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Chapter 1 :: Topics

* Background
* The Game Plan

* The Digital Abstraction
Number Systems

* Logic Gates

* Logic Levels

* CMOS Transistors

* Power Consumption
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* The Art of Managing Complexity
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Background

* Microprocessors have revolutionized our world
— Cell phones, Internet, rapid advances in medicine, etc.

* The semiconductor industry has grown from $21
billion in 1985 to $306 billion in 2016
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The Game Plan

* Purpose of course:
— Understand what’s under the hood of a computer

— Learn the principles of digital design

— Learn to systematically debug increasingly
complex designs

— Design and build a microprocessor
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The Art of Managing Complexity

e Abstraction

* Discipline

* The Three —y’s
— Hierarchy
— Modularity
— Regularity
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Abstraction

e What is abstraction?

— Hiding details when
they are not
important

* Electronic computer
abstraction
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e Intentionally restrict design choices
e Example: Digital discipline

— Discrete voltages instead of continuous

— Simpler to design than analog circuits — can build
more sophisticated systems

— Digital systems replacing analog predecessors:

e j.e., digital cameras, digital television, cell
phones, CDs
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The Three -y’s

e Hierarchy
e Modularity

e Regularity
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The Three -y’s

e Hierarchy

— A system divided into modules and submodules

|

e Modularity

— Having well-defined functions and interfaces

e Regularity

— Encouraging uniformity, so modules can be easily reused
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Example: The Flintlock Rifle

e Hierarchy

— Three main
modules: lock,
stock, and barrel

— Submodules of
lock: hammer, flint,
frizzen, etc.
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Example: The Flintlock Rifle

e Modularity

— Function of stock:
mount barrel and
lock

— Interface of stock:
length and location
of mounting pins

Hammer &

e Regularity

— Interchangeable
parts

Trigger
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The Digital Abstraction

* Most physical variables are continuous

— Voltage on a wire

— Frequency of an oscillation
— Position of a mass

* Digital abstraction considers discrete
subset of values

FROM ZERO TO ONE

| -
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <12> ELSEVIER



FROM ZERO TO ONE

Designed by Charles
Babbage from 1834 —
1871

Considered to be the
first digital computer

Built from mechanical
gears, where each gear
represented a discrete
value (0-9)

Babbage died before it
was finished
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The Analytical Engine
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Digital Discipline: Binary Values

e Digital abstraction considers discrete subset of
values
 Two discrete values:
— 1'sand O’s
— 1=TRUE = HIGH
— 0 = FALSE = LOW
* How to represent 1 and O:
— voltage levels, rotating gears, fluid levels, etc.

e Digital circuits use voltage levels to represent 1
and O

e Bit: Binary digit
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Why Digital Systems?

* Easier to design

e Fast

* Can overcome noise
* Error detection/correction
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George Boole, 1815-1864

e Born to working class parents

e Taught himself mathematics
and joined the faculty of
Queen’s College in Ireland

Wrote An Investigation of the
Laws of Thought (1854)

e |ntroduced binary variables

e |ntroduced the three
fundamental logic operations: [iisgies
AND, OR, and NOT
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George Boole, 1815-1864

e Born to working class parents

e Taught himself mathematics
and joined the faculty of
Queen’s College in Ireland

Wrote An Investigation of the
Laws of Thought (1854)

e |[ntroduced binary variables
e |[ntroduced the three

AND, OR, and NOT

FROM ZERO TO ONE

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1<17>

Scanned at the American

fundamental logic operations: [iisgies

ELSEVIER



Number Systems

e Decimal
— Base 10

* Binary

— Base 2

e Hexadecimal
— Base 16
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Review: Decimal Numbers

(e Base 10 (our everyday number system)
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Review: Decimal Numbers

e Basel r everyday number system)

uwnjoo s,000. @
uwin[o9 s, | C

uwn|oo s,001 »-s
uwn(oo s,0}

537410=5><’IO3+3><102+7><1O1+4><1OO

five three seven four
T thousands hundreds tens ones

Base 10
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Decimal and Binary Numbers

s
) e Base 10 (our everyday number system)
O

-~ §§§§

@ 5374,,=5x10%+3 x 102+ 7 x 10" + 4 x 10°
m: thoS;/:nds hut:(;?eeds Stz\:wesn ;zlejrs
w} e Base 2: Binary numbers

