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Abstract—In 2004, Robert Jackson and Sunil Talwar published a 
novel method of decomposing binary prefix addition. Their work 
sought to balance the complexity of the generate and propagate 
terms that bear the computational load in parallel prefix adders. 
This paper presents an implementation of a 64-bit adder based 
on this method, as well as an improved method of expressing this 
complex decomposition. This adder is compared to the optimized 
Sklansky architecture produced by Design Compiler in a 45 nm 
process. The 64-bit Jackson adder is 5% faster than the 
DesignWare adder, but uses 80% more energy. 

I. INTRODUCTION 
Binary addition is a heavily-studied field because adders are 

often in the critical paths of computing systems [1]. High-
performance adders of 16 bits and larger typically use a prefix 
tree to compute group generate and propagate signals before 
calculating the sums from the generate prefixes.  

Ling described a way to factor out some complexity from 
the initial stage of group generate logic, saving one transistor 
from the critical path [2]. This comes at the cost of more 
complex logic on the non-critical path to precompute inputs to 
a sum-selection multiplexer. Several teams have explored Ling 
adder implementations using standard cell libraries. 
Dimitrakopoulos and Nikolos and Lakshmanan and Othman 
report better results than conventional adders, but they either 
don’t compare directly with the output of Design Compiler or 
they don’t report a normalized FO4 inverter delay [3, 4]. Zhu 
et al. describe a linear programming technique for exploring 
the design space, but report delays of 10 FO4 inverters for a 
16-bit adder [5]. In comparison, the industry-standard Design 
Compiler logic synthesis tool and IC Compiler layout tool 
from Synopsys generate highly optimized prefix adders with a 
post-layout delay of about 11 FO4 inverters for a 64-bit adder. 

Jackson and Talwar proposed a generalization to the Ling 
technique that factors out complexity from subsequent group 
generate stages as well [6]. The complexity is transferred into 
the propagate logic as well as into the precomputed sums. The 
technique is applicable to valency-3 or higher cells. Burgess 
offers notes on implementation issues and concluded that 
Jackson adders could be superior to conventional designs [7]. 
At least two designers have indicated that they have built 
Jackson adders exceeding the performance of conventional 
architectures, but these results have not been published [8, 9]. 
Our group published a 32-bit adder using the flow described in 
this paper, but it showed a speedup of only 1% over Design 
Compiler at a 45% increase in energy [10]. 

This paper investigates the implementation of a 64-bit 
Jackson adder and compares it to the behavioral adder 
produced by Design Compiler. We demonstrate small 
performance gains over Design Compiler at the expense of 
considerable energy. Section II defines our terminology for 
conventional prefix addition and shows how the Ling technique 
or higher-valency cells can be used to reduce the number of 
logic levels. Section III defines the Jackson recursion. Section 
IV describes the 45 nm process and standard cell library used 
in the comparison. Section V presents the Jackson adder 
implementation. The results are summarized in Section VI. 

II. BACKGROUND 
Consider adding two N-bit numbers A = {aN, aN-1, …, a1} 

and B = {bN, bN-1, …, b1}, along with a carry-in Cin to produce 
an N-bit sum S, discarding any possible overflow. A 
conventional prefix adder first defines signals for each bit 
defining whether the bit would generate a carry out (g) or 
propagate a carry. The propagate term can be computed using 
either an XOR (x) or OR gate (p); it is often handy to use both 
because the OR is simpler and results in a faster prefix tree, 
while the XOR is needed in the final sum logic: 

gi  aibi               (1) 

pi  ai � bi                (2) 

i i ix a b �     (3) 

The carry-in can be handled with the special case that g0 = Cin. 
Group generate (G) and propagate (P) signals indicating 

whether a group spanning bits i-1 through j generate or 
propagate a carry are then obtained with a valency-2 recursion 
(i > k > j): 

G(i: j]  G( i:k ] � P(i:k ]G(k: j]
    (4) 

P( i: j]  P(i:k ]P(k: j]
      (5) 

The sums are then determined from the generate prefixes as 
si  xi �G(i:0]     (6) 

Equations 4-6 make use of set notation to indicate 
inclusivity and exclusivity of the bits covered by each term. 
For instance, G(i:j] is the group generate term covering bits i-1 
through j, as “(“ indicates exclusive and “]” indicates 
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inclusive. This notation will be used for the rest of this paper, 
and will simplify the notation of Jackson recursion. 

