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Abstract—A new method is proposed for enhancing the 
performance of automatic gain control systems coupled with 
analog-to-digital converters (ADCs). This approach is 
focused on increasing the dynamic range of software-
defined radios in applications where high data rates and 
low-power requirements make increasing ADC resolution 
impractical.  This novel approach utilizes two input 
channels in order to aggressively enhance sensitivity while 
remaining responsive to rapid changes in input signal 
power.  For modest rates of input power change, signal- to 
error-power ratios (SER) can be enhanced by 6 dB or more.  
A methodology for selecting control parameters, algorithms 
for adjusting to input characteristics in real time, and results 
from a functional prototype are discussed. 1,2 
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1. INTRODUCTION 

Automatic gain control (AGC) systems increase dynamic 
range by applying a variable gain to an input signal prior to 
quantization, in an attempt to place the resulting amplified 
or attenuated signal at the optimal input power for the ADC.  
The resulting dynamic range is limited by the range of the 
variable gain amplifier (VGA) and the controller’s ability to 
select the optimal gain setting.  Several types of AGC 
topologies exist to address the latter concern.  The most 
common topology, shown in Figure 1, uses a closed loop 
controller to adjust gain such that the output power matches 
a predefined set-point.  In this figure, the bare ADC has a 
full scale of ±L0, and the effective full scale of the entire 
assembly is ±L.  In some configurations, the output from the 
ADC is digitally multiplied by an attenuation factor equal to 
the applied gain [2].  The controller indicates the applied 
gain using the “exponent” output.  Although the format of 
the mantissa and exponent may not be a literal floating point 
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number, the analogy is still useful for labeling each output.  
In other applications, constant scaling factors do not disrupt 
the signal, and this gain-compensation step can be removed 
as long as the gain change is sufficiently slow. 

 

Figure 1: Traditional automatic gain control (AGC) 

If input power is constant, then the ideal set-point is the one 
that produces the optimal SER as discussed above.  
However, since all control systems have associated delays, 
and the SER penalty for having excessive gain (saturation) 
is much higher than the penalty for inadequate gain 
(potential for marginally better SER), it is useful to include 
a safety margin. 

For very high rates of change in input signal power, these 
safety margins can become prohibitively large.  Saturation is 
avoided for worst-case scenarios, but at the cost of drastic 
reductions in SER for constant power signals.  One 
alternative topology that addresses this problem is the full 
multichannel AGC system shown in Figure 2 [3] [4] [5].  By 
providing a bank of fixed gains and automatically selecting 
the highest-gain unsaturated channel, it can apply optimal 
gain settings on a sample-by-sample basis.  This topology is 
especially useful for capturing transient signals in which the 
peak amplitude is difficult to predict.  Typically, fixed gains 
are set at a spacing of 2x, to minimize worst-case loss of 
precision, but this requires rapidly increasing system 
complexity for a limited increase in dynamic range.  
Increasing channel spacing increases the dynamic range 
gained per additional channel, but decreases expected SER.  
Although this type of AGC system is uniquely immune to 
even the most rapid input power changes, its cost and 
complexity are prohibitive for many applications. 
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Figure 2: Full multichannel AGC 

Another class of systems for increasing ADC dynamic range 
consists of iterative and sub-ranging digitization techniques, 
which use a pipeline of comparators and ADCs to acquire 
increasingly precise digitized data [6].  The net effect is 
equivalent to additional output bits.  Iterative methods are 
primarily limited by accumulated analog error.  Other 
methods include companding and other nonuniform 
quantization methods [7].  These methods use variable 
spacing between each output code to provide increased 
detail in critical input ranges.  They are most effective when 
characteristics of the input signal are well defined and the 
ADC is not required to handle strong interfering signals.  
Fortunately, they can usually be combined effectively with 
AGC systems, so a detailed discussion is beyond the scope 
of this paper. 

This paper introduces an adaptive two-channel AGC 
system.  We begin by formally defining the signal-to-error 
ratio.  We then present the novel system and explain how to 
choose the best gain settings at any power level for a 
number of signal types.  Next, we present an algorithm for 
detecting and adapting to each of these signal types in real 
time.  Finally, a prototype hardware implementation 
demonstrates proof of concept.  We demonstrate that the 
improved system offers at least 6 dB better SER than a 
conventional single-channel AGC for signals with moderate 
rates of input power change. 