@ 1101, =

2 t

M" Base 2
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Decimal and Binary Numbers

e Base 10 (our everyday number system)

uwn(oo s,0}
uwn|oo s,|

S

Qi 537410=5><’IO3+3><102+7><1O1+4><’IOO

uwn|oo s,0001
uwn|oo s,001

five three seven four
thousands hundreds tens ones

w: e Base 2: Binary numbers

>
@ 1,=1x28+1x22+0x2"+1x20=13
i one one no one
m. T eight four two one
L‘ Base 2 .
i:" i
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?El

~ e 20=1 e 28 =256
Q o D1 = e )9 =
o *2'=2 29 =512
b= ¢ 22=4 e 210=1024
QO «23-=8 o 211=2048
E ¢ 24=16 e 212 = 4096
N e 25-32 ¢ 2138192
Ef ¢ 26=64 e 214=16384
8 e 27=128 e 215 =32768
L * Handy to memorize up to 2°
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Binary to Decimal Conversion

e Binary to decimal conversion:
— Convert 10011, to decimal
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Binary to Decimal Conversion

(e Binary to decimal conversion:

— Convert 10011, to decimal
— 16x1+8X0+4x0+2x1 + 1x1 =19,
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Decimal to Binary Conversion

|

e Two methods:

— Method 1: Find the largest power of 2 that fits,
subtract and repeat. (Recommended method)

— Method 2: Repeatedly divide by 2, remainder
goes in next most significant bit

FROM ZERO TO ONE
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Decimal to Binary Conversion

Method 1: Find the largest power of 2 that fits, subtract and repeat.
53

Method 2: Repeatedly divide by 2, remainder goes in next most significant
bit.

E o
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m Decimal to Binary Conversion

<

Q‘ Method 1: Find the largest power of 2 that fits, subtract and repeat.

53, 32x1
D‘ 53-32=21 16x1
— 21-16= 5 ax1
5-4=1 1x1
Qf =110101,
m. Method 2: Repeatedly divide by 2, remainder goes in next most significant
WL bie
N 53, , = 53/2 = 26 R1
Ew 26/2 =13 R0
: 13/2=6 R1

Dl 6/2 =3 RO
m: 3/2 =1 R1

L, 1/2 =0 R1 = 110101,
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Number Conversion

NE

0,

e Binary to decimal conversion:
@ — Convert 11101, to decimal

@

RO T

. ° Decimal to binary conversion:
N — Convert 47,, to binary

M

Q

FR

L ..E B
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Number Conversion

|

e Binary to decimal conversion:
— Convert 11101, to decimal
— 16%1 + 8x1 +4x1+ 2x0+ 1x1 =29,

e Decimal to binary conversion:

— Convert 47,, to binary
— 32x1+16X0 +8x1+4x1+2x1+1x1=101111,

FROM ZERO TO ONE
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Binary Values and Range

* N-digit decimal number
— How many values?
— Range?
— Example: 3-digit decimal number:

* N-bit binary number
— How many values?
— Range:
— Example: 3-digit binary number:
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Binary Values and Range

* N-digit decimal number
— How many values? 10"
— Range? [0, 10" -1]
— Example: 3-digit decimal number:

e 103 = 1000 possible values
e Range: [0, 999]

* N-bit binary number
— How many values? 2V
— Range: [0, 2"V - 1]
— Example: 3-digit binary number:
» 23 = 8 possible values
* Range: [0, 7] = [000, to 111,]

FROM ZERO TO ONE
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Binary Numbers

Ar{ay-1,ay-2, - A1, a0}

N-1
A= 2 aiZi
(=0

Example:

1101, =1x23+1x22+0x21+1x2°
=8 + 4 + 0 + 1
=13
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Hexadecimal Numbers

W
2' Hex Digit Decimal Equivalent Binary Equivalent
Qo T
1 1
Q( 2 2
L. 3 3
4 4
o [
m' 6 6
Mu' 7 7
’ 8 8
N ; ;
' A 10
E. B 1
Q‘ C 12
| D 13
Qo ] a
L, ; r
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Hexadecimal Numbers

