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11.1   

 

Introduction

 

Chip functions generally can be divided into the following categories:

 

�

 

Datapath operators

 

�

 

Memory elements

 

�

 

Control structures

 

�

 

Special-purpose cells

 

○

 

  I/O

 

○

 

  Power distribution

 

○

 

  Clock generation and distribution

 

○

 

  Analog and RF

CMOS system design consists of partitioning the system into subsystems of the types
listed above. Many options exist that make trade-offs between speed, density, programma-
bility, ease of design, and other variables. This chapter addresses design options for com-
mon datapath operators. The next chapter addresses arrays, especially those used for
memory. Control structures are most commonly coded in a hardware description language
and synthesized. Special-purpose subsystems are considered in Chapter 13.

As introduced in Chapter 1, datapath operators benefit from the structured design
principles of hierarchy, regularity, modularity, and locality. They may use 

 

N

 

 identical cir-
cuits to process 

 

N

 

-bit data. Related data operators are placed physically adjacent to each
other to reduce wire length and delay. Generally, data is arranged to flow in one direction,
while control signals are introduced in a direction orthogonal to the dataflow. 

Common datapath operators considered in this chapter include adders, one/zero
detectors, comparators, counters, Boolean logic units, error-correcting code blocks,
shifters, and multipliers.

 

11.2   

 

Addition/Subtraction

 

“Multitudes of contrivances were designed, and almost endless drawings made, for the 
purpose of economizing the time and simplifying the mechanism of carriage.”

 

—Charles Babbage, on Difference Engine No. 1, 1864 [Morrison61]
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Addition forms the basis for many processing operations, from ALUs to address genera-
tion to multiplication to filtering. As a result, adder circuits that add two binary numbers
are of great interest to digital system designers. An extensive, almost endless, assortment
of adder architectures serve different speed/power/area requirements. This section begins
with half adders and full adders for single-bit addition. It then considers a plethora of
carry-propagate adders (CPAs) for the addition of multibit words. Finally, related struc-
tures such as subtracters and multiple-input adders are discussed. 

 

11.2.1  Single-Bit Addition

 

The 

 

half adder 

 

of Figure 11.1(a) adds two single-bit inputs, 

 

A

 

 and 

 

B

 

. The result is 0, 1, or
2, so two bits are required to represent the value; they are called the sum 

 

S

 

 and carry-out

 

C

 

out

 

. The carry-out is equivalent to a carry-in to the next more significant column of a
multibit adder, so it can be described as having double the 

 

weight

 

 of the other bits. If mul-
tiple adders are to be cascaded, each must be able to receive the carry-in. Such a 

 

full adder

 

as shown in Figure 11.1(b) has a third input called 

 

C

 

 or 

 

C

 

in

 

. 
The truth tables for the half adder and full adder are given in Tables 11.1 and 11.2.

For a full adder, it is sometimes useful to define 

 

Generate

 

 (

 

G

 

), 

 

Propagate

 

 (

 

P

 

), and 

 

Kill

 

 (

 

K

 

)
signals. The adder generates a carry when 

 

C

 

out

 

 is true independent of 

 

C

 

in

 

, so 

 

G 

 

=

 

 A · B

 

.
The adder kills a carry when 

 

C

 

out

 

 is false independent of 

 

C

 

in

 

, so 

 

K 

 

=

 

 A · B 

 

=

 

 A 

 

+

 

 B

 

. The
adder propagates a carry; i.e., it produces a carry-out if and only if it receives a carry-in,
when exactly one input is true: 

 

P 

 

=

 

 A 

 

⊕

 

 B

 

. 

From the truth table, the half adder logic is

 

 (11.1)

 

TABLE 11.1

 

  Truth table for half adder

 

A B C

 

out

 

S

 

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

 

TABLE 11.2

 

  Truth table for full adder

 

A B C G P K C

 

out

 

S

 

0 0 0 0 0 1 0 0
1 0 1

0 1 0 0 1 0 0 1
1 1 0

1 0 0 0 1 0 0 1
1 1 0

1 1 0 1 0 0 1 0
1 1 1

S A B
C A B

= ⊕
=out ·

A B

C

S

Cout

A B

S

Cout

(a) (b)

FIGURE 11.1  
Half and full adders
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and the full adder logic is

 

 (11.2)

 

The most straightforward approach to designing an adder is with logic gates. Figure
11.2 shows a half adder. Figure 11.3 shows a full adder at the gate (a) and transistor (b)
levels. The carry gate is also called a 

 

majority

 

 gate because it produces a 1 if at least two of
the three inputs are 1. Full adders are used most often, so they will receive the attention of
the remainder of this section.

S ABC ABC ABC ABC

A B C P C

C AB AC BC

AB C

= + + +
= ⊕( ) ⊕ = ⊕

= + +

= +
out

AA B

AB C A B

A B C

+( )
= + +( )
= MAJ( , , )

A
B

A
B

S

Cout

FIGURE 11.2  
Half adder design
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FIGURE 11.3  Full adder design

 

The full adder of Figure 11.3(b) employs 32 transistors (6 for the inverters, 10 for the
majority gate, and 16 for the 3-input XOR). A more compact design is based on the
observation that 

 

S

 

 can be factored to reuse the 

 

C

 

out

 

 term as follows:

 

 (11.3)

 

Such a design is shown at the gate (a) and transistor (b) levels in Figure 11.4 and uses
only 28 transistors. Note that the pMOS network is identical to the nMOS network
rather than being the conduction complement, so the topology is called a 

 

mirror adder

 

.
This simplification reduces the number of series transistors and makes the layout more
uniform. It is possible because the addition function is 

 

symmetric

 

; i.e., the function of com-
plemented inputs is the complement of the function.

The mirror adder has a greater delay to compute 

 

S

 

 than 

 

C

 

out

 

. In carry-ripple adders
(Section 11.2.2.1), the critical path goes from 

 

C

 

 to 

 

C

 

out

 

 through many full adders, so the

S ABC A B C C= + + +( ) out
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extra delay computing 

 

S

 

 is unimportant. Figure 11.4(c) shows the adder with transistor
sizes optimized to favor the critical path using a number of techniques:

 

�

 

Feed the carry-in signal (

 

C

 

) to the inner inputs so the internal capacitance is 
already discharged.

 

�

 

Make all transistors in the sum logic whose gate signals are connected to the carry-
in and carry logic minimum size (1 unit, e.g., 4 

 

λ

 

). This minimizes the branching 
effort on the critical path. Keep routing on this signal as short as possible to reduce 
interconnect capacitance.

 

�

 

Determine widths of series transistors by logical effort and simulation. Build an 
asymmetric gate that reduces the logical effort from 

 

C

 

 to 

 

C

 

out 

 

at the expense of 
effort to 

 

S

 

.

S

(a)

(b)

S

Cout

A B
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B
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Cout
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FIGURE 11.4  Full adder for carry-ripple operation
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�

 

Use relatively large transistors on the critical path so that stray wiring capacitance 
is a small fraction of the overall capacitance.

 

�

 

Remove the output inverters and alternate positive and negative logic to reduce 
delay and transistor count to 24 (see Section 11.2.2.1).

Figure 11.5 shows two layouts of the adder (see also the inside front cover). The
choice of the aspect ratio depends on the application. In a standard-cell environment, the
layout of Figure 11.5(a) might be appropriate when a single row of nMOS and pMOS
transistors is used. The routing for the 

 

A

 

, 

 

B

 

, and 

 

C

 

 inputs is shown inside the cell,
although it could be placed outside the cell because external routing tracks have to be
assigned to these signals anyway. Figure 11.5(b) shows a layout that might be appropriate
for a dense datapath (if horizontal polysilicon is legal). Here, the transistors are rotated
and all of the wiring is completed in polysilicon and metal1. This allows metal2 bus lines
to pass over the cell horizontally. Moreover, the widths of the transistors can increase

A

A

B C S Cout

VDD

GND

(a)

VDD

GND
A

B

C

(b)

S

Cout

FIGURE 11.5  Full adder layouts. Color version on inside front cover.
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without impacting the bit-pitch (height) of the datapath. In this case, the widths are
selected to reduce the 

 

C

 

in

 

 to Cout delay that is on the critical path of a carry-ripple adder.
A rather different full adder design uses transmission gates to form multiplexers and

XORs. Figure 11.6(a) shows the transistor-level schematic using 24 transistors and pro-
viding buffered outputs of the proper polarity with equal delay. The design can be under-
stood by parsing the transmission gate structures into multiplexers and an “invertible
inverter” XOR structure (see Section 11.7.4), as drawn in Figure 11.6(b).1 Note that the
multiplexer choosing S is configured to compute P ⊕ C, as given in EQ (11.2).

Figure 11.7 shows a complementary pass-transistor logic (CPL) approach. In com-
parison to a poorly optimized 40-transistor static CMOS full adder, [Yano90] finds CPL
is twice as fast, 30% lower in power, and slightly smaller. On the other hand, in compari-
son to a careful implementation of the mirror adder, [Zimmermann97] finds the CPL
delay slightly better, the power comparable, and the area much larger.

Dynamic full adders are widely used in fast multipliers when power is not a concern.
As the sum logic inherently requires true and complementary versions of the inputs, dual-
rail domino is necessary. Figure 11.8 shows such an adder using footless dual-rail domino
XOR/XNOR and MAJORITY/MINORTY gates [Heikes94]. The delays to the two
outputs are reasonably well balanced, which is important for multipliers where both paths
are critical. It shares transistors in the sum gate to reduce transistor count and takes advan-
tage of the symmetric property to provide identical layouts for the two carry gates.

Static CMOS full adders typically have a delay of 2–3 FO4 inverters, while domino
adders have a delay of about 1.5. 

11.2.2  Carry-Propagate Addition
N-bit adders take inputs {AN, …, A1}, {BN, …, B1}, and carry-in Cin, and compute the sum
{SN, …, S1} and the carry-out of the most significant bit Cout, as shown in Figure 11.9.

1Some switch-level simulators, notably IRSIM, are confused by this XOR structure and may not simulate
it correctly.
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Cout
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Cout

(a) (b)

FIGURE 11.6  Transmission gate full adder
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(Ordinarily, this text calls the least significant bit A0 rather than A1. However, for adders,
the notation developed on subsequent pages is more graceful if column 0 is reserved to
handle the carry.) They are called carry-propagate adders (CPAs) because the carry into
each bit can influence the carry into all subsequent bits. For example, Figure 11.10 shows
the addition 11112 + 00002 + 0/1, in which each of the sum and carry bits is influenced by
Cin. The simplest design is the carry-ripple adder in which the carry-out of one bit is sim-
ply connected as the carry-in to the next. Faster adders look ahead to predict the carry-out
of a multibit group. This is usually done by computing group PG signals to indicate

+

BN...1AN...1

SN...1

CinCout

FIGURE 11.9  
Carry-propagate adder
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FIGURE 11.7  CPL full adder
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FIGURE 11.8  Dual-rail domino full 
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whether the multibit group will propagate a carry-in or will generate a
carry-out. Long adders use multiple levels of lookahead structures for
even more speed. 

11.2.2.1 Carry-Ripple Adder  An N-bit adder can be constructed by
cascading N full adders, as shown in Figure 11.11(a) for N = 4. This is
called a carry-ripple adder (or ripple-carry adder). The carry-out of bit
i, Ci, is the carry-in to bit i + 1. This carry is said to have twice the
weight of the sum Si. The delay of the adder is set by the time for the
carries to ripple through the N stages, so the tC→Cout delay should be
minimized. 

This delay can be reduced by omitting the inverters on the out-
puts, as was done in Figure 11.4(c). Because addition is a self-dual
function (i.e., the function of complementary inputs is the comple-
ment of the function), an inverting full adder receiving complemen-
tary inputs produces true outputs. Figure 11.11(b) shows a carry-
ripple adder built from inverting full adders. Every other stage oper-
ates on complementary data. The delay inverting the adder inputs or
sum outputs is off the critical ripple-carry path.

11.2.2.2 Carry Generation and Propagation This section introduces
notation commonly used in describing faster adders. Recall that the P
(propagate) and G (generate) signals were defined in Section 11.2.1.
We can generalize these signals to describe whether a group spanning
bits i…j, inclusive, generate a carry or propagate a carry. A group of
bits generates a carry if its carry-out is true independent of the carry-
in; it propagates a carry if its carry-out is true when there is a carry-in.
These signals can be defined recursively for i ≥ k > j as

 (11.4)

with the base case

 (11.5)

In other words, a group generates a carry if the upper (more significant) or the lower por-
tion generates and the upper portion propagates that carry. The group propagates a carry if
both the upper and lower portions propagate the carry.2

The carry-in must be treated specially. Let us define C0 = Cin and CN = Cout. Then we
can define generate and propagate signals for bit 0 as

  (11.6)

2Alternatively, many adders use Ki = Ai + Bi in place of Pi because OR is faster than XOR. The group logic
uses the same gates: Gi:j = Gi:k + Ki:k  · Gk–1:j  and Ki:j = Ki:k · Kk–1:j. However, Pi = Ai ⊕ Bi is still required
in EQ (11.7) to compute the final sum. It is sometimes renamed Xi or Ti to avoid ambiguity.
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FIGURE 11.10  Example of carry propagation
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C1C2C3
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FIGURE 11.11  4-bit carry-ripple adder
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Observe that the carry into bit i is the carry-out of bit i–1 and is Ci–1 = Gi–1:0. This is
an important relationship; group generate signals and carries will be used synonymously in
the subsequent sections. We can thus compute the sum for bit i using EQ (11.2) as

 (11.7)

Hence, addition can be reduced to a three-step process: 

1. Computing bitwise generate and propagate signals using EQs (11.5) and (11.6)

2. Combining PG signals to determine group generates Gi–1:0 for all N ≥ i ≥ 1 using 
EQ (11.4)

3. Calculating the sums using EQ (11.7)

These steps are illustrated in Figure 11.12. The first and third steps are routine, so most of
the attention in the remainder of this section is devoted to alternatives for the group PG
logic with different trade-offs between speed, area, and complexity. Some of the hardware
can be shared in the bitwise PG logic, as shown in Figure 11.13.

S P Gi i i= ⊕ −1 0:

S1

B1A1

P1G1

G0:0
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P2G2

G1:0

A2

S3

B3A3

P3G3
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S4
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P4G4

G3:0

A4 Cin

G0 P0

1: Bitwise PG Logic

2: Group PG Logic

3: Sum Logic
C0C1C2C3

Cout

C4

FIGURE 11.12  Addition with generate and propagate logic

Many notations are used in the literature to describe the group
PG logic. In general, PG logic is an example of a prefix computa-
tion [Leighton92]. It accepts inputs {PN:N, …, P0:0} and {GN:N, …,
G0:0} and computes the prefixes {GN:0, …, G0:0} using the relation-
ship given in EQ (11.4). This relationship is given many names in
the literature including the delta operator, fundamental carry operator,
and prefix operator. Many other problems such as priority encoding
can be posed as prefix computations and all the techniques used to
build fast group PG logic will apply, as we will explore in Section
11.10.