Many alternatives exist for combining the group generate 
and propagate signals. Design Compiler generates the 
modified Sklansky architecture [11] (sometimes called 
Ladner-Fischer [12]) because it has a minimal number of logic 
levels and no redundant logic, providing high speed at 
moderate energy. Fig. 1 shows a 16-bit modified Sklansky 
adder similar to the one produced by Design Compiler. The 
top row contains the logic to compute g, p, and x for each bit. 
The middle of the tree contains the group logic. Note that 
black cells compute both G and P, while gray cells compute 
only G for cases where P is unnecessary. The bottom row 
computes the sums with a final XOR. The design is called 
modified Sklansky because some of the non-critical P and G 
signals (such as G(4:0], G(5:0], and G(6:0]) are buffered to reduce 
the fanout on the critical path. 

 

 
Fig. 1: 16-bit modified Sklansky tree 

One logic level could be removed by directly computing 
pairwise group generates and propagates G(i+2:i] and P(i+2:i] 
from the primary inputs a and b. However, the generate logic 
is overly complex, requiring three series transistors: 

G( i�2:i]  gi�1 � pi�1gi
 ai�1bi�1 � ai�1 � bi�1� �aibi

    (7) 

 Ling proposes defining a pseudogenerate signal, H, such 
that 

H( i�1: j]  gi �G( i: j]
     (8) 

This is simpler than the conventional generate because it strips 
out one propagate term: 

G(i�1: j]  gi � piG( i: j]
    (9) 

G can be recreated from H with an AND gate: 
G(i�1: j]  piH(i�1: j]

     (10) 

Now the pairwise group pseudogenerate logic is simpler and 
requires only two series transistors 

H( i�2:i]  gi�1 � gi
 ai�1bi�1 � aibi

    (11) 

Ling also defines a psuedopropagate signal, I, that is a 
shifted version of the conventional propagate: 

I( i: j]  P(i�1: j�1]
   (12) 

Now, the valency-2 recursion can be expressed using exactly 
the same logic as with G and P in EQs (4-5), and can be 
computed using exactly the same prefix tree: 

H( i: j]  H( i:k ] � I( i:k ]H(k: j]
    (13) 

I( i: j]  I( i:k ]I(k: j]      (14) 

The sums are computed as 
si  xi �G( i:0]

 xi � pi�1H( i:0]

    (15) 

Because the group pseudogenerates are the critical signal, the 
sum logic can be refactored to use H to select a sum based on 
precomputed options using a multiplexer, thus shifting logic 
off the critical H path: 

si  H( i:0] ? xi� pi�1ª¬ º¼ : xi     (16) 

Sparse trees seek to save energy and area by computing the 
prefixes for every mth bit. Meanwhile, they perform short m-
bit ripples to precompute the results for each m-bit block 
assuming the prefix is 0 and 1. Ling adders naturally benefit 
from a sparseness of 2 by computing prefixes only in the even-
numbered columns (e.g. H(2:0], H(4:0], H(6:0], …, H(14:0]). The 
sum selection logic now contains a pair of multiplexers as 
shown in Fig. 2. Note that the a and b inputs may be buffered 
before computing x, p, and g to reduce the load on the critical 
path. 

H(2k:0] s2ks2k+1

0101

x2kp2k-1x2k+1g2k

 
Fig. 2: Ling sum selection for sparseness-2  

Yet another option for reducing the number of logic levels 
in an adder is to combine more than two groups at a time in 
the prefix tree. For example, the valency-3 recursion (i > k > l 
> j) gives: 

G(i: j]  G( i:k ] � P(i:k ]G(k:l ] � P( i:k ]P(k:l ]G( l: j]
   (17) 

P( i: j]  P(i:k ]P(k:l]P( l: j]
     (18) 

The complexity of these terms is high enough that higher 
valency adders tend not to be beneficial in static CMOS 
circuits. Domino gates are more amenable to complex stacks; 
Hewlett-Packard built very fast domino adders using a valency-
4 Ling design [13, 14], but domino has been phased out due to 
its high power consumption. 
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III. THE JACKSON DECOMPOSTION 
Jackson and Talwar generalized the Ling technique to 

reduce the complexity of the entire prefix tree, rather than just 
the first stage. The simplification makes higher-valency cells 
more attractive in static logic. Observe that the valency-3 
generate logic is significantly more complex than the 
propagate logic in EQs (17-18). Jackson defines reduced 
generate, R, and hyperpropagate, Q, signals that balance these 
complexities and simplify the worst case. This section reviews 
the Jackson decomposition using a new notation that we 
believe is easier to read. First, we must introduce two 
intermediate signals, D and B. 

D(i:j] indicates that the group spanning bits i-1 through j 
either generate or propagate a carry: 

D( i: j]  G( i: j] � P( i: j]
     (19) 

Because P(i:j] covers the case of generating in bit j and 
propagating through the rest, the logic can be simplified to  

D( i: j]  G( i: j�1] � P(i: j]
    (20) 

and in the common special case of one-bit blocks, 
D( i�1:i]  pi     (21) 

B(i:j] indicates that the group generates a carry in at least one 
bit: 

B( i: j]  gk
k j

i�1

�     (22) 

Now, the group generate signal can be rewritten as 

G(i: j]  D( i:k ] B(i:k ] �G(k: j]
ª¬ º¼     (23) 

In other words, the group generates a carry if the upper part 
either generates or propagates and either at least one bit of the 
upper part generates (indicating that the upper as a whole 
generates), or the lower part generates. 