Ly
2‘ Hex Digit Decimal Equivalent Binary Equivalent
®1 0 0 0000
1 1 0001
@( 2 2 0010
L, 3 3 0011
4 4 0100
Q‘ 5 5 0101
m 6 6 0110
Mu 7 7 0111
’ 8 8 1000
N‘ 9 9 1001
\ A 10 1010
E’ B 11 1011
Q{ C 12 1100
| D 13 1101
m E 14 1110
M F 15 1111
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Hexadecimal Numbers

e Base 16
e Shorthand for binary
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Hexadecimal to Binary Conversion

|

e Hexadecimal to binary conversion:
— Convert 4AF,, (also written 0x4AF) to binary

e Hexadecimal to decimal conversion:

— Convert 4AF,, to decimal
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Hexadecimal to Binary Conversion

e Hexadecimal to binary conversion:

— Convert 4AF,, (also written Ox4AF) to binary
— 0100 1010 1111,

e Hexadecimal to decimal conversion:
— Convert 4AF,; to decimal
—4x162+Ax16! + Fx16°
-4 x16%+10 x 16! + 15 x 16°=1199,,
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Bits, Bytes, Nibbles...

|

. Bits 10010110

_—

<

Q

QC - mbimostsanfanmtbn  mew e
L’ — Isb: least significant bit bit bit

o e

Oz ° Bytes & Nibbles 1()01()1 10

W-“! nlbble

S * Bytes 101000101110010
E' — MSB: most-sig-n.ificant byte | — Qq' — ]T
8{ — LSB: least significant byte Siggijit(;ant SIgEi;,citceant
e
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* Bits
— msb: most significant bit
— lIsb: least significant bit

* Bytes & Nibbles

* Bytes
— MSB: most significant byte
— LSB: least significant byte

— Each hex digit represents
a nibble (4 bits)

FROM ZERO TO ONE
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Bits, Bytes, Nibbles...

10010110

most least
significant significant
bit bit
byte

10010110

nlbble

CEBF9AD7

most least
significant significant
byte byte
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Large Powers of Two

|

e 210=1kilo =thousand (1024)

e 220=1 mega = million (1,048,576)

o 239=1giga = billion (1,073,741,824)
290=1tera =trillion (1,099,511,627,776)
e 2°9=1peta =10

2°0=1exa =10

FROM ZERO TO ONE
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Large Powers of Two

o 210=1 kilo (kibi) =103 (1024)

e 220 =1 mega (mebi)= 10° (1,048,576)

e 230 =1 giga (gibi) = 10°(1,073,741,824)
o 290 =1 tera (tebi) =10

o 2°0=1 peta (pebi) =10

o 290 =1 exa (exbi) =10%
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Large Powers of Two: Abbreviations

e 210=1 kilo ~ 1000 (1024)
kibibyte = 1 Ki
for example: 1 KiB =1024 Bytes
1 Kib = 1024 bits
e 220=1mega =1 million (1,048,576)
mebibyte= 1 Mi
for example: 1 MiB, 1 Mib (1 megabit)
e 230=1giga =1 billion(1,073,741,824)
gibibyte = 1 Gi
for example: 1GiB, 1 Gib
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Estimating Powers of Two

(

* What is the approximate value of 224?

—

* Approximately how many values can a 32-bit
variable represent?
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Estimating Powers of Two

(

* What is the approximate value of 224?
2% x 220 = 16 million

—

* Approximately how many values can a 32-bit
variable represent?

22 x 230 = 4 billion

—_— = p—e i —

First factor out the largest 21%%, Then estimate.

—
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e Decimal

3734
+ 5168

e Binary

1011
+ 0011
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e Decimal

11 < carries
3734
+ 5168

3902

* Binary 11 <carries

1011
+ 0011
1110
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m Binary Addition Examples

(

O« Add the following
@) 4-bit binary
~

numbers
o
<

Wy
N« Add the following

Ef 4-bit binary
Qi numbers
<
Ll
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1001
+ 0101
1011
+ 0110
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Binary Addition Examples

e Add the following
4-bit binary
numbers

e Add the following
4-bit binary
numbers

1
1001

+ 0101
1110

111
1011

+ 0110
10001

Overflow!
PN S Le
A ’:m;.‘,’
R

- £ AN
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Binary Addition: Number of Bits

e The addition of two 4-bit 1
values (inputs) gives a 4-bit 1001
result (output). + 0101

e Any additional bits on the 1110
left are ignored
(overflow!) 111

e Generally, addition of two n- 1011
bit numbers gives an n-bit + 0110
result. 10001

Overflow!