Ai
Bi

Gi

Pi

FIGURE 11.13  Shared bitwise PG logic
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EQ (11.4) defines valency-2 (also called radix-2) group PG logic because it combines
pairs of smaller groups. It is also possible to define higher-valency group logic to use fewer
stages of more complex gates [Beaumont-Smith99], as shown in EQ (11.8) and later in
Figure 11.16(c). For example, in valency-4 group logic, a group propagates the carry if all
four portions propagate. A group generates a carry if the upper portion generates, the sec-
ond portion generates and the upper propagates, the third generates and the upper two
propagate, or the lower generates and the upper three propagate.  

Logical Effort teaches us that the best stage effort is about 4. Therefore, it is not neces-
sarily better to build fewer stages of higher-valency gates; simulations or calculations should
be done to compare the alternatives for a given process technology and circuit family.

11.2.2.3 PG Carry-Ripple Addition  The critical path of the carry-ripple adder passes from
carry-in to carry-out along the carry chain majority gates. As the P and G signals will have
already stabilized by the time the carry arrives, we can use them to simplify the majority
function into an AND-OR gate:3

 (11.9)

Because Ci = Gi:0, carry-ripple addition can now be viewed as the extreme case of
group PG logic in which a 1-bit group is combined with an i-bit group to form an (i+1)-
bit group

 (11.10)

In this extreme, the group propagate signals are never used and need not be com-
puted. Figure 11.14 shows a 4-bit carry-ripple adder. The critical carry path now proceeds
through a chain of AND-OR gates rather than a chain of majority gates. Figure 11.15
illustrates the group PG logic for a 16-bit carry-ripple adder, where the AND-OR gates
in the group PG network are represented with gray cells. 

Diagrams like these will be used to compare a variety of adder architectures in subse-
quent sections. The diagrams use black cells, gray cells, and white buffers defined in
Figure 11.16(a) for valency-2 cells. Black cells contain the group generate and propagate
logic (an AND-OR gate and an AND gate) defined in EQ (11.4). Gray cells containing
only the group generate logic are used at the final cell position in each column because
only the group generate signal is required to compute the sums. Buffers can be used to
minimize the load on critical paths. Each line represents a bundle of the group generate
and propagate signals (propagate signals are omitted after gray cells). The bitwise PG and

3Whenever positive logic such as AND-OR is described, you can also use an AOI gate and alternate pos-
itive and negative polarity stages as was done in Figure 11.11(b) to save area and delay.
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FIGURE 11.14  4-bit carry-ripple adder using PG logic
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FIGURE 11.15  Carry-ripple adder group PG network
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sum XORs are abstracted away in the top and bottom boxes and it is assumed that an
AND-OR gate operates in parallel with the sum XORs to compute the carry-out:

 (11.11)

The cells are arranged along the vertical axis according to the time at which they
operate [Guyot97]. From Figure 11.15 it can be seen that the carry-ripple adder critical
path delay is

 (11.12)

where tpg is the delay of the 1-bit propagate/generate gates, tAO is the delay of the AND-
OR gate in the gray cell, and txor is the delay of the final sum XOR. Such a delay estimate
is only qualitative because it does not account for fanout or sizing.
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FIGURE 11.16  Group PG cells
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Often, using noninverting gates leads to more stages of logic than are necessary. Fig-
ure 11.16(b) shows how to alternate two types of inverting stages on alternate rows of the
group PG network to remove extraneous inverters. For best performance, Gk–1:j should
drive the inner transistor in the series stack. You can also reduce the number of stages by
using higher-valency cells, as shown in Figure 11.16(c) for a valency-4 black cell. 

11.2.2.4 Manchester Carry Chain Adder This section is available in the online Web Enhanced
chapter at www.cmosvlsi.com.

11.2.2.5 Carry-Skip Adder  The critical path of CPAs considered so far involves a gate or
transistor for each bit of the adder, which can be slow for large adders. The carry-skip (also
called carry-bypass) adder, first proposed by Charles Babbage in the nineteenth century
and used for many years in mechanical calculators, shortens the critical path by computing
the group propagate signals for each carry chain and using this to skip over long carry rip-
ples [Morgan59, Lehman61]. Figure 11.17 shows a carry skip adder built from 4-bit
groups. The rectangles compute the bitwise propagate and generate signals (as in Figure
11.15), and also contain a 4-input AND gate for the propagate signal of the 4-bit group.
The skip multiplexer selects the group carry-in if the group propagate is true or the ripple
adder carry-out otherwise.

The critical path through Figure 11.17 begins with generating a carry from bit 1, and
then propagating it through the remainder of the adder. The carry must ripple through the
next three bits, but then may skip across the next two 4-bit blocks. Finally, it must ripple
through the final 4-bit block to produce the sums. This is illustrated in Figure 11.18. The
4-bit ripple chains at the top of the diagram determine if each group generates a carry. The
carry skip chain in the middle of the diagram skips across 4-bit blocks. Finally, the 4-bit
ripple chains with the blue lines represent the same adders that can produce a carry-out
when a carry-in is bypassed to them. Note that the final AND-OR and column 16 are not
strictly necessary because Cout can be computed in parallel with the sum XORs using
EQ (11.11). 

The critical path of the adder from Figures 11.17 and 11.18 involves the initial PG
logic producing a carry out of bit 1, three AND-OR gates rippling it to bit 4, three multi-
plexers bypassing it to C12, 3 AND-OR gates rippling through bit 15, and a final XOR to
produce S16. The multiplexer is an AND22-OR function, so it is slightly slower than the
AND-OR function. In general, an N-bit carry-skip adder using k n-bit groups (N = n × k)
has a delay of 

 (11.13)
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FIGURE 11.17  Carry-skip adder
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This critical path depends on the length of the first and last group and the number of
groups. In the more significant bits of the network, the ripple results are available early.
Thus, the critical path could be shortened by using shorter groups at the beginning and
end and longer groups in the middle. Figure 11.19 shows such a PG network using groups
of length [2, 3, 4, 4, 3], as opposed to [4, 4, 4, 4], which saves two levels of logic in a 16-
bit adder.

The hardware cost of a carry-skip adder is equal to that of a simple carry-ripple adder
plus k multiplexers and k n-input AND gates. It is attractive when ripple-carry adders are
too slow, but the hardware cost must still be kept low. For long adders, you could use a
multilevel skip approach to skip across the skips. A great deal of research has gone into
choosing the best group size and number of levels [Majerski67, Oklobdzija85, Guyot87,
Chan90, Kantabutra91], although now, parallel prefix adders are generally used for long
adders instead.
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FIGURE 11.18  Carry-skip adder PG network
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FIGURE 11.19  Variable group size carry-skip adder PG network
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It might be tempting to replace each skip multiplexer in Figures 11.17 and 11.18 with
an AND-OR gate combining the carry-out of the n-bit adder or the group carry-in and
group propagate. Indeed, this works for domino-carry skip adders in which the carry out
is precharged each cycle; it also works for carry-lookahead adders and carry-select adders
covered in the subsequent section. However, it introduces a sneaky long critical path into
an ordinary carry-skip adder. Imagine summing 111…111 + 000…000 + Cin. All of the
group propagate signals are true. If Cin = 1, every 4-bit block will produce a carry-out.
When Cin falls, the falling carry signal must ripple through all N bits because of the path
through the carry out of each n-bit adder. Domino-carry skip adders avoid this path
because all of the carries are forced low during precharge, so they can use AND-OR gates.

Figure 11.20 shows how a Manchester carry chain from Section 11.2.2.4 can be mod-
ified to perform carry skip [Chan90]. A valency-5 chain is used to skip across groups of 4
bits at a time.

11.2.2.6 Carry-Lookahead Adder  The carry-lookahead adder (CLA) [Weinberger58] is
similar to the carry-skip adder, but computes group generate signals as well as group prop-
agate signals to avoid waiting for a ripple to determine if the first group generates a carry.
Such an adder is shown in Figure 11.21 and its PG network is shown in Figure 11.22
using valency-4 black cells to compute 4-bit group PG signals.

In general, a CLA using k groups of n bits each has a delay of
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where tpg(n) is the delay of the AND-OR-AND-OR-…-AND-OR gate computing the
valency-n generate signal. This is no better than the variable-length carry-skip adder in
Figure 11.19 and requires the extra n-bit generate gate, so the simple CLA is seldom a
good design choice. However, it forms the basis for understanding faster adders presented
in the subsequent sections.

CLAs often use higher-valency cells to reduce the delay of the n-bit additions by com-
puting the carries in parallel. Figure 11.23 shows such a CLA in which the 4-bit adders are
built using Manchester carry chains or multiple static gates operating in parallel. 

11.2.2.7 Carry-Select, Carry-Increment, and Conditional-Sum Adders  The critical path
of the carry-skip and carry-lookahead adders involves calculating the carry into each n-bit
group, and then calculating the sums for each bit within the group based on the carry-in.
A standard logic design technique to accelerate the critical path is to precompute the out-
puts for both possible inputs, and then use a multiplexer to select between the two output
choices. The carry-select adder [Bedrij62] shown in Figure 11.24 does this with a pair of
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FIGURE 11.22  Carry-lookahead adder group PG network
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n-bit adders in each group. One adder calculates the sums assuming a carry-in of 0 while
the other calculates the sums assuming a carry-in of 1. The actual carry triggers a multi-
plexer that chooses the appropriate sum. The critical path delay is

 (11.15)

The two n-bit adders are redundant in that both contain the initial PG logic and final
sum XOR. [Tyagi93] reduces the size by factoring out the common logic and simplifying
the multiplexer to a gray cell, as shown in Figure 11.25. This is sometimes called a carry-
increment adder [Zimmermann96]. It uses a short ripple chain of black cells to compute
the PG signals for bits within a group. The bits spanned by each group are annotated on
the diagram. When the carry-out from the previous group becomes available, the final
gray cells in each column determine the carry-out, which is true if the group generates a
carry or if the group propagates a carry and the previous group generated a carry. The
carry-increment adder has about twice as many cells in the PG network as a carry-ripple
adder. The critical path delay is about the same as that of a carry-select adder because a
mux and XOR are comparable, but the area is smaller.

 (11.16)
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Of course, Manchester carry chains or higher-valency cells can be used to speed the
ripple operation to produce the first group generate signal. In that case, the ripple delay is
replaced by a group PG gate delay and the critical path becomes

 (11.17)

As with the carry-skip adder, the carry chains for the more significant bits complete
early. Again, we can use variable-length groups to take advantage of the extra time, as
shown in Figure 11.26(a). With such a variable group size, the delay reduces to

 (11.18)

The delay equations do not account for the fanout that each stage must drive. The
fanouts in a variable-length group can become large enough to require buffering between
stages. Figure 11.26(b) shows how buffers can be inserted to reduce the branching effort
while not impeding the critical lookahead path; this is a useful technique in many other
applications. 

In wide adders, we can recursively apply multiple levels of carry-select or carry-
increment. For example, a 64-bit carry-select adder can be built from four 16-bit carry-
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select adders, each of which selects the carry-in to the next 16-bit group. Taking this to
the limit, we obtain the conditional-sum adder [Sklansky60] that performs carry-select
starting with groups of 1 bit and recursively doubling to N/2 bits. Figure 11.27 shows a
16-bit conditional-sum adder. In the first two rows, full adders compute the sum and
carry-out for each bit assuming carries-in of 0 and 1, respectively. In the next two rows,
multiplexer pairs select the sum and carry-out of the upper bit of each block of two, again
assuming carries-in of 0 and 1. In the next two rows, multiplexers select the sum and
carry-out of the upper two bits of each block of four, and so forth. 

Figure 11.28 shows the operation of a conditional-sum adder in action for N = 16
with Cin = 0. In the block width 1 row, a pair of full adders compute the sum and carry-out
for each column. One adder operates assuming the carry-in to that column is 0, while the
other assumes it is 1. In the block width 2 row, the adder selects the sum for the upper half
of each block (the even-numbered columns) based on the carry-out of the lower half. It
also computes the carry-out of the pair of bits. Again, this is done twice, for both possibil-
ities of carry-in to the block. In the block width 4 row, the adder again selects the sum for
the upper half based on the carry-out of the lower half and finds the carry-out of the entire
block. This process is repeated in subsequent rows until the 16-bit sum and the final carry-
out are selected.

The conditional-sum adder involves nearly 2N full adders and 2N log2 N multiplexers.
As with carry-select, the conditional-sum adder can be improved by factoring out the sum
XORs and using AND-OR gates in place of multiplexers. This leads us to the Sklansky
tree adder discussed in the next section.

11.2.2.8 Tree Adders  For wide adders (roughly, N > 16 bits), the delay of carry-lookahead
(or carry-skip or carry-select) adders becomes dominated by the delay of passing the carry
through the lookahead stages. This delay can be reduced by looking ahead across the look-
ahead blocks [Weinberger58]. In general, you can construct a multilevel tree of look-ahead
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structures to achieve delay that grows with log N. Such adders are variously referred to as
tree adders, logarithmic adders, multilevel-lookahead adders, parallel-prefix adders, or simply
lookahead adders. The last name appears occasionally in the literature, but is not recom-
mended because it does not distinguish whether multiple levels of lookahead are used.

There are many ways to build the lookahead tree that offer trade-offs among the
number of stages of logic, the number of logic gates, the maximum fanout on each gate,
and the amount of wiring between stages. Three fundamental trees are the Brent-Kung,
Sklansky, and Kogge-Stone architectures. We begin by examining each in the valency-2
case that combines pairs of groups at each stage.

The Brent-Kung tree [Brent82] (Figure 11.29(a)) computes prefixes for 2-bit groups.
These are used to find prefixes for 4-bit groups, which in turn are used to find prefixes for
8-bit groups, and so forth. The prefixes then fan back down to compute the carries-in to
each bit. The tree requires 2log2 N  – 1 stages. The fanout is limited to 2 at each stage. The
diagram shows buffers used to minimize the fanout and loading on the gates, but in prac-
tice, the buffers are generally omitted.

The Sklansky or divide-and-conquer tree [Sklansky60] (Figure 11.29(b)) reduces the
delay to log2 N stages by computing intermediate prefixes along with the large group pre-
fixes. This comes at the expense of fanouts that double at each level: The gates fanout to
[8, 4, 2, 1] other columns. These high fanouts cause poor performance on wide adders
unless the high fanout gates are appropriately sized or the critical signals are buffered
before being used for the intermediate prefixes. Transistor sizing can cut into the regularity
of the layout because multiple sizes of each cell are required, although the larger gates can
spread into adjacent columns. Note that the recursive doubling in the Sklansky tree is
analogous to the conditional-sum adder of Figure 11.27. With appropriate buffering, the
fanouts can be reduced to [8, 1, 1, 1], as explored in Exercise 11.7.

