Digital Design & RISC-V Computer Architecture Textbook

Overview

- We've adapted our popular Digital **Design & Computer Architecture** textbook to the RISC-V **Architecture**
- **Prior Books:**
 - Digital Design and Computer *Architecture*, 2nd edition (2012)
 - Digital Design and Computer *Architecture: ARM® Edition* (2015)

Digital Design and Computer Architecture RISC-V Edition

Expected Publication:

Aug 15, 2021

Book Statistics & MOOC

Prior textbooks:

- Used internationally
- In US in 2020, used by 10,000 university students
- Available in 7 languages (English, Chinese, Japanese, Korean, Spanish, Russian, Portuguese)

Material may be taught as:

- 1-semester course (e.g., at HMC)
- 2-semester course (e.g., at UNLV)

Developed MOOC on EdX:

- Digital Design HarveyMuddX
- Computer Architecture HarveyMuddX

Digital Design and Computer ArchitectureRISC-V Edition

Sarah L Harris David Harris

Expected Publication:

Aug 15, 2021

Background

Why RISC-V Architecture?

- Open-source
- Base ISAs: RV32I/E, RV64I, RV128I
- Extensible
- Increasingly adopted commercially
- Supports a range of processors: embedded to highperformance
- Forward-thinking: for example, supporting wider data
- Offers commercial, inexpensive development boards

Architecture Comparisons

Compared to MIPS, RISC-V:

- Maintains similar instruction formats (i.e., R-type, I-type, etc.) and register/instruction names (i.e., addi, lw, s0, s1, a0, etc.)
- Gets rid of idiosyncrasies such as the branch delay slot, branch offsets relative to PC+4 instead of PC, and inconsistent register locations in instruction encodings
- Has more complex immediate encodings to minimize hardware
- Is commercially viable, whereas MIPS is seldom used in current products

Compared to ARM, RISC-V:

- Does not include conditional execution or complex indexing modes, which result in added hardware complexity
- Does offer **16-bit** (compressed) instructions like ARM's 16-bit Thumb instruction set, which are well-suited for low-power, embedded applications
- Does not require licensing whereas ARM's licensing can be prohibitive and costly

Chapters

Digital Design

Computer Architecture

- 1: Fundamentals: Numbers, Logic gates, Transistors, Power
- 2: Combinational Logic: SOP, POS, Boolean algebra, K-maps, timing
- 3: Sequential Logic: Latches, Flip-flops, FSMs, timing, parallelism, pipelining
- 4: Hardware Description Languages (HDLs): SystemVerilog & VHDL
 - 5: Digital Building Blocks: Arithmetic circuits, number systems, memory, logic arrays
- **6:** RISC-V Architecture: RV321, also RVF/D, RVC
- **7:** RISC-V Microarchitecture: Single-cycle, multicycle, & pipelined processors, performance
- 8: Memory systems: Caches, virtual memory
- **9:** I/O Systems: Memory-mapped I/O, serial interfaces, interrupts, motors, etc.
- Appendices A-C: Digital System Implementation, RISC-V Instruction Summary, C Programming

RISC-V Processors

- Single-Cycle
- Multicycle
- Pipelined
- Subset of instructions:
 - add, sub, and, or, slt, lw, sw, beq, jal,
 I-type ALU

Single-Cycle RISC-V Processor

Multicycle RISC-V Processor

Pipelined RISC-V Processor

Labs: Software & Hardware

Sofware	Link	
Quartus Lite / Web Edition	https://fpgasoftware.intel.com	
ModelSim Intel FPGA/Student Edition	https://fpgasoftware.intel.com/?prod uct=modelsim_ae#tabs-2	
Visual Studio Code (VS Code)	https://code.visualstudio.com/download	
PlatformIO	Extension within VS Code	

^{*} Software is free

Software	Link	Cost
DE2-115 Board	http://de2-115.terasic.com	\$309
RED-V RedBoard	https://www.sparkfun.com/products/15594	\$40

^{*} Hardware is optional, but recommended

Lab Hardware

RED-V RedBoard (contains SiFive's FE310-G002 SoC)

Intel-Altera DE2-115 board (contains Cyclone IVE FPGA)

Labs

#	Topic	Design Method
1	1-Bit Full Adder	Schematic
2	7-Segment Display	Schematic
3	Finite State Machine: Adventure Game	Schematic
4	Finite State Machine: Thunderbird Turn Signal	SystemVerilog
5	32-Bit ALU and Testbench	SystemVerilog
6	Matrix Multiplication	C Programming
7	Simon Says Game with LEDs & Switches	C Programming
8	Single-Cycle Processor	SystemVerilog
9	Multicycle Datapath	SystemVerilog
10	Multicycle Control	SystemVerilog

Digital Design & RISC-V Computer Architecture Textbook

WCAE '21

Sarah L. Harris, UNLV David Harris, HMC

Conclusions

- We have written a textbook and companion material that starts with digital design and builds up to designing several RISC-V processors.
- We have found that:
 - Teaching digital design and computer architecture together enhances understanding of both.
 - Teaching the RISC-V processor is both easy to understand and commercially relevant.
 - Teaching processors from **top to bottom** (from transistors up to the software program running on them) empowers students.

Thank You

- We'd like to acknowledge the contributions of:
 - Josh Brake
 - Numerous reviewers including Dani Chaver Martinez, Roy Kravitz, Angel Solis, Andrew Waterman, and others

Digital Design and Computer Architecture RISC-V Edition

Expected Publication:

Aug 15, 2021