FROM ZERO TO ONE
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e Digital systems operate on a fixed number of
bits

e Overflow: when result is too big to fit in the
available number of bits

e See previous example of 11+ 6

111
1011

+ 0110
10001

Overflow!

FROM ZERO TO ONE
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. e Sign/Magnitude Numbers
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e Two’'s Complement Numbers
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Signed Binary Numbers
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Sign/Magnitude Numbers

1 sign bit, N-1 magnitude bits

Sign bit is the most significant (left-most) bit
— Positive number: sign bit=0

— Negative number: sign bit =1

Example, 4-bit sign/mag representations of + 6:
+6 =
-6 =

Range of an N-bit sign/magnitude number:

N



Sign/Magnitude Numbers

|

e 1 sign bit, N-1 magnitude bits

e Sign bit is the most significant (left-most) bit

— Positive number: sign bit=0
— Negative number: sign bit =1

e Example, 4-bit sign/mag representations of + 6:
+6 =0110
-6=1110

e Range of an N-bit sign/magnitude number:
[_(2N-1_1)’ 2N-1_1]

FROM ZERO TO ONE
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e 1 sign bit, N-1 magnitude bits

— Positive number: sign bit=0
— Negative number: sign bit =1

+6 = 0110
-6=1110

[-(2M-1), 2M-1]

FROM ZERO TO ONE
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Sign/Magnitude Numbers

e Sign bit is the most significant (left-most) bit

A:{ay_q,ay_»,

= (-1

o~

. aq,ap)

e Example, 4-bit sign/mag representations of

e Range of an N-bit sign/magnitude number:

Chapter 1 <57>
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Unsigned Binary Numbers

A: {aN_l, aAn—>, ... Aq, ao}

N-1
A= 2 ;2
1=0

Example:

1101, =1x23+1x22+0x21+1x2°
=8 + 4 + 0 + 1
=13
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Sign/Magnitude Numbers

A: {aN_l, aAn—>, ... Aq, ao}

‘ N-2
. A= (—1)@N—1Z ;2!
i=0
Example:
1101, =(-1)'x (1x22+0x21+1x29
= -1 x (4 + 0 + 1)

= -5
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Sign/Magnitude Numbers

|

_ * Problems:
‘ — Addition doesn’t work, for example -6 + 6:

| 1110

f +0110

{ 10100 (wrong!)
|

| — Two representations of 0 (+ 0):
; 1000
| 0000
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Two’s Complement Numbers

(

e Don’t have same problems as
sign/magnitude numbers:

— Addition works

— Single representation for 0

—
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Two’s Complement Numbers

(

—

e Most significant bit (msb) has value of -2V

e For example, a 4-bit 2’s complement number:

—
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Two’s Complement Numbers

W
<
Qo
2
8 20 22 2t 2
N
=
2
™

|

e Most significant bit (msb) has value of -2V

e For example, a 4-bit 2’s complement number:

[N
WY
| —

Value=-8+2+1=-5

(We’ll show another way to find this value in a moment.)
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Two’s Complement Numbers

e msb has value of -2N-1

(1 = negative, 0 = positive)

FROM ZERO TO ONE

e Most positive 4-bit number:
e Most negative 4-bit number:
e The most significant bit still indicates the sign

e Range of an N-bit two’s complement number:

© Digital Design and Computer Architecture, 2™ Edition, 2012
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Two’s Complement Numbers

e msb has value of -2V-1
e Most positive 4-bit number: 0111
e Most negative 4-bit number: 1000

e The most significant bit still indicates the sign
(1 = negative, 0 = positive)

e Range of an N-bit two’s complement number:
[-(2M), 2N2-1]

FROM ZERO TO ONE

o ..:.E B
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <65> ELSEVIER



Unsigned Binary Numbers

A: {aN_l, aAn—>, ... Aq, ao}

N-1
A= 2 ;2
1=0

Example:

1101, =1x23+1x22+0x21+1x2°
=8 + 4 + 0 + 1
=13
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Two’s Complement Numbers

A: {aN_l, aAn—>, ... Aq, ao}

‘ N-2
' A — aN_l(_ZN_l) ~+ Z aizi
=0
Example:
1101, =1x(-23)+1x224+40x21+1x2°
=-8 +4 + 0 + 1

=3
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“Taking the Two’s Complement”

* Flips the sign of a two’s complement

@( number.
e

o It makes a positive number negative.