The Kogge-Stone tree [Kogge73] (Figure 11.29(c)) achieves both log2 N  stages and
fanout of 2 at each stage. This comes at the cost of many long wires that must be routed
between stages. The tree also contains more PG cells; while this may not impact the area if
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the adder layout is on a regular grid, it will increase power consumption. Despite these
costs, the Kogge-Stone tree is widely used in high-performance 32-bit and 64-bit adders.

In summary, a Sklansky or Kogge-Stone tree adder reduces the critical path to

 (11.19)

An ideal tree adder would have log2 N levels of logic, fanout never exceeding 2, and
no more than 1 wiring track (Gi:j and Pi:j bundle) between each row. The basic tree archi-
tectures represent cases that approach the ideal, but each differ in one respect. Brent-Kung
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has too many logic levels. Sklansky has too much fanout. And Kogge-Stone has too many
wires. Between these three extremes, the Han-Carlson, Ladner-Fischer, and Knowles
trees fill out the design space with different compromises between number of stages,
fanout, and wire count. 

The Han-Carlson trees [Han87] are a family of networks between Kogge-Stone and
Brent-Kung. Figure 11.29(d) shows such a tree that performs Kogge-Stone on the odd-
numbered bits, and then uses one more stage to ripple into the even positions. 

The Knowles trees [Knowles01] are a family of networks between Kogge-Stone and
Sklansky. All of these trees have log2 N stages, but differ in the fanout and number of
wires. If we say that 16-bit Kogge-Stone and Sklansky adders drive fanouts of [1, 1, 1, 1]
and [8, 4, 2, 1] other columns, respectively, the Knowles networks lie between these
extremes. For example, Figure 11.29(e) shows a [2, 1, 1, 1] Knowles tree that halves the
number of wires in the final track at the expense of doubling the load on those wires. 

The Ladner-Fischer trees [Ladner80] are a family of networks between Sklansky and
Brent-Kung. Figure 11.29(f ) is similar to Sklansky, but computes prefixes for the odd-
numbered bits and again uses one more stage to ripple into the even positions. Cells at
high-fanout nodes must still be sized or ganged appropriately to achieve good speed. Note
that some authors use Ladner-Fischer synonymously with Sklansky.

An advantage of the Brent-Kung network and those related to it (Han-Carlson and
the Ladner-Fischer network with the extra row) is that for any given row, there is never
more than one cell in each pair of columns. These networks have low gate count. More-
over, their layout may be only half as wide, reducing the length of the horizontal wires
spanning the adder. This reduces the wire capacitance, which may be a major component
of delay in 64-bit and larger adders [Huang00].

Figure 11.30 shows a 3-dimensional taxonomy of the tree adders [Harris03]. If we let
L = log2 N, we can describe each tree with three integers (l, f, t) in the range [0, L – 1].
The integers specify the following:

� Logic Levels: L + l
� Fanout: 2 f + 1
� Wiring Tracks: 2t

The tree adders lie on the plane l + f + t = L – 1. 16-bit Brent-Kung, Sklansky, and
Kogge-Stone represent vertices of the cube (3, 0, 0), (0, 3, 0) and (0, 0, 3), respectively.
Han-Carlson, Ladner-Fischer, and Knowles lie along the diagonals. 

11.2.2.9 Higher-Valency Tree Adders  Any of the trees described so far can combine
more than two groups at each stage [Beaumont-Smith01]. The number of groups com-
bined in each gate is called the valency or radix of the cell. For example, Figure 11.31
shows 27-bit valency-3 Brent-Kung, Sklansky, Kogge-Stone, and Han-Carlson trees. The
rounded boxes mark valency-3 carry chains (that could be constructed using a Manchester
carry chain, multiple-output domino gate, or several discrete gates). The trapezoids mark
carry-increment operations. The higher-valency designs use fewer stages of logic, but each
stage has greater delay. This tends to be a poor trade-off in static CMOS circuits because
the stage efforts become much larger than 4, but is good in domino because the logical
efforts are much smaller so fewer stages are necessary.

Nodes with large fanouts or long wires can use buffers. The prefix trees can also be
internally pipelined for extremely high-throughput operation. Some higher-valency
designs combine the initial PG stage with the first level of PG merge. For example, the
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Ling adder described in Section 11.2.2.11 computes generate and propagate for up to
4-bit groups from the primary inputs in a single stage.

Higher valency (v) adders can still be described in a 3-dimensional taxonomy with
L = logv N and l + f + t = L – 1. There are L + l logic levels, a maximum fanout of
(v – 1)vf + 1, and (v – 1)vt wiring tracks at the worst level.

11.2.2.10 Sparse Tree Adders  Building a prefix tree to compute carries in to every bit is
expensive in terms of power. An alternative is to only compute carries into short groups
(e.g., s = 2, 4, 8, or 16 bits). Meanwhile, pairs of s-bit adders precompute the sums assum-
ing both carries-in of 0 and 1 to each group. A multiplexer selects the correct sum for each
group based on the carries from the prefix tree. The group length can be balanced such
that the carry-in and precomputed sums become available at about the same time. Such a
hybrid between a prefix adder and a carry select adder is called a sparse tree. s is the sparse-
ness of the tree.

The spanning-tree adder [Lynch92] is a sparse tree adder based on a higher-valency
Brent-Kung tree of Figure 11.31(a). Figure 11.32 shows a simple valency-3 version that
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FIGURE 11.31  Higher-valency tree adders
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precomputes sums for s = 3-bit groups and saves one logic level by selecting the output
based on the carries into each group. The carry-out (Cout) is explicitly shown. Note that
the least significant group requires a valency-4 gray cell to compute G3:0, the carry-in to
the second select block.

[Lynch92] describes a 56-bit spanning-tree design from the AMD AM29050
floating-point unit using valency-4 stages and 8-bit carry select groups. [Kantabutra93]
and [Blackburn96] describe optimizing the spanning-tree adder by using variable-length
carry-select stages and appropriately selecting transistor sizes.

A carry-select box spanning bits i…j is shown in Figure 11.33(a). It uses short carry-
ripple adders to precompute the sums assuming carry-in of 0 and 1 to the group, and then
selects between them with a multiplexer, as shown in Figure 11.33(b). The adders can be
simplified somewhat because the carry-ins are constant, as shown in Figure 11.33(c) for a
4-bit group.

[Mathew03] describes a 32-bit sparse-tree adder using a valency-2 tree similar to
Sklansky to compute only the carries into each 4-bit group, as shown in Figure 11.34. This
reduces the gate count and power consumption in the tree. The tree can also be viewed as
a (2, 2, 0) Ladner-Fischer tree with the final two tree levels and XOR replaced by the
select multiplexer. The adder assumes the carry-in is 0 and does not produce a carry-out,
saving one input to the least-significant gray box and eliminating the prefix logic in the
four most significant columns. 

These sparse tree approaches are widely used in high-performance 32–64-bit higher-
valency adders because they offer the small number of logic levels of higher-valency trees
while reducing the gate count and power consumption in the tree. Figure 11.35 shows a
27-bit valency-3 Kogge-Stone design with carry-select on 3-bit groups. Observe how the
number of gates in the tree is reduced threefold. Moreover, because the number of wires is
also reduced, the extra area can be used for shielding to reduce path delay. This design can
also be viewed as the Han-Carlson adder of Figure 11.31(d) with the last logic level
replaced by a carry-select multiplexer.
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FIGURE 11.33  Carry-select implementation
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Sparse trees reduce the costly part of the prefix tree. For Kogge-Stone architectures,
they reduce the number of wires required by a factor of s. For Sklansky architectures, they
reduce the fanout by s. For Brent-Kung architectures, they eliminate the last logv s logic
levels. In effect, they can move an adder toward the origin in the (l, f, t) design space.
These benefits come at the cost of a fanout of s to the final select multiplexer, and of area
and power to precompute the sums.

11.2.2.11 Ling Adders  Ling discovered a technique to remove one series transistor from
the critical group generate path through an adder at the expense of another XOR gate in the
sum precomputation [Ling81, Doran88, Bewick94]. The technique depends on using K in
place of P in the prefix network, and on the observation that GiKi = (AiBi)(Ai  + Bi) = Gi .

Define a pseudogenerate (sometimes called pseudo-carry) signal Hi : j = Gi + Gi-1: j. This
is simpler than Gi : j = Gi + PiGi-1: j . Gi : j can be obtained later from Hi : j with an AND
operation when it is needed: 

(11.20) 

The advantage of pseudogenerate signals over regular generate is that the first row in the
prefix network is easier to compute. 

Also define a pseudopropagate signal I that is simply a shifted version of propagate:
Ii:j = Ki-1: j-1. Group pseudogenerate and pseudopropagate signals are combined using the
same black or gray cells as ordinary group generate and propagate signals, as you may show
in Exercise 11.11.

 (11.21)
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FIGURE 11.34  Intel valency-2 Sklansky sparse tree adder with s = 4
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FIGURE 11.35  Valency-3 Kogge-Stone sparse tree adder with s = 3
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The true group generate signals are formed from the pseudogenerates using EQ
(11.20). These signals can be used to compute the sums with the usual XOR: Si =
Pi ⊕ Gi–1:0 = Pi ⊕ (Ki–1Hi–1:0). To avoid introducing an AND gate back onto the critical
path, we expand Si in terms of Hi–1:0

(11.22)

Thus, sum selection can be performed with a multiplexer choosing either Pi ⊕ Ki–1 or Pi
based on Hi–1:0.

The Ling adder technique can be used with any form of adder that uses black and
gray cells in a prefix network. It works with any valency and for both domino and static
designs. The initial PG stage and the first levels of the prefix network are replaced by a cell
that computes the group H and I signals directly. The middle of the prefix network is
identical to an ordinary prefix adder but operates on H and I instead of G and P. The sum-
selection logic uses the multiplexer from EQ (11.22) rather than an XOR. In sparse trees,
the sum out of s-bit blocks is selected directly based on the H signals. 

For a valency-v adder, the Ling technique converts a generate gate with v series
nMOS transistors and v series pMOS transistors to a pseudogenerate gate with v – 1 series
nMOS but still v series pMOS. For example, in valency 2, the AOI gate becomes a NOR2
gate. This is not particularly helpful for static logic, but is ben-
eficial for domino implementations because the series pMOS
are eliminated and the nMOS stacks are shortened.

Another advantage of the Ling technique is that it allows
the first level pseudogenerate and pseudopropagate signals to
be computed directly from the Ai and Bi inputs rather than
based on Gi and Ki gates. For example, Figure 11.36 compares
static gates that compute G2:1 and H2:1 directly from A2:1 and
B2:1. The H gate has one fewer series transistor and much less
parasitic capacitance. H3:1 can also be computed directly from
A3:1 and B3:1 using the complex static CMOS gate shown in
Figure 11.37(a) [Quach92]. Similarly, Figure 11.37(b) shows
a compound domino gate that directly computes H4:1 from A
and B using only four series transistors rather than the
five required for G4:1 [Naffziger96, Naffziger98].
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[ Jackson04] proposed applying the Ling method recursively to factor out the K signal
elsewhere in the adder tree. [Burgess09] showed that this recursive Ling technique opens
up a new design space containing faster and smaller adders.

11.2.2.12 An Aside on Domino Implementation Issues  This section is available in the
online Web Enhanced chapter at www.cmosvlsi.com.

11.2.2.13 Summary  Having examined so many adders, you probably want to know
which adder should be used in which application. Table 11.3 compares the various adder
architectures that have been illustrated with valency-2 prefix networks. The category
“logic levels” gives the number of AND-OR gates in the critical path, excluding the initial
PG logic and final XOR. Of course, the delay depends on the fanout and wire loads as
well as the number of logic levels. The category “cells” refers to the approximate number of
gray and black cells in the network. Carry-lookahead is not shown because it uses higher-
valency cells. Carry-select is also not shown because it is larger than carry-increment for
the same performance.

In general, carry-ripple adders should be used when they meet timing constraints
because they use the least energy and are easy to build. When faster adders are required,
carry-increment and carry-skip architectures work well for 8–16 bit lengths. Hybrids
combining these techniques are also popular. At word lengths of 32 and especially 64 bits,
tree adders are distinctly faster. 

There is still debate about the best tree adder designs; the choice is influenced by
power and delay constraints, by domino vs. static and custom vs. synthesis choices, and by
the specific manufacturing process. Moreover, careful optimization of a particular archi-
tecture is more important than the choice of tree architecture.

When power is no concern, the fastest adders use domino or compound domino cir-
cuits [Naffziger96, Park00, Mathew03, Mathew05, Oklobdzija05, Zlatanovici09,
Wijeratne07]. Several authors find that the Kogge-Stone architecture gives the lowest

TABLE 11.3  Comparison of adder architectures

Architecture Classification Logic Levels Max Fanout Tracks Cells

Carry-Ripple N – 1 1 1 N
Carry-Skip 

(n = 4)
N/4 + 5 2 1 1.25N

Carry-Increment 
(n = 4)

N/4 + 2 4 1 2N

Carry-Increment 
(variable group)

  1 2N

Brent-Kung (L–1, 0, 0) 2log2 N – 1 2 1 2N
Sklansky (0, L–1, 0) log2 N N/2 + 1 1 0.5 N log2 N

Kogge-Stone (0, 0, L – 1) log2 N 2 N/2 N log2 N
Han-Carlson (1, 0, L – 2) log2 N + 1 2 N/4 0.5 N log2  N

Ladner Fischer 
(l = 1)

(1, L – 2, 0) log2 N + 1 N/4 + 1 1 0.25 N log2 N

Knowles 
[2,1,…,1]

(0, 1, L – 2) log2 N 3 N/4 N log2 N

WEB
ENHANCED

  2N   2N
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possible delay [Silberman98, Park00, Oklobdzija05, Zlatanovici09]. However, the large
number of long wires consume significant energy and require large drivers for speed. Other
architectures such as Sklansky [Mathew03] or Han-Carlson [Vangal02] offer better energy
efficiency because they have fewer long wires. Valency-4 dynamic gates followed by inverters
tend to give a slight speed advantage [Naffziger96, Park00, Zlatanovici09, Harris04,
Oklobdzija05], but compound domino implementations using valency-2 dynamic gates fol-
lowed by valency-2 HI-skew static gates are also used [Mathew03]. Sparse trees save energy
in domino adders with little effect on performance [Naffziger96, Mathew03, Zlatanovici09].
The Ling optimization is not used universally, but several studies have found it to be
beneficial [Quach92, Naffziger96, Zlatanovici09, Grad04]. The UltraSparc III used a dual-
rail domino Kogge-Stone adder [Heald00]. The Itanium 2 and Hewlett Packard PA-RISC
lines of 64-bit microprocessors used a dual-rail domino sparse tree Ling adder [Naffziger96,
Fetzer02]. The 65 nm Pentium 4 uses a compound domino radix-2 Sklansky sparse tree
[Wijeratne07]. A good 64-bit domino adder takes 7–9 FO4 delays and has an area of
4–12 Mλ2 [Naffziger96, Zlatanovici09, Mathew05].