The bracketed term is called the reduced generate signal, R: 
R( i:k: j]  B( i:k ] �G(k: j]     (24) 

It can be viewed as G with the top i-1 through k propagate 
signals stripped out. The special cases of k = i and k = i-1 
correspond to the conventional generate and the Ling 
pseudogenerate signals, while Jackson adders permit further 
reductions of k < i-1. 

R( i:i: j]  G( i: j]     (25) 

R( i:i�1: j]  H( i: j]    (26) 

 The ordinary group generate is recovered from the reduced 
generate using D; greater reduction of R requires a larger D 
term. EQ (23) can be rewritten using R as 

G(i: j]  D( i:k ]R(i:k: j]    (27) 

Jackson also defines a hyperpropagate signal, Q, to 
complete the recursion: 

Q( i:k: j]  P( i:k ]D(k: j]    (28) 

The frequently used special case of k = j for two-bit groups 
correspond to the ordinary propagate signal, while k > j 
produces more complex logic. 

Q( i: j: j]  P( i: j]
    (29) 

Jackson derives a valency-3 recursion using R and Q, using 
the indices i > m > n > k > s > t > j: 

R( i:k: j]  R( i:m:n] � R(n:k:s] �Q(k:s:t]R(s:t: j]    (30) 

Q( i:k: j]  Q(i:m:n]Q(n:k:s] R(k:s:t ] �Q(s:t: j]
ª¬ º¼   (31) 

As compared to EQs (17-18), these terms are better balanced, 
and the larger of the two terms is less complicated. 

The valency-2 recursion is needed for some of the 
intermediate terms in a prefix adder. Unfortunately, the 
recursion is no simpler than the ordinary valency-2 PG logic 
from EQs (4-5). 

R( i:k: j]  R( i:k:s] �Q(k:s:t]R(s:t: j]    (32) 

Q( i:k: j]  Q(i:k:s] R(k:s:t ] �Q(s:t: j]
ª¬ º¼     (33) 

The recursion for D over large groups can be shown to be 
[10]: 

D( i: j]  D(i:l] R(i:l:k ] �Q(l:k: j]
ª¬ º¼     (34) 

The next two sections of this paper describe the first 
published standard cell implementation of a 64-bit static adder 
using the Jackson R/Q equations in a 45 nm process. 

IV. COMPARISON METHODOLOGY 
One of the challenges in comparing circuits is to ensure that 

the novel circuit is fairly compared to the best known 
implementation of the conventional circuit [15]. For this 
reason, we use Synopsys Design Compiler and compare 
against a synthesized version of a behavioral description, 
assign y = a + b. We will refer to this as the 
behavioral adder. 

The adders are synthesized onto the ARM standard cell 
library for a 45 nm partially-depleted SOI process. The library 
uses regular-Vt transistors and a 12 track cell height (1.68 
Pm). It contains a rich set of complex gates including the 
AOI211 and OAI211 gates used in a valency-3 Jackson 
recursion. Timing is characterized in the SS corner at 0.9 V, 
125 ºC. The fanout-of-4 inverter delay (FO4) is 15.0 ps, 
corresponding to W = 3.0 ps [1]. A unit-sized (X1) inverter has 
an input capacitance of 1.6 fF and switching energy of 0.78 fJ. 
The inputs are driven by an X4 inverter and the outputs are 
loaded by the capacitance of X4 inverters.  

Design Compiler recommends the compile_ultra 
command for standard high-performance synthesis. To 
accurately account for routing, the synthesized netlist was 
passed to Synopsys IC Compiler for placement, routing, and 
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parasitic estimation. The inputs and outputs are constrained to 
appear in 64 ordered rows with a pitch of one cell per row. 
Layout utilization is set to 70%, which produces good timing 
results.  

When synthesizing a 64-bit behavioral adder to be as fast as 
possible, Design Compiler produces the modified Sklansky 
adder like that of Fig. 1 extended to 64 bits; we will call this a 
conventional design. The gray cells are built using alternating 
AOI21 and OAI21 cells according to DeMorgan’s Law. 
Various gates are cloned to optimize the critical and non-
critical paths.  