Q‘ o It makes a negative number positive.
El e Method:
N| 1. Invert the bits

§: 2. Add1
S
Y T
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“Taking the Two’s Complement”

(

—

.o Flips the sign of a two’s complement
‘ number.
= e Method:
¢ 1. Invert the bits
2. Add1

 Example: Flip the sign of 3,,=0011,
1. 1100
2. + 1
1101 = -3,

W
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=
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Two’s Complement Examples

. Take the two’s complement of 6,, = 0110,
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Two’s Complement Examples

( Take the two’s complement of 6,, = 0110,
1. 1001
2. + 1

1010, = -6,

- - - c— B R — — - ee—

e
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Two’s Complement Examples

What is the decimal value of the two’s
complement number 1001,?
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Two’s Complement Examples

What is the decimal value of the two’s
complement number 1001,?

e We know it’s negative (msb = 1)

e Figure out magnitude by flipping the sign (i.e., “taking
the two’s complement”)

1. 0110
2. +—1-
0111,=7,,
e So, we know it’s a negative number with magnitude 7.
e Thus, 1001, =-7,,

Taking the two’s complement is the second (and recommended)
way of figuring out the value of a negative two’s complement
number.

FROM ZERO TO ONE
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fl Two's Complement Addition

Add 6 + (-6) using two’s complement
numbers

0110
+ 1010

Add -2 + 3 using two’s complement numbers

1110
+ 0011

Wy
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W
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Two’s Complement Addition

|

e Add 6 + (-6) using two’s complement
numbers 111

0110
+ 1010
10000

e Add -2 + 3 using two’s complement numbers

111
1110

+ 0011
10001
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Increasing Bit Width

e Extend number from N to M bits (M > N) :
— Sign-extension

— Zero-extension
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Sign-Extension

|

e Sign bit copied to msb’s
e Number value is same

e Example 1:
— 4-bit representation of 3 = 0011
— 8-bit sign-extended value: 00000011

e Example 2:
— 4-bit representation of -5 = 1011
— 8-bit sign-extended value: 11111011

Wy
<
Qo
2
>
N
E.,
&
Ty

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <77> ESEIER



ero-Extension

|

e Zeros copied to msb’s
e Value changes for negative numbers

e Example 1:
— 4-bit value = 0011, =3,
— 8-bit zero-extended value: 00000011 = 3,
e Example 2:
— 4-bit value = 1011 =-5,,
— 8-bit zero-extended value: 00001011 = 11,

Wy
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>
N
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Ty
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Number System Comparison

Number System Range

Unsigned [0, 2N-1]
Sign/Magnitude [-(2N-1-1), 2N-1-1]
Two’s Complement [-2N-1 2N-1.1]

For example, 4-bit representation:

r-—r. 1 1 1 1 1 T T T T T T T T T T T T T T T T 1
84 -r 6 5 4 3 -2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Unsigned
1000 1001 1010 1011 1100 1101 1110 1111 0000 0001 0010 0011 0100 0101 0110 0111 Two's Complement
0000 . .
1111 1110 1101 1100 1011 1010 1001 0001 0010 0011 0100 0101 0110 0111 Sign/Magnitude
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George Boole, 1815-1864

e Born to working class parents

e Taught himself mathematics
and joined the faculty of
Queen’s College in Ireland

Wrote An Investigation of the
Laws of Thought (1854)

e |ntroduced binary variables
e |ntroduced the three

AND, OR, and NOT

FROM ZERO TO ONE
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Logic Gates

* Perform logic functions:
— inversion (NOT), AND, OR, NAND, NOR, etc.