Power-constrained designs use static adders, which consume one third to one tenth
the energy of dynamic adders and have a delay of about 13 FO4 [Oklobdzija05, Harris03,
Zlatanovici09]. For example, the CELL processor floating point unit uses a valency-2
static Kogge-Stone adder [Oh06]. 

[Patil07] presents a comprehensive study of energy-delay design space for
adders. The paper concludes that the Sklansky architecture is most energy
efficient for any delay requirement because it avoids the large number of power-
hungry wires in Kogge-Stone and the excessive number of logic levels in Brent-
Kung. The high-fanout gates in the Sklansky tree are upsized to maintain a
reasonable logical effort. Static adders are most efficient using valency-2 cells,
which provide a stage effort of about 4. Domino adders are most efficient alter-
nating valency-4 dynamic gates with static inverters. The sum precomputation
logic in a static sparse tree adder costs more energy than it saves from the prefix
network. In a domino adder, a sparseness of 2 does save energy because the sum
precomputation can be performed with static gates. Figure 11.38 shows some
results, finding that static adders are most energy-efficient for slow adders,
while domino become better at high speed requirements and dual-rail domino
Ling adders are preferable only for the very fastest and most energy-hungry
adders. The very fast delays are achieved using a higher VDD and lower Vt .
[Zlatanovici09] explores the energy-delay space for 64-bit domino adders and
came to the contradictory conclusion that Kogge-Stone is
superior. Again, alternating valency-4 dynamic gates with
static inverters and using a sparseness of 2 gave the best
results, as shown in Figure 11.39. Other reasonable adders
are almost as good in the energy-delay space, so there is not
a compelling reason to choose one topology over another
and the debate about the “best” adder will doubtlessly rage
into the future.

Good logic synthesis tools automatically map the “+”
operator onto an appropriate adder to meet timing con-
straints while minimizing area. For example, the Synopsys
DesignWare libraries contain carry-ripple adders, carry-
select adders, carry-lookahead adders, and a variety of pre-
fix adders. Figure 11.40 shows the results of synthesizing
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32-bit and 64-bit adders under different timing con-
straints. As the latency decreases, synthesis selects more
elaborate adders with greater area. The results are for a
0.18 μm commercial cell library with an FO4 inverter
delay of 89 ps in the TTTT corner and the area
includes estimated interconnect as well as gates. The
fastest designs use tree adders and achieve implausibly
fast prelayout delays of 7.0 and 8.5 FO4 for 32-bit and
64-bit adders, respectively, by creating nonuniform
designs with side loads carefully buffered off the critical
path. The carry-select adders achieve an interesting
area/delay trade-off by using carry-ripple for the lower
three-fourths of the bits and carry-select only on the
upper fourth. The results will be somewhat slower when
wire parasitics are included. 

11.2.3  Subtraction
An N-bit subtracter uses the two’s complement relationship

 (11.23)

This involves inverting one operand to an N-bit CPA and adding 1
via the carry input, as shown in Figure 11.41(a). An adder/subtracter uses
XOR gates to conditionally invert B, as shown in Figure 11.41(b). In pre-
fix adders, the XOR gates on the B inputs are sometimes merged into the
bitwise PG circuitry.

11.2.4  Multiple-Input Addition
The most obvious method of adding k N-bit words is with k – 1 cascaded CPAs as illus-
trated in Figure 11.42(a) for 0001 + 0111 + 1101 + 0010. This approach consumes a large
amount of hardware and is slow. A better technique is to note that a full adder sums three
inputs of unit weight and produces a sum output of unit weight and a carry output of dou-
ble weight. If N full adders are used in parallel, they can accept three N-bit input words
XN…1, YN…1, and ZN…1, and produce two N-bit output words SN…1 and CN…1, satisfying
X + Y + Z = S + 2C, as shown in Figure 11.42(b). The results correspond to the sums and
carries-out of each adder. This is called carry-save redundant format because the carry out-
puts are preserved rather than propagated along the adder. The full adders in this applica-
tion are sometimes called [3:2] carry-save adder (CSA) because they accept three inputs
and produce two outputs in carry-save form. When the carry word C is shifted left by one
position (because it has double weight) and added to the sum word S with an ordinary
CPA, the result is X + Y + Z. Alternatively, a fourth input word can be added to the carry-
save redundant result with another row of CSAs, again resulting in a carry-save redundant
result. Such carry-save addition of four numbers is illustrated in Figure 11.42(c), where
the underscores in the carry outputs serve as reminders that the carries must be shifted left
one column on account of their greater weight.

The critical path through a [3:2] adder is for the sum computation, which involves
one 3-input XOR, or two levels of XOR2. This is much faster than a CPA. In general, k
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numbers can be summed with k – 2 [3:2] CSAs and only one CPA. This approach will be
exploited in Section 11.9 to add many partial products in a multiplier rapidly. The tech-
nique dates back to von Neumann’s early computer [Burks46].

When one of the inputs to a CSA is a constant, the hardware can be reduced further.
If a bit of the input is 0, the CSA column reduces to a half-adder. If the bit is 1, the CSA
column simplifies to S = A ⊕ B and C = A + B. 

11.2.5  Flagged Prefix Adders
Sometimes it is necessary to compute either A + B, and then, depending on a late-arriving
control signal, adding 1. Some applications include calculating A + B mod 2n–1 for cryp-
tography and Reed-Solomon coding, computing the absolute difference |A – B|, doing
addition/subtraction of sign-magnitude numbers, and performing rounding in certain
floating-point adders [Beaumont-Smith99]. A straightforward approach is to build two
adders, provide a carry to one, and select between the results. [Burgess02] describes a
clever alternative called a flagged prefix adder that uses much less hardware.

A flagged prefix adder receives A, B, and a control signal, inc, and computes A + B +
inc. Recall that an ordinary adder computes the prefixes Gi–1:0 as the carries into each
column i, then computes the sum Si = Pi ⊕ Gi–1:0. In this situation, there is no Cin and
hence column 0 is omitted; Gi–1:1 is used instead. The goal of the flagged prefix adder
is to adjust these carries when inc is asserted. A flagged prefix adder instead uses

+
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G ′i–1:1 = Gi–1:1 + Pi–1:1 · inc. Thus, if inc is true, it generates a carry into all of the low order
bits whose group propagate signals are TRUE. The modified prefixes, G ′i–1:1, are called
flags. The sums are computed in the same way with an XOR gate: Si = Pi ⊕ G ′i–1:1.

To produce these flags, the flagged prefix adder uses one more row of gray cells. This
requires that the former bottom row of gray cells be converted to black cells to produce the
group propagate signals. Figure 11.43 shows a flagged prefix Kogge-Stone adder. The new
row, shown in blue, is appended to perform the late increment. Column 0 is eliminated
because there is no Cin, but column 16 is provided because applications of flagged adders
will need the generate and propagate signals spanning the entire n bits.

11.2.5.1 Modulo 2n – 1 Addition  To compute A + B mod 2n – 1 for unsigned operands,
an adder should first compute A + B. If the sum is greater than or equal to 2n – 1, the result
should be incremented and truncated back to n bits. Gn:1 is TRUE if the adder will over-
flow; i.e., the result is greater than 2n – 1. Pn:1 is TRUE if all columns propagate, which
only occurs when the sum equals 2n – 1. Hence, modular addition can done with a flagged
prefix adder using inc = Gn:1 + Pn:1. 

Compared to ordinary addition, modular addition requires one more row of black
cells, an OR gate to compute inc, and a buffer to drive inc across all n bits.

11.2.5.2 Absolute Difference  |A – B| is called the absolute difference and is commonly
used in applications such as video compression. The most straightforward approach is to
compute both A – B and B – A, then select the positive result. A more efficient technique
is to compute A + B and look at the sign, indicated by Gn:1. If the result is negative, it
should be inverted to obtain B – A. If the result is positive, it should be incremented to
obtain A – B. 

All of these operations can be performed using a flagged prefix adder enhanced to
invert the result conditionally. Modify the sum logic to calculate Si = (Pi ⊕ inv) ⊕ G ′i–1:1.
Choose inv = Gn:1 and inc = Gn:1. 

Compared to ordinary addition, absolute difference requires a bank of inverters to
obtain B, one more row of black cells, buffers to drive inv and inc across all n bits, and a
row of XORs to invert the result conditionally. Note that (Pi ⊕ inv) can be precomputed
so this does not affect the critical path.

11.2.5.3 Sign-Magnitude Arithmetic  Addition of sign-magnitude numbers involves
examining the signs of the operands. If the signs agree, the magnitudes are added and the

2:13:24:35:46:57:68:79:810:911:1012:1113:1214:13
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FIGURE 11.43  Flagged prefix Kogge-Stone adder
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sign is unchanged. If the signs differ, the absolute difference of the magnitudes must be
computed. This can be done using the flagged carry adder described in the previous sec-
tion. The sign of the result is sign(A) ⊕ Gn:1.

Subtraction is identical except that the sign of B is first flipped.

11.3   One/Zero Detectors
Detecting all ones or zeros on wide N-bit words requires large fan-in AND or NOR gates.
Recall that by DeMorgan’s law, AND, OR, NAND, and NOR are fundamentally the
same operation except for possible inversions of the inputs and/or outputs. You can build a
tree of AND gates, as shown in Figure 11.44(a). Here, alternate NAND and NOR gates
have been used. The path has log N stages. In general, the minimum logical effort is
achieved with a tree alternating NAND gates and inverters and the path logical effort is

 (11.24)

A rough estimate of the path delay driving a path electrical effort of H using static
CMOS gates is

 (11.25)

where tFO4 is the fanout-of-4 inverter delay.
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If the word being checked has a natural skew in the arrival time of the bits (such as at
the output of a ripple adder), the designer might consider an asymmetric design that
favors the late-arriving inputs, as shown in Figure 11.44(b). Here, the delay from the latest
bit A7 is a single gate. 

Another fast detector uses a pseudo-nMOS or dynamic NOR structure to perform
the “wired-OR,” as shown in Figure 11.44(c). This works well for words up to about 16
bits; for larger words, the gates can be split into 8–16-bit chunks to reduce the parasitic
delay and avoid problems with subthreshold leakage.

11.4   Comparators 

11.4.1  Magnitude Comparator
A magnitude comparator determines the larger of two binary numbers. To compare two
unsigned numbers A and B, compute B – A = B + A + 1. If there is a carry-out, A ≤ B;

otherwise, A > B. A zero detector indicates that the numbers are equal. Figure
11.45 shows a 4-bit unsigned comparator built from a carry-ripple adder and
two’s complementer. The relative magnitude is determined from the carry-out
(C) and zero (Z) signals according to Table 11.4. For wider inputs, any of the
faster adder architectures can be used.

Comparing signed two’s complement numbers is slightly more complicated
because of the possibility of overflow when subtracting two numbers with dif-
ferent signs. Instead of simply examining the carry-out, we must determine if
the result is negative (N, indicated by the most significant bit of the result) and
if it overflows the range of possible signed numbers. The overflow signal V is
true if the inputs had different signs (most significant bits) and the output sign
is different from the sign of B. The actual sign of the difference B – A is
S = N ⊕ V because overflow flips the sign. If this corrected sign is negative
(S = 1), we know A > B. Again, the other relations can be derived from the cor-
rected sign and the Z signal.

11.4.2  Equality Comparator
An equality comparator determines if (A = B). This can be done more simply and rapidly
with XNOR gates and a ones detector, as shown in Figure 11.46.

TABLE 11.4  Magnitude comparison

Relation Unsigned Comparison Signed Comparison

A = B Z Z

A ≠ B Z Z

A < B C · Z S · Z  

A > B C S

A ≤ B C S

A ≥ B C + Z S + Z

A0

B0

A1

B1

A2

B2

A3

B3

A = BZ

C

A − B

N
A − B>

<

FIGURE 11.45  
Unsigned magnitude comparator
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11.4.3  K = A + B Comparator
Sometimes it is necessary to determine if (A + B = K ). For example, the sum-
addressed memory [Heald98] described in Section 12.2.2.4 contains a decoder
that must match against the sum of two numbers, such as a register base address
and an immediate offset. Remarkably, this comparison can be done faster than
computing A + B because no carry propagation is necessary. The key is that if you
know A and B, you also know what the carry into each bit must be if K = A + B
[Cortadella92]. Therefore, you only need to check adjacent pairs of bits to verify
that the previous bit produces the carry required by the current bit, and then use a
ones detector to check that the condition is true for all N pairs. Specifically, if K =
A + B, Table 11.5 lists what the carry-in ci – 1 must have been for this to be true
and what the carry-out ci will be for each bit position i.

From this table, you can see that the required ci–1 for bit i is

 (11.26)

and the ci – 1 produced by bit i – 1 is

 (11.27)

Figure 11.47 shows one bitslice of a circuit to perform this operation. The XNOR
gate is used to make sure that the required carry matches the produced carry at each bit
position; then the AND gate checks that the condition is satisfied for all bits.

11.5   Counters
Two commonly used types of counters are binary counters and linear-feedback shift registers.
An N-bit binary counter sequences through 2N outputs in binary order. Simple designs
have a minimum cycle time that increases with N, but faster designs operate in constant
time. An N-bit linear-feedback shift register sequences through up to 2N – 1 outputs in
pseudo-random order. It has a short minimum cycle time independent of N, so it is useful
for extremely fast counters as well as pseudo-random number generation.

TABLE 11.5  Required and generated carries if K = A + B

Ai Bi Ki ci–1
(required)

ci
(produced)

0 0 0 0 0
0 0 1 1 0
0 1 0 1 1
0 1 1 0 0
1 0 0 1 1
1 0 1 0 0
1 1 0 0 1
1 1 1 1 1

c A B Ki i i i− = ⊕ ⊕1

c A B K A Bi i i i i i− − − − − −= ⊕( ) +1 1 1 1 1 1·

A[0]
B[0]

A = B

A[1]
B[1]

A[2]
B[2]

A[3]
B[3]

FIGURE 11.46  Equality comparator
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Some of the common features of counters include the following:

� Resettable: counter value is reset to 0 when RESET is asserted (essential for testing)
� Loadable: counter value is loaded with N-bit value when LOAD is asserted
� Enabled: counter counts only on clock cycles when EN is asserted
� Reversible: counter increments or decrements based on UP/DOWN input
� Terminal Count: TC output asserted when counter overflows (when counting up) 

or underflows (when counting down)

In general, divide-by-M counters (M < 2N) can be built using an ordinary N-bit
counter and circuitry to reset the counter upon reaching M. M can be a programmable
input if an equality comparator is used. Alternatively, a loadable counter can be used to
restart at N – M whenever TC indicates that the counter overflowed. 

11.5.1  Binary Counters
The simplest binary counter is the asynchronous ripple-carry counter, as shown in Figure
11.48. It is composed of N registers connected in toggle configuration, where the falling
transition of each register clocks the subsequent register. Therefore, the delay can be quite
long. It has no reset signal, making it difficult to test. In general, asynchronous circuits
introduce a whole assortment of problems, so the ripple-carry counter is shown mainly for
historical interest and is not recommended for commercial designs.