V. IMPLEMENTATION 
Jackson adders have a huge space of possible architectures 

and circuit implementations [7]. High-level architectural 
decisions—such as setting the valency of each level in the 
prefix tree as well as the adder’s sparseness—narrowed this 
design space. A Sklansky architecture for the prefix tree was 
chosen, starting with a valency-2 Ling first stage. The second 
and third logic levels used valency-3 gates, taking advantage 
of Jackson’s more balanced recursion. The final two stages 
used a mix of valency-2 and 3 gates as needed to compute the 
final R signals. 

This adder has a sparseness of 6 for the lower 60 bits, and 
then a sparseness of 4 to compute the upper 4 sum bits. This 
sparseness was chosen to take advantage of the valency-3 
Jackson recursion, while balancing complexity between the 
prefix tree and the carry-select adders, which compute the 
final sum. 

Fig. 3 shows a diagram of the adder, illustrating the signals 
computed at each logic level. Fig. 4 defines the cells used in 
the adder. The prefix tree was created by applying EQ (30) 
and EQ (32) to calculate R prefixes, EQ (31) and EQ (33) for 
Q prefixes, and EQ (34) for the D prefixes. The computation 
of the following two prefixes was left out of Fig. 3 to reduce 
clutter: 

Q(9:6:5]  (~Q(9:8:7])� (~Q(7:6:5])     (35) 

R(42:39:38]  (~ R(42:41:40])(~ R(40:39:38])                      (36) 

These simplifications can be proven by examining EQ (24) 
and EQ (28). If the G and D terms in each equation are 
reduced to a single bit, then they can be combined with their 
adjoining B and P terms, respectively. 

Since the adder will be fastest when the R and D paths that 
help compute the sum are balanced, the width of the final D 
signal never exceeds 27 bits. A 27-bit D signal is the largest 
that can be computed in 4 stages of logic using EQ (34). Note 
that while the final R prefix (~R(60:33:0]) is computed with a 
valency-3 gate, a valency-2 computation of a final R prefix is 
also possible. However, this results in slightly worse delay 
performance due to extra loading of already heavily-loaded 
signals in the third logic stage. 

In parallel with the computation of the D and R prefixes, the 
carry-select adders at the bottom of Fig. 3 calculate potential 
sum signals over six bits using a small PG prefix tree, shown 

in Fig. 5. Note that while the indices shown range from bits 0 
through 5, this design can be applied to any 6-bit range, so 
long as the appropriate R and D prefixes are used as select 
signals. By using the R and D signals as selects for 
multiplexers at the very bottom of the carry-select adders, 
these signals can be the critical path in the adder while not 
incurring a large extra delay through the carry-select adders. 
While Fig. 5 shows the diagram for the 6-bit carry-select 
adder, the 4-bit carry-select adder in Fig. 3 is constructed by 
truncating the logic associated with the top two bits in Fig. 5. 

VI. RESULTS 
Table 1 summarizes the post-layout delay, energy, and area 

results for the architectures considered.   
 

Table 1: Comparison of 64-bit adder results 
 Behavioral Behavioral Jackson 
Compiler 
Option 

-ultra -ultra 
-inc 

-inc 

Delay (ps) 166.6 165.3 156.8 
Energy (fJ) 1663 1641 2959 
Area (μm2) 1253 1232 2066 
 

The behavioral adder results are quite good and took months 
of design refinements to beat.  The behavioral adder 
synthesized with Design Compiler Ultra achieved 11.1 FO4 
delays including layout parasitic. Applying incremental 
resynthesis sped up the design by 0.8% and decreases energy 
and area by 1.5%. The Jackson adder offers a further 5.1% 
speedup at a cost of 80% more energy relative to the fastest 
behavioral adder. The Jackson adder had to be specified as a 
structural netlist; Design Compiler was unable to achieve such 
good results with a more abstract description such as Boolean 
equations.  Moreover, the Jackson adder required initial sizing 
in the structural netlist to achieve good results, and the energy 
use in Table 1 was only arrived at by brute-force downsizing 
gates in the adder to determine if they had any effect on the 
critical path length. 

VII. CONCLUSION 
Design Compiler is the industry standard logic synthesis 

tool.  The quality of the arithmetic circuits it generates is now 
very high.  This paper has investigated applying the Jackson 
technique to produce even faster adders.   

This paper has presented the first published implementation 
of a 64-bit Jackson adder with all details shown. The adder 
also uses a sparseness-6 modified Sklansky tree with a mix of 
valency-2 and valency-3 stages to minimize logic levels.  The 
synthesis results are 5% faster than the behavioral adder but 
consume significantly more energy. 

Ideas for future work include optimizing this adder for 
energy. The adder was carefully designed for delay but not 
tuned for energy; potential remains to reduce the energy by 
optimizing noncritical paths. 
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Figure 4: Cell designs for Jackson adder 

 
Figure 5: Cell design for 6-bit carry-select adder 
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Figure 3: 64-bit Jackson Adder 
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