* Single-input:

— NOT gate, buffer
* Two-input:

— AND, OR, XOR, NAND, NOR, XNOR
* Multiple-input

FROM ZERO TO ONE
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Single-Input Logic Gates

NOT BUF
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Single-Input Logic Gates

NOT BUF

Y=A Y=A

AlY AlY
0 | 1 0 [ 0
1 0 1 1
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Two-Input Logic Gates

AND OR
A A
SIS
Y=AB Y=A+B
A BlY A By
00 0 0
0 1 0 1
L0 1 0
11 L1

5
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Two-lnput Logic Gates

AND OR
A— A
Y =AB Y=A+8B
A B lY A B Y
0 0 0 0 0 0
0 1 0 0 1 1
1 010 1 0|1
1 1 1 1 1 1
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© Digital Design and Computer Architecture, 2™ Edition, 2012

XOR NAND

‘ A A —
B Y B Y

(
‘ Y=A®B Y =AB
. A BlY A BlY
' 0 0 0 0
| 0o 1 0o 1
I 1 0 1 0

1 1 1 1
(

More Two-Input Logic Gates

NOR XNOR

A

3l v B
Y=A+B Y=A® B
A BlY A BlY
0 0 0 0
0 1 0 1
1 0 1 0
1 1 1 1

Chapter 1 <86>
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More Two-Input Logic Gates

C 4o s 41 4w

o P ol
O I
R o ol
O O O rIK
= o o R

W
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=
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Multiple-Input Logic Gates

N s e ReNe] b
R OoORr or or ol
oo NeNe] BS
PR, OO ool
R oOoORr oror ol

W
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s
o XOR3
A
o &5 >
6' Y = AGBHC
1
: A B ClY
Ei 0 0 0[O0
0 0 1|1
N 0 1 0|1
o 1 1o
E: 1 0 o |1
n 1 0 1o
o 1 1 0o
o 1 1 1|1
e

© Digital Design and Computer Architecture, 2™ Edition, 2012

e Multi-input XOR: Odd
parity —the outputis 1
when an odd number of
inputs is 1.

Chapter 1 <89>
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Logic Levels

* Discrete voltages represent 1 and 0

* For example:
— 0 = ground (GND) or 0 volts
— 1=V ,or5volts

e What about 4.99 volts? IsthataOoral?
e What about 3.2 volts?

Wy
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>
N
3
S
W
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Logic Levels

* Range of voltages for 1 and O

e Different ranges for inputs and outputs to
allow for noise

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <91>
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What is Noise?

o
<

0700

M ZER

FRO
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* Anything that degrades the signal

— E.g., resistance, power supply noise, coupling
to neighboring wires, etc.

 Example: a gate (driver) outputs 5V but,
because of resistance in a long wire,
receiver gets 4.5V

Noise
Driver \ Receiver

5V 4.5 V[
.-'r

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <93> EEVI
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The Static Discipline

* With logically valid inputs, every circuit
element must produce logically valid
outputs

* Use limited ranges of voltages to
represent discrete values

N



Logic Levels

|

GND

2‘ Driver Receiver
O — >
Q‘, Output Characteristics Input Characteristics
DD

Q‘ Output Range y [ :_nogulf RH;?\he

| Vonu M, Put Rang
m Forbidden | Viy
m! Zone v,
N

. Vool Logic Low
| Logic Low i Input Range
Output Range y [t
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Noise Margins

|

2. Driver Receiver
Q‘ 4{ %
Q‘, Output Characteristics Input Characteristics
h DD
| Logic High i 3 o
Qr overegr
| vy, ¢NMH H p g
m Forbidden | Vi
M-II Zone V,
N
- Voo| oo = il | Logic Low
| Logic Low i :i{ | Input Range
Output Range y i

NM, =V, -V,

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <96>
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DC Transfer Characteristics

|deal Buffer: Real Buffer:
v(Y) A{>Y v(Y)

W
<
O
=
&
N
S
&
w

1 v
VOH VDD N VDD N
i OH
I
(
Unity Gain
I Points
Vo Slope = 1
l
l VOL 0 \ V(A) 0 \ V(A)
: Von/ 2 Voo Vi Vi Voo
‘ Vi, Vy
(
'
|

NM,=NM, =V, j2 | |NM,, NM, < V,,/2
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DC Transfer Characteristics
AD—Y

Vi . .
™ Output Characteristics Input Characteristics
VDD -1 e T e e R e e e e e e e e DD
VOH V ..............................
OH
Zone v,
Unity Gain
Points V4
Vor Slope = 1 L —
. v T
VIL VIH VDD GND
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Vpp Scaling

* In 1970’s and 1980’s, V=5V
* V,p has dropped

— Avoid frying tiny transistors

— Save power

* 33V,25V,1.8V,1.5V,1.2V,1.0V, .. g

* Be careful connecting chips with &~
different supply voltages R -1
Chips operate because they contain magic

smoke.