A general synchronous up/down counter is shown in Figure 11.49(a). It uses a resettable
register and full adder for each bit position. The cycle time is limited by the ripple-carry
delay. While a faster adder could be used, the next section describes a better way to build
fast counters. If only an up counter (also called an incrementer) is required, the full adder
degenerates into a half adder, as shown in Figure 11.49(b). Including an input multiplexer
allows the counter to load an initialization value. A clock enable is also often provided to
each register for conditional counting. The terminal count (TC) output indicates that the
counter has overflowed or underflowed. Figure 11.50 shows a fully featured resettable
loadable enabled synchronous up/down counter.

clk

Q0

Q1

Q2

Q3

FIGURE 11.48  
Asynchronous ripple-
carry counter

Ki

Ai
Bi

ci (Produced)

ci − 1

Equal

ci - 1

(Required)

(Produced)

FIGURE 11.47  A + B = K comparator
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11.5.2  Fast Binary Counters
The speed of the counter in Figure 11.49 is limited by the adder. This can be overcome by
dividing the counter into two or more segments [Ercegovac89]. For example, a 32-bit
counter could be constructed from a 4-bit prescalar counter and a 28-bit counter, as shown
in Figure 11.51. The TC output of the prescalar enables counting on the more significant
segment. Now, the cycle time is limited only by the prescalar speed because the 28-bit
adder has 24 cycles to produce a result. By using more segments, a counter of arbitrary
length can run at the speed of a 1- or 2-bit counter. 

Prescaling does not suffice for up/down counters because the more significant seg-
ment may have only a single cycle to respond when the counter changes direction. To solve
this, a shadow register can be used on the more significant segments to hold the previous
value that should be used when the direction changes [Stan98]. Figure 11.52 shows the
more significant segment for a fast up/down counter. On reset (not shown in the figure),
the dir register is set to 0, Q to 0, and shadow to –1. When UP/DOWN changes, swap is

FIGURE 11.51  Fast binary counter
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asserted for a cycle to load the new count from the shadow register rather than the adder
(which may not have had enough time to ripple carries).

11.5.3  Ring and Johnson Counters
A ring counter consists of an M-bit shift register with the output fed back to the input, as
shown in Figure 11.53(a). On reset, the first bit is initialized to 1 and the others are ini-
tialized to 0. TC toggles once every M cycles. Ring counters are a convenient way to build
extremely fast prescalars because there is no logic between flip-flops, but they become
costly for larger M.

A Johnson or Mobius counter is similar to a ring counter, but inverts the output before it
is fed back to the input, as shown in Figure 11.53(b). The flip-flops are reset to all zeros
and count through 2M states before repeating. Table 11.6 shows the sequence for a 3-bit
Johnson counter. 

11.5.4  Linerar-Feedback Shift Registers
A linear-feedback shift register (LFSR) consists of N registers configured as a shift regis-
ter. The input to the shift register comes from the XOR of particular bits of the register, as
shown in Figure 11.54 for a 3-bit LFSR. On reset, the registers must be initialized to a
nonzero value (e.g., all 1s). The pattern of outputs for the LFSR is shown in Table 11.7.

TABLE 11.6  Johnson counter sequence

Cycle Q0 Q1 Q2 TC

0 0 0 0 0
1 1 0 0 0
2 1 1 0 0
3 1 1 1 0
4 0 1 1 0
5 0 0 1 1
6 0 0 0 0

Repeats forever

TABLE 11.7  LFSR sequence

Cycle Q0 Q1 Q2 / Y

0 1 1 1
1 0 1 1
2 0 0 1
3 1 0 0
4 0 1 0
5 1 0 1
6 1 1 0
7 1 1 1

Repeats forever

s r r

clk

reset

TC
Q0 Q1 Q2

Q0 Q1 Q2

r r r

clk

reset
TC

(a)

(b)

FIGURE 11.53  3-bit ring and Johnson counters
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FIGURE 11.54  3-bit LFSR
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This LFSR is an example of a maximal-length shift register because its output
sequences through all 2n – 1 combinations (excluding all 0s). The inputs fed to the XOR
are called the tap sequence and are often specified with a characteristic polynomial. For exam-
ple, this 3-bit LFSR has the characteristic polynomial 1 + x 2 + x3 because the taps come
after the second and third registers.

The output Y follows the 7-bit sequence [1110010]. This is an example of a pseudo-
random bit sequence (PRBS). LFSRs are used for high-speed counters and pseudo-random
number generators. The pseudo-random sequences are handy for built-in self-test and
bit-error-rate testing in communications links. They are also used in many spread-
spectrum communications systems such as GPS and CDMA where their correlation
properties make other users look like uncorrelated noise.

Table 11.8 lists characteristic polynomials for some commonly used maximal-length
LFSRs. For certain lengths, N, more than two taps may be required. For many values of
N, there are multiple polynomials resulting in different maximal-length LFSRs. Observe
that the cycle time is set by the register and a small number of XOR delays. [Golomb81]
offers the definitive treatment on linear-feedback shift registers.

Example 11.1

Sketch an 8-bit linear-feedback shift register.
How long is the pseudo-random bit sequence
that it produces?

SOLUTION: Figure 11.55 shows an 8-bit LFSR
using the four taps after the 1st, 6th, 7th, and 8th
bits, as given in Table 11.7. It produces a sequence
of  28 – 1 = 255 bits before repeating.

TABLE 11.8  Characteristic polynomials

N Polynomial

3 1 + x2 + x3

4 1 + x3 + x4

5 1 + x3 + x5

6 1 + x5 + x6

7 1 + x6 + x7

8 1 + x1 + x6 + x7 + x8

9 1 + x5 + x9

15 1 + x14 + x15

16 1 + x4 + x13 + x15 + x16

23 1 + x18 + x23

24 1 + x17 + x22 + x23 + x24

31 1 + x28 + x31

32 1 + x10 + x30 + x31 + x32

Y

clk
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

FIGURE 11.55  8-bit LFSR
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11.6   Boolean Logical Operations
Boolean logical operations are easily accomplished using a multiplexer-based circuit, as
shown in Figure 11.56. Table 11.9 shows how the inputs are assigned to perform different
logical functions. By providing different P values, the unit can perform other operations
such as XNOR(A, B) or NOT(A). An Arithmetic Logic Unit (ALU) requires both arith-
metic (add, subtract) and Boolean logical operations.

11.7   Coding
Error-detecting and error-correcting codes are used to increase system reliability. Memory
arrays are particularly susceptible to soft errors caused by alpha particles or cosmic rays
flipping a bit. Such errors can be detected or even corrected by adding a few extra check bits
to each word in the array. Codes are also used to reduce the bit error rate in communica-
tion links.

The simplest form of error-detecting code is parity, which detects single-bit errors.
More elaborate error-correcting codes (ECC) are capable of single-error correcting and
double-error detecting (SEC-DED). Gray codes are another useful alternative to the
standard binary codes. All of the codes are heavily based on the XOR function, so we will
examine a variety of CMOS XOR designs. 

11.7.1  Parity
A parity bit can be added to an N-bit word to indicate whether the number of 1s in the
word is even or odd. In even parity, the extra bit is the XOR of the other N bits, which
ensures the (N + 1)-bit coded word has an even number of 1s:

 (11.28)

Figure 11.57 shows a conventional implementation. Multi-input XOR gates can also
be used. 

11.7.2  Error-Correcting Codes
The Hamming distance [Hamming50] between a pair of binary numbers is the number of
bits that differ between the two numbers. A single-bit error transforms a data word into
another word separated by a Hamming distance of 1. Error-correcting codes add check
bits to the data word so that the minimum Hamming distance between valid words
increases. Parity is an example of a code with a single check bit and a Hamming distance

TABLE 11.9  Functions implemented by Boolean unit

Operation P0 P1 P2 P3

AND(A, B) 0 0 0 1
OR(A, B) 0 1 1 1
XOR(A, B) 0 1 1 0
NAND(A, B) 1 1 1 0
NOR(A, B) 1 0 0 0
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FIGURE 11.56  
Boolean logical unit
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8-bit parity generator
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of 2 between valid words, so that single-bit errors lead to invalid words and hence are
detectable. If more check bits are added so that the minimum distance between valid
words is 3, a single-bit error can be corrected because there will be only one valid word
within a distance of 1. If the minimum distance between valid words is 4, a single-bit error
can be corrected and an error corrupting two bits can be detected (but not corrected). If
the probability of bit errors is low and uncorrelated from one bit to another, such single
error-correcting, double error-detecting (SEC-DED) codes greatly reduce the overall
error rate of the system. Larger Hamming distances improve the error rate further at the
expense of more check bits.

In general, you can construct a distance-3 Hamming code of length up to 2c – 1 with
c check bits and N = 2c – c – 1 data bits using a simple procedure [Wakerly00]. If the bits
are numbered from 1 to 2c – 1, each bit in a position that is a power of 2 serves as a check
bit. The value of the check bit is chosen to obtain even parity for all bits with a 1 in the
same position as the check bit, as illustrated in Figure 11.58(a) for a 7-bit code with 4 data
bits and 3 check bits. The bits are traditionally reorganized into contiguous data and check
bits, as shown in Figure 11.58(b). The structure is called a parity-check matrix and each
check bit can be computed as the XOR of the highlighted data bits:

 (11.29)

The error-correcting decoder examines the check bits. If they all have even parity, the
word is considered to be correct. If one or more groups have odd parity, an error has
occurred. The pattern of check bits that have the wrong parity is called the syndrome and
corresponds to the bit position that is incorrect. The decoder must flip this bit to recover
the correct result.

Example 11.2

Suppose the data value 1001 were to be transmitted using a distance-3 Hamming code.
What are the check bits? If the data bits were garbled into 1101 during transmission,
explain what the syndrome would be and how the data would be corrected.

SOLUTION: According to EQ (11.29), the check bits should be 100, corresponding to a
transmitted word of 1001100. The received word is 1101100. The syndrome is 110,
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i.e., odd parity on check bits C2 and C1, which indicates an error in bit position 110 =
6. This position is flipped to produce a corrected word of 1001100 and the check bits
are discarded, leaving the proper data value of 1001.

A SEC-DED distance-4 Hamming code can be constructed from a distance-3 code
by adding one more parity bit for the entire word. If there is a single-bit error, parity will
fail and the check bits will indicate how to correct the data. If there is a double-bit error,
the check bits will indicate an error, but parity will pass, indicating a detectable but uncor-
rectable double-bit error.

The parity check matrix determines the number of XORs required in the encoding
and decoding logic. A SEC-DED Hamming code for a 64-bit data word has 8 check bits.
It requires 296 XOR gates. The parity logic for the entire word has 72 inputs. The Hsiao
SEC-DED achieves the same function with the same number of data and check bits but is
ingeniously designed to minimize the cost, using only 216 XOR gates and parity logic
with a maximum of 27 inputs. [Hsiao70] shows parity-check matrices for 16, 32, and 64-
bit data words with 6, 7, and 8 check bits.

As the data length and allowable decoder complexity increase, other codes become
efficient. These include Reed-Solomon, BCH, and Turbo codes. [Lin83, Sweeney02,
Sklar01, Fujiwara06] and many other texts provide extensive information on a variety of
error-correcting codes.

11.7.3  Gray Codes
The Gray codes, named for Frank Gray, who patented their use on shaft encoders
[Gray53], have a useful property that consecutive numbers differ in only one bit position.
While there are many possible Gray codes, one of the simplest is the binary-reflected Gray
code that is generated by starting with all bits 0 and successively flipping the right-most bit
that produces a new string. Table 11.10 compares 3-bit binary and binary-reflected Gray
codes. Finite state machines that typically move through consecutive states can save power
by Gray-coding the states to reduce the number of transitions. When a counter value must
be synchronized across clock domains, it can be Gray-coded so that the synchronizer is
certain to receive either the current or previous value because only one bit changes each
cycle.

Converting between N-bit binary B and binary-reflected Gray code G representations
is remarkably simple.

TABLE 11.10  3-bit Gray code

Number Binary Gray Code

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100
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 (11.30)

11.7.4  XOR/XNOR Circuit Forms
One of the chronic difficulties in CMOS circuit design is to construct a fast, compact,
low-power XOR or XNOR gate. Figure 11.59 shows a number of common static single-
rail 2-input XOR designs; XNOR designs are similar. Figure 11.59(a) and Figure
11.59(b) show gate-level implementations; the first is cute, but the second is slightly more
efficient. Figure 11.59(c) shows a complementary CMOS gate. Figure 11.59(d) improves
the gate by optimizing out two contacts and is a commonly used standard cell design. Fig-
ure 11.59(e) shows a transmission gate design. Figure 11.59(f ) is the 6-transistor “invert-
ible inverter” design. When A is 0, the transmission gate turns on and B is passed to the
output. When A is 1, the A input powers a pair of transistors that invert B. It is compact,
but nonrestoring. Some switch-level simulators such as IRSIM cannot handle this uncon-
ventional design. Figure 11.59(g) [Wang94] is a compact and fast 4-transistor pass-gate
design, but does not swing rail to rail.

XOR gates with 3 or 4 inputs can be more compact, although not necessarily faster
than a cascade of 2-input gates. Figure 11.60(a) is a 4-input static CMOS XOR
[Griffin83] and Figure 11.60(b) is a 4-input CPL XOR/XNOR, while Figure 9.20(c)
showed a 4-input CVSL XOR/XNOR. Observe that the true and complementary trees
share most of the transistors. As mentioned in Chapter 9, CPL does not perform well at
low voltage.

Dynamic XORs pose a problem because both true and complementary inputs are
required, violating the monotonicity rule. The common solutions mentioned in Section
11.2.2.11 are to either push the XOR to the end of a chain of domino logic and build it
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with static CMOS or to construct a dual-rail domino structure. A dual-rail domino
2-input XOR was shown in Figure 9.30(c). 

11.8   Shifters 
Shifts can either be performed by a constant or variable amount. Constant shifts are trivial
in hardware, requiring only wires. They are also an efficient way to perform multiplication
or division by powers of two. A variable shifter takes an N-bit input, A, a shift amount, k,
and control signals indicating the shift type and direction. It produces an N-bit output, Y.
There are three common types of variable shifts, each of which can be to the left or right:

� Rotate: Rotate numbers in a circle such that empty spots are filled with bits shifted 
off the other end

○  Example: 1011 ROR 1 = 1101; 1011 ROL 1 = 0111
� Logical shift: Shift the number to the left or right and fills empty spots with zeros. 

○  Example: 1011 LSR 1 = 0101; 1011 LSL 1 = 0110 
� Arithmetic shift: Same as logical shifter, but on right shifts fills the most significant 

bits with copies of the sign bit (to properly sign, extend two’s complement num-
bers when using right shift by k for division by 2k). 