2. SIGNAL-TO-ERROR RATIO 

For all ADCs, the quantization process inherently introduces 
error into a signal.  The SER can be maximized by 
increasing signal power well above the fixed-power “noise” 
introduced by rounding to the nearest output code, while 
avoiding the distortion error caused by saturation effects.  
For common bounded input-types  such as sinusoids or 
uniform noise, the optimal input power is intuitively just 
below the point at which saturation begins.  For unbounded 
inputs such as Gaussian noise, the input power that 
maximizes SER for a given probability density function 

(PDF) can be found by calculating expected error power [1], 
as shown in Equation 1, 
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where E(q2 | L, A) is the expected error power for a given 
nonsaturated ADC range of ±L and a given input power A, 
p(x, A) is the input signal’s probability density function, and 
q(x, L) is the quantization error for a given input x.  To a 
reasonable approximation under normal conditions, 
quantization error for an ADC with uniform output code 
spacing can be exp ressed as in Equation 2, 

 
( )( )





>−−

≤
≈

LxQLx

LxQ
Lxq 2

2
1

2
12
1

2),(  (2) 

where Q = 2L / 2N is the distance between output codes for 
an ADC with N output bits.  Note that for any given 
quantity L / A, the input power A2 and the expected error 
power E(q2 | L, A) are proportional to each other.  Therefore, 
these results can be generalized by expressing SER as a 
function of L / A.  The optimal value for this ratio can then 
be read off the peak of a plot like the one shown in Figure 3.  
The width of the “triangle” in this type of figure also shows 
the system’s input dynamic range—the range of input power 
for which output power exceeds error power by an 
acceptable margin.  
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Figure 3: Expected SER vs. ADC scale relative to input 

power for two different PDFs  

3. TWO-CHANNEL AUTOMATIC GAIN CONTROL 

The novel two-channel AGC topology shown in Figure 4 is 
a hybrid of traditional and full multichannel automatic gain 
control, with an intermediate tradeoff between system 
complexity and ability to respond to rapid changes in input 
power.  Qualitatively, the two channels allow the system to 
simultaneously use both an aggressive gain for maximum 
precision and a conservative gain with a wide safety margin 
for catching outliers. 
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Figure 4: Adaptive two-channel AGC 

Optimal gain settings can be chosen to maximize the 
expected SER for a given estimated variation in input 
power.  To account for potential variation in the input power 
A, an additional integral is required as shown in Equation 3, 
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where ±L1 and ±L2 are the ranges for each channel’s ADC 
(L1 > L2), Â is the best estimate or prediction of the 
instantaneous signal power, sA is a rate of change parameter 
whose meaning depends on the chosen function pA, and the 
function pA(A | Â, sA) is the probability density of receiving 
an actual input power A given Â and a change rate sA.  In 
many systems the value of Â changes slowly with time, such 
that the best estimate of its value in the near future is simply  
the most recent estimate of input signal power.  However, 
there will always be some time lag between a change in 
input power, a corresponding change in the estimated 
power, and the control system’s selection of new gain 
settings.  By allowing for random variation in input power 
with respect to predicted input power, this model takes into 
account both uncertainty in the predicted power level and 
the maximum rate of change with respect to the control 
system’s time delay.  Depending on the application and the 
nature of the expected signal, different pA functions may be 
appropriate. 

For this model, pA is a Gaussian distribution in logarithmic 
space, such that 68% of all A  fall within ±sA dB of Â .  In this  
distribution, there is  an equal chance of an input power 
increase to 200% of Â  (+6 dB) or a decrease to 50% of Â  
(–6 dB), and the maximum possible input power is 
unbounded.  The expression for this distribution is given in 
Equation 4, 
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where AdB = 20 log10 (A / Â).  To perform the necessary 
integration, this function must be converted to give the 
appropriate probability density as a function of A in linear 
space.  The linearized probability density is given by 
Equation 5. 
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In the two channel system, some method must be devised to 
combine the information from both channels.  Expected 
error for each channel is given by Equation 2.  In the case 
where both channels are not saturated, then expected error is 
proportional to Q1

2
 and Q2

2, respectively.  Since Q is 
directly proportional to L, and we can assume L1 >> L2, the 
low-gain channel L1 contributes almost nothing in this case.  
In this region, we should simply use the output of the high-
gain channel.  Once the high-gain channel saturates, 
however, its expected error increases so rapidly that only the 
output from the low-gain channel should be used.  This 
method of combining the two channels gives  the estimated 
error function q(x)2 shown in Equation 6. 
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If L2 = 0, this system is equivalent to a traditional single-
channel AGC, so no changes are required to re-derive 
optimal safety margins for the single-channel system as a 
function of sA. 