Proof: if the magic smoke is let out, the chip
stops working




W
<
O
<
>
N
S
=
W

—_— _— e c— - A W, — — o mm emm—

Logic Family Examples

Logic Family V,, Vi Vi Vor Vou
TTL 5(4.75-5.25) |0.8 20 104 (24
CMOS 5(4.5-6) 1.35 |3.15 |0.33 [3.84
LVTTL 3.3(3-3.6) 0.8 20 (04 |24
LVCMOS 3.3(3-3.6) 0.9 1.8 1036 |2.7

© Digital Design and Computer Architecture, 2™ Edition, 2012
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Transistors

e Logic gates built from transistors
e 3-ported voltage-controlled switch

— 2 ports connected depending on voltage of 3rd
— d and s are connected (ON) when gis 1

g=0 g=1
d d d
gﬁi i\ OFF i ON
S S S

FROM ZERO TO ONE

|
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Robert Noyce, 1927-1990

e Nicknamed “Mayor of Silicon
Valley”

e Cofounded Fairchild
Semiconductor in 1957

Cofounded Intel in 1968

e Co-invented the integrated
circuit

FROM ZERO TO ONE
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Silicon

e Transistors built from silicon, a semiconductor
e Pure silicon is a poor conductor (no free charges)

e Doped silicon is a good conductor (free charges)
— n-type (free negative charges, electrons)
— p-type (free positive charges, holes)

Free electron Free hole
Si—Si—Si —Si—Si_LSi— — Si—Sip---Si—
Si Si Si Si —As—S;i Si B Si
Si Si Si Si Si Si Si Si Si

FROM ZERO TO ONE

Silicon Lattice n-Type p-Type
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MOS Transistors

e Metal oxide silicon (MOS) transistors:

— Polysilicon (used to be metal) gate
— Oxide (silicon dioxide) insulator
— Doped silicon

source gate drain

O Polysilicon
n n [

.

gate

1L

source I L drain

nMOS

FROM ZERO TO ONE
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Transistors: nMOS

Gate=0 Gate = 1

OFF (no connection ON (channel between
between source and source and drain)

drain)
source drain source gate drain
O w0 O Voo O
onp |
.
n -
G
G
¢GND

FROM ZERO TO ONE
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Transistors: pMOS

Ly
<
Qo

* pMQOS transistor is opposite
— ON when Gate=0
— OFF when Gate =1

.

10

source gate drain

Polysilicon O (ﬁ O

SiOz\\

T

A

M ZERO

0,

gate

e

source I L drain

FR
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Transistor Function

nMOS g %E

Nl pMOS

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 1 <107>
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Transistor Function

NE

0,

| * nMOS: pass good O’s, so connect source to
D( GND
|  pMOS: pass good 1’s, so connect source to

Q Voo —

Ti

m: pMOS
M-ll pull-up
network

Nl inputs | - /
E: —— output

1 4 I
0‘ AMOS

; pull-down
ml network
w L

v
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CMOS Gates: NOT Gate

Y

N1
Aly Q7
0 1
- GND

— —_— e — - e — e e e e

L et?

W
<
O
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>
N
S
=
W

L e .E B
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0 ON

OFF

CMOS Gates: NOT Gate

1 OFF

ON

— - e m— —_— = =

W
<
O
<
>
N
S
=
W
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\ CMOS Gates: NAND Gate

P1

+—Y

v
=
]

>

| g Y=AB A N1
A Bly -

O " o1 B N2

m, 0 1|1 g7

) S

N

EE 00

0o 01

& o

Ll 11
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CMOS Gates: NAND Gate

NAND
A_ — ]
Al ~[P2-[P1
Y =AB } Y
B A N1
A B|Y -

0 0 | 1 B N2
0

Lo | =

1 1 0

A Pl1 P2 N1 N2

B Y
0[ON |ON |OFF |OFF |1
1 1
0 1

ON |OFF |OFF |ON
OFF |[ON |ON |OFF
1{1|OFF [OFF |[ON |ON [O
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CMOS Gate Structure

-

~

\
pMOS
pull-up
network
inputs | - J

+ output

4 )

nMOS
pull-down
network

N J

v

W
<
O
<
>
N
S
=
W

- - - c— B R — — - ee—
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NOR Gate

How do you build a three-input NOR gate?

5
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NOR3 Gate

s 4

| 7

Sl
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Other CMOS Gates

How do you build a two-input AND gate?

ALt
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SIS

e CMOS is better at

W
<
O
<
>
N
S
=
W

1

| % Epz —q Jpl — _p3 building inverting

| 3 Ty gates (i.e., NAND,

| A ]Nl N3 NOR, etc.)

1 B N2 g7 * They require fewer
| % transistors
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Transmission Gates

* nMOS pass 1’s poorly

* pMOS pass 0’s poorly

e Transmission gate is a better switch A
— passes both 0 and 1 well

e When EN =1, the switch is ON:
— EN=0and A is connected to B

e When EN =0, the switch is OFF:
— A is not connected to B

FROM ZERO TO ONE
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Pseudo-nMOS Gates

* Replace pull-up network with weak pMOS
transistor that is always on

 pMOS transistor: pulls output HIGH only
when nMOS network not pulling it LOW

FROM ZERO TO ONE

-
Y
: 4 N
Inputs MOS
/ pull-down
network
_ €7 J
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Pseudo-nMOS Example

v
A%EBﬁEC%EDAE

N

Y

Wy
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N
=
S
x
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Gordon Moore, 1929-

e Cofounded Intel in
1968 with Robert
Noyce.

e Moore’s Law: number
of transistors on a
computer chip
doubles every year
(observed in 1965)

e Since 1975, transistor
counts have doubled
every two years.

© Digital Design and Computer Architecture, 2™ Edition, 2012
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Moore’s Law

1,000,000,000 1
Core2D
Penfium M uch
100000000 4 - oo &
Pentium :1._"
Pentium Il _—
10000000 4+ o _.__._._._.__rEnmm .
F"entumF"ru_.,--"’i L .
E . - Pentium Il
o Intel486 Pentium @
1] imooo00 Ao e
2 Intel326 @ —
50285
E w00 T .
BOsE@—
10,000 -----EEEE----.-,H-:': ----------------------------------------------------
—@ 3020
@
4004 @
1,000 4 -
T i i I I L i L
1670 1875 1820 1885 1880 1905 2000 2005
Year

* “If the automobile had followed the same development cycle as the
computer, a Rolls-Royce would today cost 5100, get one million
miles to the gallon, and explode once a year...”

— Robert Cringley

T

© Digital Design and Computer Architecture, 2" Edition, 2012 Chapter 1 <122> B SEVIER



Power Consumption

* Power = Energy consumed per unit time

— Dynamic power consumption

— Static power consumption

W
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>
N
S
=
W
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Dynamic Power Consumption

* Power to charge transistor gate
capacitances

— Energy required to charge a capacitance, C, to
Vpp is CVpp2

— Circuit running at frequency f: transistors
switch (from 1 to O or vice versa) at that
frequency

— Capacitor is charged f/2 times per second
(discharging from 1 to O is free)

* Dynamic power consumption:

FROM ZERO TO ONE

= % C VDDZ f ~ 2
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FROM ZERO TO ONE
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Static Power Consumption

* Power consumed when no gates are
switching

* Caused by the quiescent supply current, |,
(also called the leakage current)

* Static power consumption:

P:atic = IooVop

A i




Total Power Consumption

* Dynamic power + static power

P total = T static + denamic

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <126> ESVIE
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Power Consumption Example

e Estimate the power consumption of a

wireless handheld computer
—V,,=1.2V

— C=20nF

— f=1GHz

— Ipp =20 mA

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <127>
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Bl Power Consumption Example

e Estimate the power consumption of a

wireless handheld computer
—V,,=1.2V

— C=20nF

— f=1GHz

— Ipp =20 mA

P =Y%CV .5 f + 1,5V,
=%(20 nF)(1.2 V)?(1 GHz) +
(20 mA)(1.2 V)
=(14.4+0.024) W= 14.4 W

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 1 <128> EE
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