○  Example: 1011 ASR 1 = 1101; 1011 ASL 1 = 0110

Conceptually, rotation involves an array of N N-input multiplexers to select each of
the outputs from each of the possible input positions. This is called an array shifter. The
array shifter requires a decoder to produce the 1-of-N-hot shift amount. In practice, mul-
tiplexers with more than 4–8 inputs have excessive parasitic capacitance, so they are faster
to construct from logv N levels of v-input multiplexers. This is called a logarithmic shifter.
For example, in a radix-2 logarithmic shifter, the first level shifts by N/2, the second by
N/4, and so forth until the final level shifts by 1. In a logarithmic shifter, no decoder is
necessary. The CMOS transmission gate multiplexer of Figure 9.47 is especially well-
suited to logarithmic shifters because the hefty wire capacitance is driven directly by an
inverter rather than through a pair of series transistors. 4:1 or 8:1 transmission gate multi-
plexers reduce the number of levels by a factor of 2 or 3 at the expense of more wiring and
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fanout. Pairs or triplets of the shift amount are decoded to drive one-hot mux selects at
each level. [Tharakan92] describes a domino logarithmic shifter using 3:1 multiplexers to
reduce the number of logic levels.

A left rotate by k bits is equivalent to a right rotate by N – k bits. Computing N – k
requires a subtracter in the critical path. Taking advantage of two’s complement arithmetic
and the fact that rotation is cyclic modulo N, N – k = N + k + 1 = k + 1. Thus, the left
rotate can be performed by preshifting right by 1, then doing a right rotate by the comple-
mented shift amount.

Logical and arithmetic shifts are similar to rotates, but must replace bits at one end or
the other with a kill value (either 0 or the sign bit). The two major shifter architectures are
funnel shifters and barrel shifters. In a funnel shifter, the kill values are incorporated at the
beginning, while in a barrel shifter, the kill values are chosen at the end. Each of these
architectures is described below. Both barrel and funnel shifters can use array or logarith-
mic implementations. [Huntzicker08] examines the energy-delay trade-offs in static
shifters. For general-purpose shifting, both architectures are comparable in energy and
delay. Given typical parasitics capacitances, the theory of Logical Effort shows that loga-
rithmic structure using 4:1 multiplexers is most efficient. If only shift operations
(but not rotates) are required, the funnel architecture is simpler, while if only
rotates (but not shifts) are required, the barrel is simpler. 

11.8.1  Funnel Shifter
The funnel shifter creates a 2N – 1-bit input word Z from A and/or the kill val-
ues, then selects an N-bit field from this input word, as shown in Figure 11.61. It
gets its name from the way the wide word funnels down to a narrower one. Table
11.11 shows how Z is formed for each type of shift. Z incorporates the 1-bit pre-
shift for left shifts.

The simplest funnel shifter design consists of an array of N N-input
multiplexers accepting 1-of-N-hot select signals (one multiplexer for each
output bit). Such an array shifter is shown in Figure 11.62 using nMOS pass
transistors for a 4-bit shifter. The shift amount is conditionally inverted and
decoded into select signals that are fed vertically across the array. The outputs
are taken horizontally. Each row of transistors attached to an output forms
one of the multiplexers. The 2N – 1 inputs run diagonally to the appropriate
mux inputs. Figure 11.63 shows a stick diagram for one of the N 2 transistors
in the array. nMOS pass transistors suffer a threshold drop, but the problem
can be solved by precharging the outputs (done in the Alpha 21164
[Gronowski96]) or by using full CMOS transmission gates.

TABLE 11.11  Funnel shifter source generator

Shift Type Z2N – 2:N ZN – 1 ZN – 2:0 Offset

Logical Right AN–2:0 AN–1 AN–2:0 k

Arithmetic Right 0 AN–1 AN–2:0 k

Rotate Right sign AN–1 AN–2:0 k

Logical/Arithmetic Left AN–1:1 A0 AN–1:1 k

Rotate Left AN–1:1 A0 0 k

Z

OffsetOffset + N − 1

02N − 2

Y

0N − 1

FIGURE 11.61  Funnel shifter function
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FIGURE 11.62  4-bit array funnel shifter
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The array shifter works well for small shifters in transistor-level designs, but has high
parasitic capacitance in larger shifters, leading to excessive delay and energy. Moreover,
array shifters are not amenable to standard cell designs. Figure 11.64 shows a 4-bit loga-
rithmic shifter based on multiple levels of 2:1 multiplexers (which, of course, can be trans-
mission gates) [Lim72]. The XOR gates on the control inputs conditionally invert the
shift amount for left shifts. 

Figure 11.65 shows a 32-bit funnel shifter using a 4:1 multiplexer followed by an 8:1
multiplexer [Huntzicker08]. The source generator selects the 63-bit Z. The first stage per-
forms a coarse shift right by 0, 8, 16, or 24 bits. The second stage performs a fine shift
right by 0–7 bits. The mux decode block conditionally inverts k for left shifts, computes
the 1-hot selects, and buffers them to drive the wide multiplexers.

Conceptually, the source generator consists of a 2N – 1-bit 5:1 multiplexer controlled by
the shift type and direction. Figure 11.66 shows how the source generator logic can be sim-
plified. The horizontal control lines need to be buffered to drive the high fanout and they are
on the critical path. Even if they are available early, the sign bit is still critical. If only certain
types of shifts or rotates are supported, the logic can be optimized down further.
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The funnel shifter presents a layout problem
because the source generator and early stages of multi-
plexers are wider than the rest of the datapath. Figure
11.67 shows a floorplan in which the source generator
is folded to fit the datapath. Such folding also reduces
wire lengths, saving energy. Depending on the layout
constraints, the extra seven most significant bits of the
first-level multiplexer may be folded into another row
or incorporated into the zipper.

11.8.2  Barrel Shifter
A barrel shifter performs a right rotate operation
[Davis69]. As mentioned earlier, it handles left rota-
tions using the complementary shift amount. Barrel
shifters can also perform shifts when suitable masking
hardware is included. Barrel shifters come in array and
logarithmic forms; we focus on logarithmic barrel
shifters because they are better suited for large shifts.

Figure 11.68(a) shows a simple 4-bit barrel shifter
that performs right rotations. Notice how, unlike fun-
nel shifters, barrel shifters contain long wrap-around
wires. In a large shifter, it is beneficial to upsize or
buffer the drivers for these wires. Figure 11.68(b)
shows an enhanced version that can rotate left by pre-
rotating right by 1, then rotating right by k. Perform-
ing logical or arithmetic shifts on a barrel shifter
requires a way to mask out the bits that are rotated off
the end of the shifter, as shown in Figure 11.68(c).   

Figure 11.69 shows a 32-bit barrel shifter using a
5:1 multiplexer and an 8:1 multiplexer. The first stage
rotates right by 0, 1, 2, 3, or 4 bits to handle a prerotate
of 1 bit and a fine rotate of up to 3 bits combined into
one stage. The second stage rotates right by 0, 4, 8, 12,
16, 20, 24, or 28 bits. The critical path starts with
decoding the shift amount for the first stage. If the shift
amount is available early, the delay from A to Y
improves substantially. 

While the rotation is taking place, the masking
unit generates an N-bit mask with ones where the kill
value should be inserted for right shifts. For a right
shift by m, the m most significant bits are ones. This is
called a thermometer code and the logic to compute it
is described in Section 11.10. When the rotation result
X is complete, the masking unit replaces the masked bits with the kill value. For left shifts,
the mask is reversed. Figure 11.70 shows masking logic. If only certain shifts are sup-
ported, the unit can be simplified, and if only rotates are supported, the masking unit can
be eliminated, saving substantial hardware, power, and delay.
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11.8.3  Alternative Shift Functions
Other flavors of shifts, including shuffles, bit-reversals, interchanges, extraction, and
deposit, are sometimes required, especially for cryptographic and multimedia applications
[Hilewitz04, Hilewitz07]. These are also built from appropriate combinations of multi-
plexers. 

11.9   Multiplication
Multiplication is less common than addition, but is still essential for microprocessors, dig-
ital signal processors, and graphics engines. The most basic form of multiplication consists

of forming the product of two unsigned (positive) binary numbers. This can
be accomplished through the traditional technique taught in primary school,
simplified to base 2. For example, the multiplication of two positive 6-bit
binary integers, 2510 and 3910, proceeds as shown in Figure 11.71.

M × N-bit multiplication P = Y × X can be viewed as forming N partial
products of M bits each, and then summing the appropriately shifted partial
products to produce an M + N-bit result P. Binary multiplication is equivalent
to a logical AND operation. Therefore, generating partial products consists of
the logical ANDing of the appropriate bits of the multiplier and multiplicand.
Each column of partial products must then be added and, if necessary, any
carry values passed to the next column. We denote the multiplicand as

Y = {yM–1, yM–2, …, y1, y0} and the multiplier as X = {xN–1, xN–2, …, x1, x0}. For unsigned
multiplication, the product is given in EQ (11.31). Figure 11.72 illustrates the generation,
shifting, and summing of partial products in a 6 × 6-bit multiplier.

 (11.31)P y x x yj
j

j

M

i
i

i

N

i j
i j=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎛

⎝
⎜

⎞

⎠
⎟ =

=

−

=

−
+∑ ∑2 2 2

0

1

0

1

jj

M

i

N

=

−

=

−

∑∑
0

1

0

1

left

arith
AN − 1

maskN − 2:0 XN − 1:0

YN − 1:0

(sign)

shift

Kill X

Left
Shifts

Right
Shifts

Sign
Ext

R
everse

FIGURE 11.70  Barrel shifter masking logic

multiplier

multiplicand

partial 
products

product

      011001 : 2510
      100111 : 3910
      011001
     011001
    011001
   000000
  000000
+011001
001111001111 : 97510

FIGURE 11.71  Multiplication example

A

32

32

Masking

32

32

Y

5
k

5

8

arith

left
shift

X

5:1

8:1

M
ux D

ecode

FIGURE 11.69  32-bit 
logarithmic barrel shifter



11.9      Multiplication 477

Large multiplications can be more conveniently illustrated using dot diagrams. Figure
11.73 shows a dot diagram for a simple 16 × 16 multiplier. Each dot represents a place-
holder for a single bit that can be a 0 or 1. The partial products are represented by a hori-
zontal boxed row of dots, shifted according to their weight. The multiplier bits used to
generate the partial products are shown on the right.

There are a number of techniques that can be used to perform multiplication. In gen-
eral, the choice is based upon factors such as latency, throughput, energy, area, and design
complexity. An obvious approach is to use an M + 1-bit carry-propagate adder (CPA) to
add the first two partial products, then another CPA to add the third partial product to the
running sum, and so forth. Such an approach requires N – 1 CPAs and is slow, even if a
fast CPA is employed. More efficient parallel approaches use some sort of array or tree of
full adders to sum the partial products. We begin with a simple array for unsigned multi-
pliers, and then modify the array to handle signed two’s complement numbers using the
Baugh-Wooley algorithm. The number of partial products to sum can be reduced using
Booth encoding and the number of logic levels required to perform the summation can be
reduced with Wallace trees. Unfortunately, Wallace trees are complex to lay out and have
long, irregular wires, so hybrid array/tree structures may be more attractive. For complete-
ness, we consider a serial multiplier architecture. This was once popular when gates were
relatively expensive, but is now rarely necessary. 
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FIGURE 11.72  Partial products
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11.9.1  Unsigned Array Multiplication
Fast multipliers use carry-save adders (CSAs, see Section 11.2.4) to sum the partial prod-
ucts. A CSA typically has a delay of 1.5–2 FO4 inverters independent of the width of the
partial product, while a carry-propagate adder (CPA) tends to have a delay of 4–15+ FO4
inverters depending on the width, architecture, and circuit family. Figure 11.74 shows a
4 × 4 array multiplier for unsigned numbers using an array of CSAs. Each cell contains a
2-input AND gate that forms a partial product and a full adder (CSA) to add the partial
product into the running sum. The first row converts the first partial product into
carry-save redundant form. Each later row uses the CSA to add the corresponding partial
product to the carry-save redundant result of the previous row and generate a carry-save
redundant result. The least significant N output bits are available as sum outputs directly
from CSAs. The most significant output bits arrive in carry-save redundant form and
require an M-bit carry-propagate adder to convert into regular binary form. In Figure
11.74, the CPA is implemented as a carry-ripple adder. The array is regular in structure
and uses a single type of cell, so it is easy to design and lay out. Assuming the carry output
is faster than the sum output in a CSA, the critical path through the array is marked on
the figure with a dashed line. The adder can easily be pipelined with the placement of reg-
isters between rows. In practice, circuits are assigned rectangular blocks in the floorplan so
the parallelogram shape wastes space. Figure 11.75 shows the same adder squashed to fit a
rectangular block.
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FIGURE 11.74  Array multiplier
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A key element of the design is a compact CSA. This not only
benefits area but also helps performance because it leads to short
wires with low wire capacitance. An ideal CSA design has approxi-
mately equal sum and carry delays because the greater of these two
delays limits performance. The mirror adder from Figure 11.4 is
commonly used for its compact layout even though the sum delay
exceeds the carry delay. The sum output can be connected to the
faster carry input to partially compensate [Sutherland99, Hsu06a].

Note that the first row of CSAs adds the first partial product to
a pair of 0s. This leads to a regular structure, but is inefficient. At a
slight cost to regularity, the first row of CSAs can be used to add the
first three partial products together. This reduces the number of rows
by two and correspondingly reduces the adder propagation delay. Yet
another way to improve the multiplier array performance is to
replace the bottom row with a faster CPA such as a lookahead or tree
adder. In summary, the critical path of an array multiplier involves
N–2 CSAs and a CPA.

11.9.2  Two’s Complement Array Multiplication
Multiplication of two’s complement numbers at first might seem
more difficult because some partial products are negative and must
be subtracted. Recall that the most significant bit of a two’s comple-
ment number has a negative weight. Hence, the product is 

In EQ (11.32), two of the partial products have negative weight and thus should be
subtracted rather than added. The Baugh-Wooley [Baugh73] multiplier algorithm handles
subtraction by taking the two’s complement of the terms to be subtracted (i.e., inverting the
bits and adding one). Figure 11.76 shows the partial products that must be summed. The
upper parallelogram represents the unsigned multiplication of all but the most significant
bits of the inputs. The next row is a single bit corresponding to the product of the most
significant bits. The next two pairs of rows are the inversions of the terms to be subtracted.
Each term has implicit leading and trailing zeros, which are inverted to leading and trail-
ing ones. Extra ones must be added in the least significant column when taking the two’s
complement. 

The multiplier delay depends on the number of partial product rows to be summed.
The modified Baugh-Wooley multiplier [Hatamian86] reduces this number of partial prod-
ucts by precomputing the sums of the constant ones and pushing some of the terms
upward into extra columns. Figure 11.77 shows such an arrangement. The parallelogram-
shaped array can again be squashed into a rectangle, as shown in Figure 11.78, giving a
design almost identical to the unsigned multiplier of Figure 11.75. The AND gates are
replaced by NAND gates in the hatched cells and 1s are added in place of 0s at two of the
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unused inputs. The signed and unsigned arrays are so similar that a single array can be used
for both purposes if XOR gates are used to conditionally invert some of the terms depend-
ing on the mode.

11.9.3  Booth Encoding
The array multipliers in the previous sections compute the partial products in a radix-2
manner; i.e., by observing one bit of the multiplier at a time. Radix 2r multipliers produce
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N/r partial products, each of which depend on r bits of the multiplier. Fewer partial prod-
ucts leads to a smaller and faster CSA array. For example, a radix-4 multiplier produces
N/2 partial products. Each partial product is 0, Y, 2Y, or 3Y, depending on a pair of bits of
X. Computing 2Y is a simple shift, but 3Y is a hard multiple requiring a slow carry-
propagate addition of Y + 2Y before partial product generation begins.

Booth encoding was originally proposed to accelerate serial multiplication [Booth51].
Modified Booth encoding [MacSorley61] allows higher radix parallel operation without gen-
erating the hard 3Y multiple by instead using negative partial products. Observe that
3Y = 4Y – Y and 2Y = 4Y – 2Y. However, 4Y in a radix-4 multiplier array is equivalent to Y
in the next row of the array that carries four times the weight. Hence, partial products are
chosen by considering a pair of bits along with the most significant bit from the previous
pair. If the most significant bit from the previous pair is true, Y must be added to the cur-
rent partial product. If the most significant bit of the current pair is true, the current par-
tial product is selected to be negative and the next partial product is incremented. 

Table 11.12 shows how the partial products are selected, based on bits of the multi-
plier. Negative partial products are generated by taking the two’s complement of the
multiplicand (possibly left-shifted by one column for –2Y ). An unsigned radix-4 Booth-
encoded multiplier requires  partial products rather than N. Each partial
product is M + 1 bits to accommodate the 2Y and –2Y multiples. Even though X and Y are
unsigned, the partial products can be negative and must be sign extended properly. The
Booth selects will be discussed further after an example.

Example 11.3

Repeat the multiplication of P = Y × X = 0110012 × 1001112 from Fig-
ure 11.71, applying Booth encoding to reduce the number of partial
products.

SOLUTION: Figure 11.79 shows the multiplication. X is written verti-
cally and the bits are used to select the four partial products. Each par-
tial product is shifted two columns left of the previous one because it
has four times the weight. The upper bits are sign-extended with 1s for
negative partial products and 0s for positive partial products. The par-
tial products are added to obtain the result.

TABLE 11.12  Radix-4 modified Booth encoding values

Inputs Partial Product Booth Selects

x2i+1 x2i x2i–1 PPi SINGLEi DOUBLEi NEGi

0 0 0 0 0 0 0
0 0 1 Y 1 0 0
0 1 0 Y 1 0 0
0 1 1 2Y 0 1 0
1 0 0 –2Y 0 1 1
1 0 1 –Y 1 0 1
1 1 0 –Y 1 0 1
1 1 1 –0 (= 0) 0 0 1
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FIGURE 11.79  Booth-encoded example
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In a typical radix-4 Booth-encoded multiplier design, each group of 3 bits (a pair,
along with the most significant bit of the previous pair) is encoded into several select lines
(SINGLEi, DOUBLEi, and NEGi, given in the rightmost columns of Table 11.12) and
driven across the partial product row as shown in Figure 11.80. The multiplier Y is distrib-
uted to all the rows. The select lines control Booth selectors that choose the appropriate
multiple of Y for each partial product. The Booth selectors substitute for the AND gates of
a simple array multiplier to determine the ith partial product. Figure 11.80 shows a con-
ventional Booth encoder and selector design [Goto92]. Y is zero-extended to M + 1 bits.
Depending on SINGLEi and DOUBLEi, the A22OI gate selects either 0, Y, or 2Y. Nega-
tive partial products should be two’s-complemented (i.e., invert and add 1). If NEGi is
asserted, the partial product is inverted. The extra 1 can be added in the least significant
column of the next row to avoid needing a CPA. 

Even in an unsigned multiplier, negative partial products must be sign-extended to be
summed correctly. Figure 11.81 shows a 16-bit radix-4 Booth partial product array for an
unsigned multiplier using the dot diagram notation. Each dot in the Booth-encoded mul-
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tiplier is produced by a Booth selector rather than a simple AND gate. Partial products
0–7 are 17 bits. Each partial product i is sign extended with si = NEGi = x2i+1, which is 1
for negative multiples (those in the bottom half of Table 11.12) or 0 for positive multiples.
Observe how an extra 1 is added to the least significant bit in the next row to form the 2’s
complement of negative multiples. Inverting the implicit leading zeros generates leading
ones on negative multiples. The extra terms increase the size of the multiplier. PP8 is
required in case PP7 is negative; this partial product is always 0 or Y because x16 and x17
are 0. Hence, partial product 8 is only 16 bits.

Observe that the sign extension bits are all either 1s or 0s. If a single 1 is added to
the least significant position in a string of 1s, the result is a string of 0s plus a carry-out
the top bit that may be discarded. Therefore, the large number of s bits in each partial
product can be replaced by an equal number of constant 1s plus the inverse of s added to
the least significant position, as shown in Figure 11.82(a). These constants mostly can
be optimized out of the array by precomputing their sum. The simplified result is shown
in Figure 11.82(b). As usual, it can be squashed to fit a rectangular floorplan. 

The critical path of the multiplier involves the Booth decoder, the select line drivers,
the Booth selector, approximately N/2 CSAs, and a final CPA. Each partial product fills
about M + 5 columns. 54 × 54-bit radix-4 Booth multipliers for IEEE double-precision
floating-point units are typically 20–50% smaller (and arguably up to 20% faster) than
nonencoded counterparts, so the technique is widely used. The multiplier requires
M × N/2 Booth selectors. 

Because the selectors account for a substantial portion of the area and only a small
fraction of the critical path, they should be optimized for size over speed. For example,
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[Goto97] describes a sign select Booth encoder and selector that uses only 10 transistors per
selector bit at the expense of a more complex encoder. [Hsu06a] presents a one-hot Booth
encoder and selector that chooses one of the six possible partial products using a transmis-
sion gate multiplexer. Exercise 11.18 explores yet another encoding.

11.9.3.1 Booth Encoding Signed Multipliers Signed two’s complement multiplication is
similar, but the multiplicand may have been negative so sign extension must be done based
on the sign bit of the partial product, PPiM [Bewick94]. Figure 11.83 shows such an array,
where the sign extension bit is ei = PPiM. Also notice that PP8, which was either Y or 0 for
unsigned multiplication, is always 0 and can be omitted for signed multiplication because
the multiplier x is sign-extended such that x17 = x16 = x15. The same Booth selector and
encoder can be employed (see Figure 11.80), but Y should be sign-extended rather than
zero-extended to M + 1 bits.

11.9.3.2 Higher Radix Booth Encoding Large multipliers can use Booth encoding of
higher radix. For example, ordinary radix-8 multiplication reduces the number of partial
products by a factor of 3, but requires hard multiples of 3Y, 5Y, and 7Y. Radix-8 Booth-
encoding only requires the hard 3Y multiple, as shown in Table 11.13. Although this
requires a CPA before partial product generation, it can be justified by the reduction in
array size and delay. Higher-radix Booth encoding is possible, but generating the other
hard multiples appears not to be worthwhile for multipliers of fewer than 64 bits. Similar
techniques apply to sign-extending higher-radix multipliers. 

TABLE 11.13  Radix-8 modified Booth encoding values

xi+2 xi+1 xi xi–1 Partial Product

0 0 0 0 0
0 0 0 1 Y
0 0 1 0 Y
0 0 1 1 2Y
0 1 0 0 2Y
0 1 0 1 3Y
0 1 1 0 3Y
0 1 1 1 4Y
1 0 0 0 –4Y
1 0 0 1 –3Y
1 0 1 0 –3Y
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11.9.4  Column Addition
The critical path in a multiplier involves summing the dots in each column. Observe that
a CSA is effectively a “ones counter” that adds the number of 1s on the A, B, and C inputs
and encodes them on the sum and carry outputs, as summarized in Table 11.14. A CSA is
therefore also known as a (3,2) counter because it converts three inputs into a count
encoded in two outputs [Dadda65]. The carry-out is passed to the next more significant
column, while a corresponding carry-in is received from the previous column. This is
called a horizontal path because it crosses columns. For simplicity, a carry is represented as
being passed directly down the column. Figure 11.84 shows a dot diagram of an array
multiplier column that sums N partial products sequentially using N–2 CSAs. For exam-
ple, the 16 × 16 Booth-encoded multiplier from Figure 11.82(b) sums nine partial prod-
ucts with seven levels of CSAs. The output is produced in carry-save redundant form
suitable for the final CPA.

The column addition is slow because only one CSA is active at a
time. Another way to speed the column addition is to sum partial prod-
ucts in parallel rather than sequentially. Figure 11.85 shows a Wallace tree
using this approach [Wallace64]. The Wallace tree requires 

levels of (3,2) counters to reduce N inputs down to two carry-save redun-
dant form outputs. 

Even though the CSAs in the Wallace tree are shown in two dimen-
sions, they are logically packed into a single column of the multiplier.
This leads to long and irregular wires along the column to connect the
CSAs. The wire capacitance increases the delay and energy of multiplier,
and the wires can be difficult to lay out. 

1 0 1 1 –2Y
1 1 0 0 –2Y
1 1 0 1 –Y
1 1 1 0 –Y
1 1 1 1 –0

TABLE 11.14  An adder as a ones counter

A B C Carry Sum Number of 1s

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 1
0 1 1 1 0 2
1 0 0 0 1 1
1 0 1 1 0 2
1 1 0 1 0 2
1 1 1 1 1 3

TABLE 11.13  Radix-8 modified Booth encoding values
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11.9.4.1 [4:2] Compressor Trees [4:2] compressors can be used in a binary tree to produce
a more regular layout, as shown in Figure 11.86 [Weinberger81, Santoro89]. A [4:2] com-
pressor takes four inputs of equal weight and produces two outputs. It can be constructed
from two (3,2) counters as shown in Figure 11.87. Along the way, it generates an interme-

diate carry, ti, into the next column and accepts a carry, ti–1, from the previous col-
umn, so it may more aptly be called a (5,3) counter. This horizontal path does not
impact the delay because the output of the top CSA in one column is the input of
the bottom CSA in the next column. The [4:2] CSA symbol emphasizes only the
primary inputs and outputs to emphasize the main function of reducing four
inputs to two outputs. Only 

levels of [4:2] compressors are required, although each has greater delay than a
CSA. The regular layout and routing also make the binary tree attractive. 

To see the benefits of a [4:2] compressor, we introduce the notion of fast and
slow inputs and outputs. Figure 11.88 shows a simple gate-level CSA design. The
longest path through the CSA involves two levels of XOR2 to compute the sum.
X is called a fast input, while Y and Z are slow inputs because they pass through a
second level of XOR. C is the fast output because it involves a single gate delay,
while S is the slow output because it involves two gate delays. A [4:2] compressor
might be expected to use four levels of XOR2s. Figure 11.89 shows various [4:2]
compressor designs that reduce the critical path to only 3 XOR2s. In Figure
11.89(a), the slow output of the first CSA is connected to the fast input of the sec-
ond. In Figure 11.89(b), the [4:2] compressor has been munged into a single cell,

log2 2
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allowing a majority gate to be replaced with a multiplexer. In
Figure 11.89(c), the initial XORs have been replaced with 2-level
XNOR circuits that allow some sharing of subfunctions, reduc-
ing the transistor count [Goto92].

Figure 11.90 shows a transmission gate implementation of a
[4:2] compressor from [Goto97]. It uses only 48 transistors,
allowing for a smaller multiplier array with shorter wires. Note
that it uses three distinct XNOR circuit forms and two transmis-
sion gate multiplexers. 

Figure 11.91 compares floorplans of the 16 × 16 Booth-
encoded array multiplier from Figure 11.84, the Wallace tree
from Figure 11.85, and the [4:2] tree from Figure 11.86. Each
row represents a horizontal slice of the multiplier containing a
Booth selector or a CSA. Vertical busses connect CSAs. The
Wallace tree has the most irregular and lengthy wiring. In prac-
tice, the parallelogram may be squashed into a rectangular form
to make better use of the space. [Itoh01n] and [Huang05]
describes floorplanning issues in tree multipliers.

11.9.4.2 Three-Dimensional Method The notion of connecting
slow outputs to fast inputs generalizes to compressors with more
than four inputs. By examining the entire partial product array at
once, one can construct trees for each column that sum all of the
partial products in the shortest possible time. This approach is called the three-dimensional
method (TDM) because it considers the arrival time as a third dimension along with rows
and columns [Oklobdzija96, Stelling98].

Figure 11.92 shows an example of a 16 × 16 multiplier. The parallelogram at the top
shows the dot diagram from Figure 11.82(b) containing nine partial product rows
obtained through Booth encoding. The partial products in each of the 32 columns must be
summed to produce the 32-bit result. As we have seen, this is done with a compressor to
produce a pair of outputs, followed by a final CPA.
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FIGURE 11.90  Transmission gate [4:2] compressor
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In the three-dimensional method, each column is summed with a vertical
compressor slice (VCS) made of CSAs. In Figure 11.92, VCS 16 adds nine par-
tial products. In this diagram, the horizontal carries between compressor slices
are shown explicitly. 

Each wire is labeled with its arrival time. All partial product inputs arrive
at time 0. The diagram assumes that an XOR2 and a majority gate each have
unit delay. Thus, a path through a CSA from any input to C or from X to S
takes one unit delay, and that a path from Y or Z to S takes two unit delays. A
half adder is assumed to have half the delay. Horizontal carries are represented
by diagonal lines coming from behind the slice or pointing out of the slice.
VCS 16 receives five horizontal carries in from VCS 15 and produces six hori-
zontal carries out to VCS 17. The final carry out is also shifted by one column
before driving the CPA. The inputs to the CSAs are arranged based on their
arrival times to minimize the delay of the multiplier. Note how the CSA shape
is drawn to emphasize the asymmetric delays. Also, note that VCS 16 is not
the slowest; some of the subsequent slices have one unit more delay because
the horizontal carries arrive later. [Oklobdzija96] describes an algorithm for
choosing the fastest arrangement of CSAs in each VCS given arbitrary CSA
delays. In comparison, Figure 11.93 shows the same VCS 16 using [4:2]
CSAs; more XOR levels are required but the wiring is more regular.
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Table 11.15 lists the number of XOR levels on the critical path for various numbers of
partial products. [4:2] trees offer a substantial improvement over Wallace trees in logic lev-
els as well as wiring complexity. TDM generally saves one level of XOR over [4:2] trees, or
more for very large multiplies. This savings comes at the cost of irregular wiring, so [4:2]
trees and variants thereof remain popular.

11.9.4.3 Hybrid Multiplication Arrays offer regular layout, but many levels of CSAs.
Trees offer fewer levels of CSAs, but less regular layout and some long wires. A number of
hybrids have been proposed that offer trade-offs between these two extremes. These
include odd/even arrays [Hennessy90], arrays of arrays [Dhanesha95], balanced delay trees
[Zuras86], overturned-staircase trees [Mou90], and upper/lower left-to-right leapfrog
(ULLRF) trees [Huang05]. They can achieve nearly as few levels of logic as the Wallace
tree while offering more regular (and faster) wiring. None have caught on as distinctly bet-
ter than [4:2] trees. 

11.9.5  Final Addition
The output of the partial product array or tree is an M + N-bit number in carry-save
redundant form. A CPA performs the final addition to convert the result back to nonre-
dundant form. 

The inputs to the CPA have nonuniform arrival times. As Figure 11.91 illustrated,
the partial products form a parallelogram, with the middle columns having more partial
products than the left or right columns. Hence, the middle columns arrive at the CPA
later than the others. This can be exploited to simplify the CPA [Zimmermann96,
Oklobdzija96]. Figure 11.94 shows an example of a 32-bit prefix network that takes
advantage of nonuniform arrival times out of a 16 × 16-bit multiplier. The initial and final
stages to compute bitwise PG signals and the sums are not shown. The path from the lat-
est middle inputs to the output involves only four levels of cells. The total number of cells

TABLE 11.15  Comparison of XOR levels in multiplier trees

# Partial Products Wallace Tree 4:2 Tree TDM

8 8 6 5
9 8 8 6
16 12 9 8
24 14 11 10
32 16 12 11
64 20 15 14

012345678910111213141516171819202122232425262728293031

Time

FIGURE 11.94  CPA prefix network with nonuniform input arrival times
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and the energy consumption is much less than that of a conventional Kogge-Stone or
Sklansky CPA.

11.9.6  Fused Multiply-Add
Many algorithms, particularly in digital signal processing, require computing P = X × Y +
Z. While this can be done with a multiplier and adder, it is much faster to use a fused
multiply-add unit, which is simply an ordinary multiplier modified to accept another input
Z that is summed just like the other partial products [Montoye90]. The extra partial prod-
uct increases the delay of an array multiplier by just one extra CSA. 

11.9.7  Serial Multiplication
This section is available in the online Web Enhanced chapter at www.cmosvlsi.com.

11.9.8  Summary
The three steps of multiplication are partial product generation, partial product reduction,
and carry propagate addition. A simple M × N multiplier generates N partial products
using AND gates. For multipliers of 16 or more bits, radix-4 Booth encoding is typically
used to cut the number of partial products in two, saving substantial area and power. Some
implementations find Booth encoding is faster, while others find it has little speed benefit.
The partial products are then reduced to a pair of numbers in carry-save redundant form
using an array or tree of CSAs. Trees have fewer levels of logic, but longer and less regular
wiring; nevertheless most large multipliers use trees or hybrid structures. Pass transistor
Booth selectors and CSAs were popular in the 1990s, but the trend is toward static
CMOS as supply voltage scales. Finally, a CPA converts the result to nonredundant form.
The CPA can be simplified based on the nonuniform arrival times of the bits. 

Table 11.16 compares reported implementations of 54 × 54-bit multipliers for double-
precision floating point arithmetic. All of the implementations use radix-4 Booth encoding.

TABLE 11.16  54 × 54-bit multipliers

Design Process 
(mm)

PP 
Reduction

Circuits Area 
(mm × mm)

Area 
(Ml2)

Transistors Latency 
(ns)

Power 
(mW)

[Mori91] 0.5 4:2 tree Pass 
Transistor 

XOR

3.6 × 3.5 200 82k 10 870

[Goto92] 0.8 4:2 tree Static 3.4 × 3.9 80 83k 13 875 
[Heikes94] 0.8 array Dual-Rail 

Domino
2.1 × 2.2 28 20

(2-stage pipeline)
[Ohkubo95] 0.25 4:2 tree Pass 

Transistors
3.7 × 3.4 805 100k 4.4

[Goto97] 0.25 4:2 tree Pass 
Transistors

1.0 × 1.3 84 61k 4.1

[Itoh01] 0.18 4:2 tree Static 1 × 1 100 3.2
(2-stage pipeline)

[Belluomini05] 90 nm 3:2 and 
4:2 tree

LSDL 0.4 × 0.3 61 1800 @ 
8 GHz

[Kuang05] 90 nm 3:2 and 
4:2 tree

Pass 
Transistor 

and Domino

0.5 × 0.4 94 426 @ 
4 GHz

WEB
ENHANCED
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11.10   Parallel-Prefix Computations 
Many datapath operations involve calculating a set of outputs from a set of inputs in which
each output bit depends on all the previous input bits. Addition of two N-bit inputs AN…A1
and BN…B1 to produce a sum output YN…Y1 is a classic example; each output Yi depends on
a carry-in ci–1 from the previous bit, which in turn depends on a carry-in ci–2 from the bit
before that, and so forth. At first, this dependency chain might seem to suggest that the
delay must involve about N stages of logic, as in a carry-ripple adder. However, we have seen
that by looking ahead across progressively larger blocks, we can construct adders that involve
only log N stages. Section 11.2.2.2 introduced the notion of addition as a prefix computation
that involves a bitwise precomputation, a tree of group logic to form the prefixes, and a final
output stage, shown in Figure 11.12. In this section, we will extend the same techniques to
other prefix computations with associative group logic functions.

Let us begin with the priority encoder shown in Figure 11.95. A common application
of a priority encoder circuit is to arbitrate among N units that are all requesting access to a
shared resource. Each unit i sends a bit Ai indicating a request and receives a bit Yi indicat-
ing that it was granted access; access should only be granted to a single unit with highest
priority. If the least significant bit of the input corresponds to the highest priority, the
logic can be expressed as follows: 

 (11.33)

We can express priority encoding as a prefix operation by defining a prefix Xi:j  indi-
cating that none of the inputs Ai…Aj are asserted. Then, priority encoding can be defined
with bitwise precomputation, group logic, and output logic with i ≥ k > j:

 (11.34)

Any of the group networks (e.g., ripple, skip, lookahead, select, increment, tree) dis-
cussed in the addition section can be used to build the group logic to calculate the Xi:0 pre-
fixes. Short priority encoders use the ripple structure. Medium-length encoders may use a
skip, lookahead, select, or increment structure. Long encoders use prefix trees to obtain log
N delay. Figure 11.96 shows four 8-bit priority encoders illustrating the different group
logic. Each design uses an initial row of inverters for the Xi:i precomputation and a final
row of AND gates for the Yi output logic. In between, ripple, lookahead, increment, and
Sklansky networks form the prefixes with various trade-offs between gate count and delay.
Compare these trees to Figure 11.15, Figure 11.22, Figure 11.25, and Figure 11.29(b),
respectively. [Wang00, Delgado-Frias00, Huang02] describe a variety of priority encoder
implementations.

An incrementer can be constructed in a similar way. Adding 1 to an input word con-
sists of finding the least significant 0 in the word and inverting all the bits up to this point.
The X prefix plays the role of the propagate signal in an adder. Again, any of the prefix
networks can be used with varying area-speed trade-offs. 
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 (11.35)

Decrementers and two’s complement circuits are also similar [Hashemian92]. The decre-
menter finds the least significant 1 and inverts all the bits up to this point. The two’s comple-
ment circuit negates a signed number by inverting all the bits above the least significant 1.

A binary-to-thermometer decoder is another application of a prefix computation. The
input B is a k-bit representation of the number M. The output Y is a 2k-bit number with
the M most significant bits set to 1, as given in Table 11.17. A simple approach is to use an
ordinary k:2k decoder to produce a one-hot 2k-bit word A. Then, the following prefix
computation can be applied:

X A

X X X
i i i
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(11.36)

TABLE 11.17  Binary to thermometer decoder

B Y
000 00000000
001 10000000
010 11000000
011 11100000
100 11110000
101 11111000
110 11111100
111 11111110
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FIGURE 11.97  
Binary-to-thermometer decoders

Figure 11.97(a) shows an 8-bit binary-to-thermometer decoder using a
Sklansky tree. The 3:8 decoder contains eight 3-input AND gates operating on
true and complementary versions of the input. However, the logic can be signifi-
cantly simplified by eliminating the complemented AND inputs, as shown in
Figure 11.97(b)

In a slightly more complicated example, consider a modified priority
encoder that finds the first two 1s in a string of binary numbers. This might be
useful in a cache with two write ports that needs to find the first two free words
in the cache. We will use two prefixes: X and W. Again, Xi:j indicates that none
of the inputs Ai…Aj are asserted. Wi:j indicates exactly one of the inputs Ai…Aj
is asserted. We will produce two 1-hot outputs, Y and Z, indicating the first
two 1s.

(11.37)

11.11   Pitfalls and Fallacies
Equating logic levels and delay
Comparing a novel design with the best existing design is difficult. Some engineers cut corners 

by merely comparing logic levels. Unfortunately, delay depends strongly on the logical effort 

of each stage, the fanout it must drive, and the wiring capacitance. For example, [Srinivas92] 

claims that a novel adder is 20–28% faster than the fastest known binary lookahead adder, but 
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does not present simulation results. Moreover, it reports some of the speed advantages to three 

or four significant figures. On closer examination [Dobson95], the adder proves to just be a hy-

brid tree/carry-select design with some unnecessary precomputation.

Designing circuits with threshold drops
In modern processes, single-pass transistors that pull an output to VDD – Vt are generally un-

acceptable because the threshold drop (amplified by the body effect) results in an output with 

too little noise margin. Moreover, when they drive the gate terminals of a subsequent stage, 

the stage turns partially ON and consumes static power. Many 10-transistor full-adder cells 

have been proposed that suffer from such a threshold drop problem.

Reinventing adders
There is an enormous body of literature on adders with various trade-offs among speed, area, 

and power consumption. The design space has been explored fairly well and many designers 

(one of the authors included) have spent quite a bit of time developing a “new” adder, only to 

find that it is only a minor variation on an existing theme. Similarly, a number of recent pub-

lications on priority encoders reinvent prefix network techniques that have already been ex-

plored in the context of addition.

Summary
This chapter has presented a range of datapath subsystems. How one goes about designing
and implementing a given CMOS chip is largely affected by the availability of tools, the
schedule, the complexity of the system, and the final cost goals of the chip. In general, the
simplest and least expensive (in terms of time and money) approach that meets the target
goals should be chosen. For many systems, this means that synthesis and place & route is
good enough. Modern synthesis tools draw on a good library of adders and multipliers
with various area/speed trade-offs that are sufficient to cover a wide range of applications.
For systems with the most stringent requirements on performance or density, custom
design at the schematic level still provides an advantage. Domino parallel-prefix trees pro-
vide the fastest adders when the high power consumption can be tolerated. Domino CSAs
are also used in fast multipliers. However, in multiplier design, the wiring capacitance is
paramount and a multiplier with compact cells and short wires can be fast as well as small
and low in power.

Exercises
11.1 Design a fast 8-bit adder. The inputs may drive no more than 30 λ of transistor 

width each and the output must drive a 20/10 λ inverter. Simulate the adder and 
determine its delay.

11.2 When adding two unsigned numbers, a carry-out of the final stage indicates an 
overflow. When adding two signed numbers in two’s complement format, overflow 
detection is slightly more complex. Develop a Boolean equation for overflow as a 
function of the most significant bits of the two inputs and the output.
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  11.3 Repeat Exercise 11.2 for a signed add/subtract unit like that shown in Figure 
11.41(b). Your overflow output should be a function of the subsignal and the most 
significant bits of the two inputs and the output. 

  11.4 Develop equations for the logical effort and parasitic delay with respect to the C0 
input of an n-stage Manchester carry chain computing C1…Cn. Consider all of the 
internal diffusion capacitances when deriving the parasitic delay. Use the transistor 
widths shown in Figure 11.98 and assume the Pi and Gi transistors of each stage 
share a single diffusion contact. 

P1
φ

G1

φ

G2

P2
φ

Gn

Pn

C0 (G0)

C1 (G1:0)

Cn (Gn:0)

Cn − 1 (Gn − 1:0)

4 4
4

4
4

4
4

111

2/0.5 2/0.5
2/0.5

FIGURE 11.98  Manchester carry chain

  11.5 Using the results of Exercise 11.4, what Manchester carry chain length gives the 
least delay for a long adder?

  11.6 The carry increment adder in Figure 11.26(b) with variable block size requires five 
stages of valency-2 group PG cells for 16-bit addition. How many stages are 
required for 32-bit addition? For 64-bit addition?

  11.7 Sketch the PG network for a modified 16-bit Sklansky adder with fanout of [8, 1, 
1, 1] rather than [8, 4, 2, 1]. Use buffers to prevent the less-significant bits from 
loading the critical path.

  11.8 Figure 11.29 shows PG networks for various 16-bit adders and Figure 11.30 illus-
trates how these networks can be classified as the intersection of the l + f + t = 3 
plane with the face of a cube. The plane also intersects one point inside the cube at 
(l, f, t) = (1, 1, 1) [Harris03]. Sketch the PG network for this 16-bit adder. 

  11.9 Sketch a diagram of the group PG tree for a 32-bit Ladner-Fischer adder.

11.10 Write a Boolean expression for Cout in the circuit shown in Figure 11.6(b). Simplify 
the equation to prove that the pass-transistor circuits do indeed compute the major-
ity function.

11.11 Prove EQ (11.21).

11.12 Sketch a design for a comparator computing A – B = k.

11.13 Show how the layout of the parity generator of Figure 11.57 can be designed as a 
linear column of XOR gates with a tree-routing channel.

11.14 Design an ECC decoder for distance-3 Hamming codes with c = 3. Your circuit 
should accept a 7-bit received word and produce a 4-bit corrected data word. 
Sketch a gate-level implementation.

11.15 How many check bits are required for a distance-3 Hamming code for 8-bit data 
words? Sketch a parity-check matrix and write the equations to compute each of 
the check bits.
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11.16 Find the 4-bit binary-reflected Gray code values for the numbers 0–15.

11.17 Design a Gray-coded counter in which only one bit changes on each cycle.

11.18 Table 11.12 and Figure 11.80 illustrated radix-4 Booth encoding using SINGLE, 
DOUBLE, and NEG. An alternative encoding is to use POS, NEG, and         
DOUBLE. POS is true for the multiples Y and 2Y. NEG is true for the multiples    
–Y and –2Y. DOUBLE is true for the multiples 2Y and –2Y. Design a Booth 
encoder and selector using this encoding.

11.19 Adapt the priority encoder logic of EQ (11.37) to produce three 1-hot outputs 
corresponding to the first three 1s in an input string.

11.20 Sketch a 16-bit priority encoder using a Kogge-Stone prefix network.

11.21 Use Logical Effort to estimate the delay of the priority encoder from Exercise 
11.20. Assume the path electrical effort is 1.

11.22 Write equations for a prefix computation that determines the second location in 
which the pattern 10 appears in an N-bit input string. For example, 010010 should 
return 010000.

11.23 [ Jackson04] proposes an extension of the Ling adder formulation to simplify cells 
later in the prefix network. Design a 16-bit adder using this technique and com-
pare it to a conventional 16-bit Ling adder.
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