SER-optimizing input power levels can be found by 
numeric integration.  Results for an input PDF 
corresponding to a sinusoid are shown in Figure 5.  As one 
might expect, optimal ADC scale relative to signal power 
increases with variation in input power for both topologies.  
Optimal scale for the single-channel system lies between the 
scale for each channel of the two-channel system, such that 
L2 < L = L1 in all cases. 
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Figure 5: Optimal ADC scale vs. s A, sinusoidal input.   

A full plot of SER vs. L1 and L2 for a Gaussian input with sA 
= 3 dB is shown in Figure 6.  Note that the cross sections at 
extreme L1 and L2 values are identical to the curve in Figure 
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3, but the two channels act synergistically near the overall 
maximum.   This synergistic peak becomes larger as 
variation in input power increases, and its height gives the 
expected improvement in SER for a two-channel system.  
This expected improvement in SER is shown in Figure 7 for 
a variety of input PDF choices; as expected, improvement 
increases with sA.  For all selected PDFs, SER improvement 
exceeds 6 dB for all sA > 3 dB. 

-20
0

20
40 -20

0
20

40
0

10

20

30

40

S
E

R
 (

dB
)

SER for Gaussian noise, σA = 3.0 dB

L1/Â (dB)
L2/Â (dB)

 

Figure 6: SER vs. L1 and L2, Gaussian input 
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Figure 7: SER improvement for two-channel AGC 

Calibration mismatch between the two channels is a serious 
potential problem for the two-channel AGC system.  Careful 
attention must be paid to minimize or compensate for any 
differences that could cause distortion as the output is 
switched from one ADC to the other, such as DC offset, 
VGA gain error, and ADC scale mismatch.  In the case 
when neither channel is saturated, we can model these three 
effects as shown in Equation 7: 
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where x is the input signal, yx is the output of each channel 
after compensation for the nominal VGA gain, Ax  is the 
scalar error caused by VGA gain error and ADC scale 
mismatch, Dx is the DC offset for each channel, and nx 
accounts for all quantization error and other zero-mean 
noise.  Solving for y2 in terms of y1 yields Equation 8. 
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Solving for the least-squares best fit line gives Equation 9. 
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This allows an entirely digital algorithm for compensating 
for the differences between channels.  Since the relevant 
error values are likely to change each time new gain settings 
are applied, it would be useful to calculate estimates in real 
time.  We can accomplish this by implementing an 
appropriate accumulating average or Kalman-filter estimator 
for the expressions given in Equation 9, taking care to 
average only those points for which neither channel is 
saturated.  The final step is to select one channel as a 
reference and adjust the output of the other channel to match 
it.  If we arbitrarily choose channel 2 to be the reference, 
then the compensated output for channel 1 is given by 
Equation 10. 
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The two-channel topology is also compatible with 
companding and other nonuniform quantization techniques.  
Although the presented derivation of optimal gain 
coefficients assumes uniform ADC quantization and 
symmetric channels, re-deriving coefficients for other ADC 
types merely requires the insertion of the appropriate 
function q(x).  If desired, each channel could have different 
quantization functions, although this would require a more 
sophisticated method of selecting the most appropriate 
channel or combining output from both channels. 

4. ADAPTING TO INPUT SIGNAL TYPE 

The method discussed in Section 2 allows the derivation of 
optimal gain settings for each channel for a particular input 
PDF, but the resulting coefficients change with input type.  
In many radio receivers, the input PDF cannot be accurately 
predetermined, because multiple transmitters and 
interference sources can switch on and off while the receiver 
is running.  Therefore, some method of detecting the input 
signal type is required so that the AGC system can apply the 
appropriate gain settings. 
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Let us assume that each received primary and interfering 
signal can be modeled as a sinusoid with random relative 
frequency and phase.  The input distribution for a single 
sinusoid is given by Equation 11. 
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Since summation of two signals is equivalent to convolution 
of their PDFs, we can find the PDF for the sum of any 
number of equal-power sinusoids numerically.  The results, 
after renormalization to an RMS power of 1.0, are shown in 
Figure 8.  Note that the sum of an infinite number of such 
sinusoids approaches a Gaussian distribution as described 
by the Central Limit Theorem.  For this reason, the impact 
on optimal gain coefficients due to each additional sinusoid 
becomes very small after the third.  Therefore, the 
consideration of these four PDFs is adequate for this model. 
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Figure 8: Sinusoid-derived input PDFs  

While the uniform distribution is not sinusoid-derived, it has 
been included in later analyses because it is useful in many 
applications.  Results for this set of five PDFs are listed in 
Table 1 and Table 2.  Note that the optimal gain coefficients 
for both the single- and two-channel systems can vary by up 
to 10 dB, depending on the input PDF, further emphasizing 
the need for an adaptive controller. 

Table 1: Optimal scale coefficients for sA = 0 

 One Ch. Two Channels 
Input PDF L / Â (dB) L1 / Â (dB) L2 / Â (dB) 
Single sinusoid +3.3 +3.3 -1.0 
Two sinusoids +6.4 +6.5 +0.7 
Three sinusoids +8.2 +8.3 +1.8 
Gaussian +11.9 +13.0 +4.7 
Uniform +4.8 +4.8 +0.0 

Table 2: Optimal scale coefficienta for s A = 3 dB 

 One Ch. Two Channels 
Input PDF L / Â (dB) L1 / Â (dB) L2 / Â (dB) 
Single sinusoid +13.7 +15.7 +6.1 
Two sinusoids +15.7 +18.0 +7.6 
Three sinusoids +16.7 +19.1 +8.0 
Gaussian +17.7 +20.7 +8.3 
Uniform +14.5 +16.6 +6.6 

 
While kurtosis might be an excellent candidate for 
distinguishing between input distributions, it is too 
computationally intensive for most real-time, high data-rate 
applications.  A very easily implemented alternative is the 
single-bin histogram given in Equation 12, 
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where ZBX (Zero Bin X[n]) is the fraction of x[n] that fall 
near zero, in a bin size that is a fraction b of the current 
estimated RMS power.  A simple Kalman estimator for 
ZBX can be formulated as shown in Equation 13, 
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where aZBX is the update-rate coefficient.  A large aZBX will 
allow the estimator to respond to changes in the input 
distribution more quickly, but will reduce the effective 
averaging period and therefore increase noise.  The 
appropriate choice is the largest value that still allows the 
system to accurately distinguish between input types.  
Simulated tests show that, qualitatively, a value on the order 
of 1/256 is sufficiently accurate without being excessively 
slow.  This particular value has the added benefit of 
removing the need for an integer or floating point multiplier 
in the controller hardware .  The remaining parameter, b, 
should be chosen to maximize the difference between 
expected ZBX values for potential input distributions.  
Figure 9 shows a plot of expected ZBX vs. b for the five 
input distributions under consideration.  In this case, a value 
of b = 1.0 is an excellent choice for distinguishing these five 
distributions because the spacing is adequate and because 
this threshold maintains a strictly increasing mapping of 
ZBX to the optimal L / Â coefficients for the distributions 
listed in Table 1 and Table 2. 
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Figure 9: Expected ZBX vs. b 

Since the mapping of ZBX to optimal gain is smooth when 
gains are expressed logarithmically, linear interpolation in 
log-space seems to be a safe choice for selecting gain 
coefficients for intermediate ZBX values.  (A statistical 
analysis to determine precisely optimal coefficients given a 
PDF of expected ZBX for each selected distribution is well 
beyond the scope of this paper.)  The best choice when ZBX 
falls outside the expected range is not as clear.  For the 
given ZBX estimator, extremely high ZBX values may 
indicate that the RMS estimate is erroneously high.  This 
could be caused by a sudden drop in input power if the ZBX 
estimator is faster than the RMS power estimator, and gain 
coefficients could be set very low in response to this 
indicator.  Similarly, for fast ZBX estimators, low ZBX may 
indicate a sudden increase in input signal power.  
Unfortunately, the high precision required to accurately 
distinguish between input distributions makes it likely that 
the RMS power estimator will be able to respond more 

quickly than the ZBX estimator, so extreme ZBX values 
may or may not reveal useful information. 

5. PROTOTYPE 

A prototype of the adaptive two-channel AGC system was 
constructed to demonstrate successful application of the 
theory.  The prototype contained an on-board Analog 
Devices AD9726 16-bit DAC (Digital-to-Analog Converter) 
for generating test waveforms, plus a pair of Analog 
Devices AD9480 8-bit ADCs capable of operating at 250 
MSPS.  High sampling rates were desired primarily as a 
demonstration of the theory’s frequency-independence.  
Data processing and control were implemented using a 
Xilinx Spartan 3 FPGA. 

A block diagram for the AGC system is shown in Figure 10.  
The main input is from the two ADCs, whose data clocks 
may have a significant but constant phase offset.  After 
synchronization to the primary clock domain, each sample 
from the high gain channel is checked for clipping.   If that 
output is saturated, the other channel is selected.  The 
selected channel’s sample is multiplied by that channel’s 
current full scale to obtain a single normalized 16-bit data 
stream, which is recorded to RAM to compare to the 
original test waveform.  Simultaneously, an observer tracks 
RMS power and ZBX using a pair of nonlinear Kalman 
estimators.  The ZBX coefficient is queried against a lookup 
table to determine the optimal gain coefficients for each 
channel, which are multiplied by the current estimated RMS 
power (Â) to obtain the optimal full scale for each channel 
(L1, L2).  Finally, these values are fed to a controller for the 
pair of variable gain amplifiers, which updates the gain 

Figure 10: Prototype block diagram 
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settings as often as possible, and keeps track of the current 
setting for proper normalization of input samples. 

 
Figure 11: Photo of prototype 

The current version of the prototype, shown in Figure 11, is 
functional.  A typical test input consists of a series of brief 
segments, where each segment contains the sum of one or 
more sinusoids of random frequency and phase.  In the 
simplest such test, the total power of each segment 
decreases exp onentially from 0 to –96dB.  An excerpt from 
this waveform is shown in Figure 12. 
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Figure 12: Subset of typical test input 

The test can be considered successful if it reasonably 
matches predicted results for SER vs. input power.  In an 
ADC with no automatic gain-control system, this curve 
should look like the “triangle” in Figure 3.  An ideal AGC 
will apply exactly the gain or attenuation needed to shift the 
effective input power to the optimal point on this curve.  
This will produce a flat region whose width is equal to the 
dynamic range of available VGA gain, and normal falloff 
beyond this region. 

Figure 13 shows the prototype test results for a fixed-gain 
dual-channel configuration like the one shown in Figure 2.  
Testing was performed at 56 MSPS due to limitations of the 
DAC-FPGA interface.  Performance is obviously below 
predicted results.  SER never exceeds about 15 dB, 
indicating a proportional noise source at about 20% of input 
power.  SER also begins falling off much sooner than 

expected, indicating a fixed-power noise source at about –50 
dB, independent of VGA gain.  The sources of this noise 
have not been identified. 
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Figure 13: Prototype results, fixed gain dual channel 

Test results for the adaptive multichannel system are shown 
in Figure 14.  The same noise sources are still present, but 
the test shows successful operation of the AGC system at 
variable gains less than 1.0.  The gain controller is therefore 
operating as expected, with successfully demonstrated 
operation of the adaptive two-channel AGC system.  
However, test results are not of adequate fidelity to confirm 
that the derived gain settings are optimal. 
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Figure 14: Prototype results, adaptive dual channel 

6. CONCLUSIONS 

Two-channel AGC systems offer significantly improved 
performance for signals with rapid changes in input signal 
power, by effectively allowing the simultaneous selection of 
both conservative and aggressive safety margins.  For all 
change rates sA > 3 dB, SER can be improved by at least 6 
dB.  While the same types of performance increase are 
provided by full multichannel AGC systems, the new 
topology offers almost as much improvement for a 
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significantly smaller increase in system complexity.  
Furthermore, the addition of simple but effective data-
characterizing algorithms allows both single- and two-
channel AGC systems to detect and adapt to changes in 
input signal PDF by applying the most appropriate pre-
derived set of gain coefficients. 

Furthermore, the functional prototype shows that the 
concept of a two-channel automatic gain control system can 
be implemented in hardware  with very high sampling rates. 

Special thanks go to The Aerospace Corporation’s 
Corporate University Affiliates Program for supporting this 
work. 
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