006, pp. 598-602.

[5] Y. Zhu, J. Liu, H. Zhu, and C.K. Cheng, “Timing-power optimization
for mixed-radix Ling adders,” Asia/South Pacific Design Automation
Conf., 2008, pp. 131-137.

[6] R. Jackson and S. Talwar, “High speed binary addition,” Proc. Asilomar
Conf. Signals, Systems, and Computers, Nov. 2004, pp. 1350-1353.

[7] N. Burgess, “Implementation of recursive Ling adders in CMOS VLSI,”
Proc. Asilomar Conf. Signals, Systems, and Computers, 2009.

[8] R. Jackson, personal communication, 5 July 2010.
[9] E. Mahurin, personal communication, 25 October 2010.
[10] M. Keeter, D. Harris, A. Macrae, R. Glick, and M. Ong,

“Implementation of 32-bit Ling and Jackson Adders,” Proc. Asilomar
Conf. Signals, Systems, and Computers, 2011.

[11] J. Sklansky, “Conditional-sum addition logic,” IRE Trans. Electronic
Computers, vol. EC-9, Jun. 1960, pp. 226-231.

[12] R. Ladner and M. Fischer, “Parallel prefix computation,” J. ACM, vol.
27, no. 4, Oct. 1980, pp. 831-838.

[13] S. Naffziger, “A subnanosecond 0.5 Pm 64b adder design,” Proc. IEEE
Intl. Solid-State Circuits Conf., 1996, pp. 362-363.

[14] S. Naffziger, “High speed addition using Ling’s equations and dynamic
CMOS logic,” US Patent 5,719,803, 1998.

[15] R. Zimmermann and W. Fichtner, “Low-power logic styles: CMOS
versus pass-transistor logic,” IEEE J. Solid-State Circuits, vol. 32, no. 7,
July 1997, pp. 1079-1090.

Figure 4: Cell designs for Jackson adder

Figure 5: Cell design for 6-bit carry-select adder

����

Figure 3: 64-bit Jackson Adder

����

