

1

1

Introduction

1.1

A Brief History

In 1958, Jack Kilby built the first integrated circuit flip-flop with two transistors at Texas
Instruments. In 2008, Intel’s Itanium microprocessor contained more than 2 billion tran-
sistors and a 16 Gb Flash memory contained more than 4 billion transistors. This corre-
sponds to a compound annual growth rate of 53% over 50 years. No other technology in
history has sustained such a high growth rate lasting for so long.

This incredible growth has come from steady miniaturization of transistors and
improvements in manufacturing processes. Most other fields of engineering involve trade-
offs between performance, power, and price. However, as transistors become smaller, they
also become faster, dissipate less power, and are cheaper to manufacture. This synergy has
not only revolutionized electronics, but also society at large.

The processing performance once dedicated to secret government supercomputers is
now available in disposable cellular telephones. The memory once needed for an entire
company’s accounting system is now carried by a teenager in her iPod. Improvements in
integrated circuits have enabled space exploration, made automobiles safer and more fuel-
efficient, revolutionized the nature of warfare, brought much of mankind’s knowledge to
our Web browsers, and made the world a flatter place.

Figure 1.1 shows annual sales in the worldwide semiconductor market. Integrated cir-
cuits became a $100 billion/year business in 1994. In 2007, the industry manufactured
approximately 6 quintillion (6

×

 10

18

) transistors, or nearly a billion for every human being
on the planet. Thousands of engineers have made their fortunes in the field. New fortunes
lie ahead for those with innovative ideas and the talent to bring those ideas to reality.

During the first half of the twentieth century, electronic circuits used large, expensive,
power-hungry, and unreliable vacuum tubes. In 1947, John Bardeen and Walter Brattain
built the first functioning point contact transistor at Bell Laboratories, shown in Figure
1.2(a) [Riordan97]. It was nearly classified as a military secret, but Bell Labs publicly
introduced the device the following year.

We have called it the Transistor, T-R-A-N-S-I-S-T-O-R, because it is a resistor or
semiconductor device which can amplify electrical signals as they are transferred
through it from input to output terminals. It is, if you will, the electrical equivalent
of a vacuum tube amplifier. But there the similarity ceases. It has no vacuum, no
filament, no glass tube. It is composed entirely of cold, solid substances.

Chapter 1 Introduction

2

Ten years later, Jack Kilby at Texas Instruments realized the potential for miniaturiza-
tion if multiple transistors could be built on one piece of silicon. Figure 1.2(b) shows his
first prototype of an integrated circuit, constructed from a germanium slice and gold wires.

The invention of the transistor earned the Nobel Prize in Physics in 1956 for
Bardeen, Brattain, and their supervisor William Shockley. Kilby received the Nobel Prize
in Physics in 2000 for the invention of the integrated circuit.

Transistors can be viewed as electrically controlled switches with a control terminal
and two other terminals that are connected or disconnected depending on the voltage or
current applied to the control. Soon after inventing the point contact transistor, Bell Labs
developed the bipolar junction transistor. Bipolar transistors were more reliable, less noisy,
and more power-efficient. Early integrated circuits primarily used bipolar transistors.
Bipolar transistors require a small current into the control (base) terminal to switch much
larger currents between the other two (emitter and collector) terminals. The quiescent
power dissipated by these base currents, drawn even when the circuit is not switching,

FIGURE 1.1

 Size of worldwide semiconductor market (Courtesy of Semiconductor Industry Association.)

FIGURE 1.2

 (a) First transistor (Property of AT&T Archives. Reprinted with permission of AT&T.) and (b)
first integrated circuit (Courtesy of Texas Instruments.)

0

50

100

150

200

1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Year

2004 2006 2008

250

G
lo

ba
l S

em
ic

on
du

ct
or

 B
ill

in
gs

(B
ill

io
ns

 o
f U

S
$)

)b()a(

1.1 A Brief History

3

limits the maximum number of transistors that can be integrated onto a single die. By the
1960s, Metal Oxide Semiconductor Field Effect Transistors (MOSFETs) began to enter
production. MOSFETs offer the compelling advantage that they draw almost zero control
current while idle. They come in two flavors: nMOS and pMOS, using n-type and p-type
silicon, respectively. The original idea of field effect transistors dated back to the German
scientist Julius Lilienfield in 1925 [US patent 1,745,175] and a structure closely resem-
bling the MOSFET was proposed in 1935 by Oskar Heil [British patent 439,457], but
materials problems foiled early attempts to make functioning devices.

In 1963, Frank Wanlass at Fairchild described the first logic gates using MOSFETs
[Wanlass63]. Fairchild’s gates used both nMOS and pMOS transistors, earning the name
Complementary Metal Oxide Semiconductor, or CMOS. The circuits used discrete tran-
sistors but consumed only nanowatts of power, six orders of magnitude less than their
bipolar counterparts. With the development of the silicon planar process, MOS integrated
circuits became attractive for their low cost because each transistor occupied less area and
the fabrication process was simpler [Vadasz69]. Early commercial processes used only
pMOS transistors and suffered from poor performance, yield, and reliability. Processes
using nMOS transistors became common in the 1970s [Mead80]. Intel pioneered nMOS
technology with its 1101 256-bit static random access memory and 4004 4-bit micropro-
cessor, as shown in Figure 1.3. While the nMOS process was less expensive than CMOS,
nMOS logic gates still consumed power while idle. Power consumption became a major
issue in the 1980s as hundreds of thousands of transistors were integrated onto a single
die. CMOS processes were widely adopted and have essentially replaced nMOS and bipo-
lar processes for nearly all digital logic applications.

In 1965, Gordon Moore observed that plotting the number of transistors that can be
most economically manufactured on a chip gives a straight line on a semilogarithmic scale
[Moore65]. At the time, he found transistor count doubling every 18 months. This obser-
vation has been called

Moore’s Law

 and has become a self-fulfilling prophecy. Figure 1.4
shows that the number of transistors in Intel microprocessors has doubled every 26
months since the invention of the 4004. Moore’s Law is driven primarily by

scaling

 down
the size of transistors and, to a minor extent, by building larger chips. The level of integra-
tion of chips has been classified as small-scale, medium-scale, large-scale, and very large-
scale.

Small-scale integration

 (SSI) circuits, such as the 7404 inverter, have fewer than 10

FIGURE 1.3

 (a) Intel 1101 SRAM (© IEEE 1969 [Vadasz69]) and (b) 4004 microprocessor (Reprinted with
permission of Intel Corporation.)

)b()a(

Chapter 1 Introduction

4

gates, with roughly half a dozen transistors per gate.

Medium-scale integration

 (MSI) cir-
cuits, such as the 74161 counter, have up to 1000 gates.

Large-scale integration

 (LSI)
circuits, such as simple 8-bit microprocessors, have up to 10,000 gates. It soon became
apparent that new names would have to be created every five years if this naming trend
continued and thus the term

very large-scale integration

 (VLSI) is used to describe most
integrated circuits from the 1980s onward. A corollary of Moore’s law is

Dennard’s Scaling
Law

 [Dennard74]: as transistors shrink, they become faster, consume less power, and are
cheaper to manufacture. Figure 1.5 shows that Intel microprocessor clock frequencies have
doubled roughly every 34 months.This frequency scaling hit the power wall around 2004,
and clock frequencies have leveled off around 3 GHz. Computer performance, measured
in time to run an application, has advanced even more than raw clock speed. Presently, the
performance is driven by the number of cores on a chip rather than by the clock. Even
though an individual CMOS transistor uses very little energy each time it switches, the
enormous number of transistors switching at very high rates of speed have made power
consumption a major design consideration again. Moreover, as transistors have become so
small, they cease to turn completely OFF. Small amounts of current leaking through each
transistor now lead to significant power consumption when multiplied by millions or bil-
lions of transistors on a chip.

The feature size of a CMOS manufacturing process refers to the minimum dimension
of a transistor that can be reliably built. The 4004 had a feature size of 10

μ

m in 1971. The
Core 2 Duo had a feature size of 45 nm in 2008. Manufacturers introduce a new process
generation (also called a technology node) every 2–3 years with a 30% smaller feature size to
pack twice as many transistors in the same area. Figure 1.6 shows the progression of process
generations. Feature sizes down to 0.25

μ

m are generally specified in microns (10

–6

 m), while
smaller feature sizes are expressed in nanometers (10

–9

 m). Effects that were relatively minor
in micron processes, such as transistor leakage, variations in characteristics of adjacent tran-
sistors, and wire resistance, are of great significance in nanometer processes.

Moore’s Law has become a self-fulfilling prophecy because each company must keep
up with its competitors. Obviously, this scaling cannot go on forever because transistors
cannot be smaller than atoms. Dennard scaling has already begun to slow. By the 45 nm

FIGURE 1.4

Transistors in Intel microprocessors [Intel10]

Year

4004

8008 8080

8086

80286
Intel386

Intel486
Pentium

Pentium Pro
Pentium II

Pentium III

Pentium 4

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

1970 1975 1980 1985 1990 1995 2000 2005

Pentium M
Core 2 Duo

Core 2 Quad

T
ra

ns
is

to
rs

1.1 A Brief History

5

FIGURE 1.5

Clock frequencies of Intel microprocessors

FIGURE 1.6

Process generations. Future predictions from [SIA2007].

Year

1

10

100

1,000

10,000

1970 1975 1980 1985 1990 1995 2000 2005

4004

8008

8080

8086

80286

Intel386

Intel486

Pentium

Pentium Pro/II/III

Pentium 4

2010

Pentium M

Core 2 Duo

C
lo

ck
 S

pe
ed

 (
M

H
z)

0

1

10

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

Year

F
ea

tu
re

 S
iz

e
(μ

m
)

0.1

0.01

10 μm

6 μm

3 μm

1.5 μm
1 μm

0.8 μm
0.6 μm

0.35 μm
0.25 μm

180 nm
130 nm

90 nm
65 nm

45 nm
32 nm

22 nm

Chapter 1 Introduction

6

generation, designers are having to make trade-offs between improving power and
improving delay. Although the cost of printing each transistor goes down, the one-time
design costs are increasing exponentially, relegating state-of-the-art processes to chips that
will sell in huge quantities or that have cutting-edge performance requirements. However,
many predictions of fundamental limits to scaling have already proven wrong. Creative
engineers and material scientists have billions of dollars to gain by getting ahead of their
competitors. In the early 1990s, experts agreed that scaling would continue for at least a
decade but that beyond that point the future was murky. In 2009, we still believe that
Moore’s Law will continue for at least another decade. The future is yours to invent.

1.2

Preview

As the number of transistors on a chip has grown exponentially, designers have come to
rely on increasing levels of automation to seek corresponding productivity gains. Many
designers spend much of their effort specifying functions with hardware description lan-
guages and seldom look at actual transistors. Nevertheless, chip design is not software
engineering. Addressing the harder problems requires a fundamental understanding of cir-
cuit and physical design. Therefore, this book focuses on building an understanding of
integrated circuits from the bottom up.

In this chapter, we will take a simplified view of CMOS transistors as switches. With
this model we will develop CMOS logic gates and latches. CMOS transistors are mass-
produced on silicon wafers using lithographic steps much like a printing press process. We
will explore how to lay out transistors by specifying rectangles indicating where dopants
should be diffused, polysilicon should be grown, metal wires should be deposited, and
contacts should be etched to connect all the layers. By the middle of this chapter, you will
understand all the principles required to design and lay out your own simple CMOS chip.
The chapter concludes with an extended example demonstrating the design of a simple 8-
bit MIPS microprocessor chip. The processor raises many of the design issues that will be
developed in more depth throughout the book. The best way to learn VLSI design is by
doing it. A set of laboratory exercises are available at

www.cmosvlsi.com

 to guide you
through the design of your own microprocessor chip.

1.3

MOS Transistors

Silicon (Si), a semiconductor, forms the basic starting material for most integrated circuits
[Tsividis99]. Pure silicon consists of a three-dimensional

lattice

 of atoms. Silicon is a
Group IV element, so it forms covalent bonds with four adjacent atoms, as shown in Fig-
ure 1.7(a). The lattice is shown in the plane for ease of drawing, but it actually forms a
cubic crystal. As all of its valence electrons are involved in chemical bonds, pure silicon is a
poor conductor. The conductivity can be raised by introducing small amounts of impuri-
ties, called

dopants

, into the silicon lattice. A dopant from Group V of the periodic table,
such as arsenic, has five valence electrons. It replaces a silicon atom in the lattice and still
bonds to four neighbors, so the fifth valence electron is loosely bound to the arsenic atom,
as shown in Figure 1.7(b). Thermal vibration of the lattice at room temperature is enough
to set the electron free to move, leaving a positively charged As

+

 ion and a free electron.
The free electron can carry current so the conductivity is higher. We call this an

n

-type

1.3 MOS Transistors

7

semiconductor because the free carriers are negatively charged electrons. Similarly, a
Group III dopant, such as boron, has three valence electrons, as shown in Figure 1.7(c).
The dopant atom can borrow an electron from a neighboring silicon atom, which in turn
becomes short by one electron. That atom in turn can borrow an electron, and so forth, so
the missing electron, or

hole

, can propagate about the lattice. The hole acts as a positive
carrier so we call this a

p

-type semiconductor.
A junction between p-type and n-type silicon is called a

diode

, as shown in Figure 1.8.
When the voltage on the p-type semiconductor, called the

anode

, is raised above the n-
type

cathode

, the diode is

forward biased

 and current flows. When the anode voltage is less
than or equal to the cathode voltage, the diode is

reverse biased

 and very little current flows.
A Metal-Oxide-Semiconductor (

MOS

) structure is created by superimposing several
layers of conducting and insulating materials to form a sandwich-like structure. These
structures are manufactured using a series of chemical processing steps involving oxidation
of the silicon, selective introduction of dopants, and deposition and etching of metal wires
and contacts. Transistors are built on nearly flawless single crystals of silicon, which are
available as thin flat circular wafers of 15–30 cm in diameter. CMOS technology provides
two types of transistors (also called

devices

): an n-type transistor (

nMOS

) and a p-type
transistor (

pMOS

). Transistor operation is controlled by electric fields so the devices are
also called Metal Oxide Semiconductor Field Effect Transistors (

MOSFET

s) or simply

FET

s. Cross-sections and symbols of these transistors are shown in Figure 1.9. The n+
and p+ regions indicate heavily doped n- or p-type silicon.

FIGURE 1.7

 Silicon lattice and dopant atoms

FIGURE 1.9

 nMOS transistor (a) and pMOS transistor (b)

Si SiSi

Si SiSi

Si SiSi

(a)

As SiSi

Si SiSi

Si SiSi

(b)

B SiSi

Si SiSi

Si SiSi

(c)

+

+-

-

n+

p

GateSource Drain

bulk Si

SiO2

n

GateSource Drain

bulk Si

(a) (b)

Polysilicon

n+ p+ p+

FIGURE 1.8

p-n junction diode
structure and symbol

p-type n-type

Anode Cathode

Chapter 1 Introduction

8

Each transistor consists of a stack of the conducting

gate

, an insulating layer of silicon
dioxide (SiO

2

, better known as glass), and the silicon wafer, also called the

substrate

,

body

,
or

bulk

. Gates of early transistors were built from metal, so the stack was called metal-
oxide-semiconductor, or MOS. Since the 1970s, the gate has been formed from polycrys-
talline silicon (

polysilicon

), but the name stuck. (Interestingly, metal gates reemerged in
2007 to solve materials problems in advanced manufacturing processes.) An nMOS tran-
sistor is built with a p-type body and has regions of n-type semiconductor adjacent to the
gate called the

source

 and

drain

. They are physically equivalent and for now we will regard
them as interchangeable. The body is typically grounded. A pMOS transistor is just the
opposite, consisting of p-type source and drain regions with an n-type body. In a CMOS
technology with both flavors of transistors, the substrate is either n-type or p-type. The
other flavor of transistor must be built in a special

well

 in which dopant atoms have been
added to form the body of the opposite type.

The gate is a control input: It affects the flow of electrical current between the source
and drain. Consider an nMOS transistor. The body is generally grounded so the p–n junc-
tions of the source and drain to body are reverse-biased. If the gate is also grounded, no
current flows through the reverse-biased junctions. Hence, we say the transistor is OFF. If
the gate voltage is raised, it creates an electric field that starts to attract free electrons to
the underside of the Si–SiO

2

 interface. If the voltage is raised enough, the electrons out-
number the holes and a thin region under the gate called the

channel

 is inverted to act as
an n-type semiconductor. Hence, a conducting path of electron carriers is formed from
source to drain and current can flow. We say the transistor is ON.

For a pMOS transistor, the situation is again reversed. The body is held at a positive
voltage. When the gate is also at a positive voltage, the source and drain junctions are
reverse-biased and no current flows, so the transistor is OFF. When the gate voltage is low-
ered, positive charges are attracted to the underside of the Si–SiO

2

 interface. A sufficiently
low gate voltage inverts the channel and a conducting path of positive carriers is formed from
source to drain, so the transistor is ON. Notice that the symbol for the pMOS transistor has
a bubble on the gate, indicating that the transistor behavior is the opposite of the nMOS.

The positive voltage is usually called

V

DD

 or POWER and represents a logic 1 value
in digital circuits. In popular logic families of the 1970s and 1980s,

V

DD

 was set to 5 volts.
Smaller, more recent transistors are unable to withstand such high voltages and have used
supplies of 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, 1.0 V, and so forth. The low voltage is called
GROUND (GND) or

V

SS

 and represents a logic 0. It is normally 0 volts.
In summary, the gate of an MOS transistor controls the flow of current between the

source and drain. Simplifying this to the extreme allows the MOS transistors to be viewed as
simple ON/OFF switches. When the gate of an
nMOS transistor is 1, the transistor is ON and there
is a conducting path from source to drain. When the
gate is low, the nMOS transistor is OFF and almost
zero current flows from source to drain. A pMOS
transistor is just the opposite, being ON when the
gate is low and OFF when the gate is high. This
switch model is illustrated in Figure 1.10, where

g

,

s

,
and

d

 indicate gate, source, and drain. This model
will be our most common one when discussing cir-
cuit behavior.

FIGURE 1.10

 Transistor symbols and switch-level models

g

s

d

g = 0

s

d

g = 1

s

d

g

s

d

s

d

s

d

nMOS

pMOS

OFF ON

ON OFF

1.4 CMOS Logic

9

1.4

CMOS Logic

1.4.1 The Inverter

Figure 1.11 shows the schematic and symbol for a CMOS inverter or NOT gate using one
nMOS transistor and one pMOS transistor. The bar at the top indicates

V

DD

 and the trian-
gle at the bottom indicates GND. When the input

A

 is 0, the nMOS transistor is OFF and
the pMOS transistor is ON. Thus, the output

Y

 is pulled up to 1 because it is connected to

V

DD

 but not to GND. Conversely, when

A

 is 1, the nMOS is ON, the pMOS is OFF, and

Y

is pulled down to ‘0.’ This is summarized in Table 1.1.

1.4.2 The NAND Gate

Figure 1.12(a) shows a 2-input CMOS NAND gate. It consists of two series nMOS tran-
sistors between

Y

 and GND and two parallel pMOS transistors between

Y

 and

V

DD

. If
either input

A

 or

B

 is 0, at least one of the nMOS transistors will be OFF, breaking the
path from

Y

 to GND. But at least one of the pMOS transistors will be ON, creating a
path from

Y

 to

V

DD

. Hence, the output

Y

 will be 1. If both inputs are 1, both of the nMOS
transistors will be ON and both of the pMOS transistors will be OFF. Hence, the output
will be 0. The truth table is given in Table 1.2 and the symbol is shown in Figure 1.12(b).
Note that by DeMorgan’s Law, the inversion bubble may be placed on either side of the
gate. In the figures in this book, two lines intersecting at a T-junction are connected. Two
lines crossing are connected if and only if a dot is shown.

k

-input NAND gates are constructed using k series nMOS transistors and k parallel
pMOS transistors. For example, a 3-input NAND gate is shown in Figure 1.13. When any
of the inputs are 0, the output is pulled high through the parallel pMOS transistors. When
all of the inputs are 1, the output is pulled low through the series nMOS transistors.

1.4.3 CMOS Logic Gates
The inverter and NAND gates are examples of static CMOS logic gates, also called comple-
mentary CMOS gates. In general, a static CMOS gate has an nMOS pull-down network to
connect the output to 0 (GND) and pMOS pull-up network to connect the output to 1
(VDD), as shown in Figure 1.14. The networks are arranged such that one is ON and the
other OFF for any input pattern.

TABLE 1.1 Inverter truth table

A Y

0 1
1 0

TABLE 1.2 NAND gate truth table

A B Pull-Down Network Pull-Up Network Y

0 0 OFF ON 1
0 1 OFF ON 1
1 0 OFF ON 1
1 1 ON OFF 0

FIGURE 1.11
Inverter schematic
(a) and symbol
(b) Y = A

FIGURE 1.12 2-input NAND
gate schematic (a) and symbol
(b) Y = A · B

FIGURE 1.13 3-input NAND
gate schematic Y = A · B · C

(a)

(b)

VDD

A Y

A Y

GND

A

B

Y

(a)

(b)

A

B

Y

C

Chapter 1 Introduction10

The pull-up and pull-down networks in the inverter each consist of a single
transistor. The NAND gate uses a series pull-down network and a parallel pull-
up network. More elaborate networks are used for more complex gates. Two or
more transistors in series are ON only if all of the series transistors are ON.
Two or more transistors in parallel are ON if any of the parallel transistors are
ON. This is illustrated in Figure 1.15 for nMOS and pMOS transistor pairs.
By using combinations of these constructions, CMOS combinational gates
can be constructed. Although such static CMOS gates are most widely used,
Chapter 9 explores alternate ways of building gates with transistors.

In general, when we join a pull-up network to a pull-down network to
form a logic gate as shown in Figure 1.14, they both will attempt to exert a logic
level at the output. The possible levels at the output are shown in Table 1.3.
From this table it can be seen that the output of a CMOS logic gate can be in
four states. The 1 and 0 levels have been encountered with the inverter and
NAND gates, where either the pull-up or pull-down is OFF and the other
structure is ON. When both pull-up and pull-down are OFF, the high-

impedance or floating Z output state results. This is of importance in multiplexers, memory
elements, and tristate bus drivers. The crowbarred (or contention) X level exists when both
pull-up and pull-down are simultaneously turned ON. Contention between the two net-
works results in an indeterminate output level and dissipates static power. It is usually an
unwanted condition.

FIGURE 1.15 Connection and behavior of series and parallel transistors

a

b

0

1

a

b

1

0

OFF OFF

0

1

1

0

OFF OFF

a a

b

(a)

a

b

a

b

g1

g2

0

0

a

b

1

1

OFF ON

(b)

a

b

a

b

g1

g2

0

0

a

b

1

1

ON OFF

(c)

a

b

a

b

g1 g2 0 0

OFF ON ON ON

(d) ON ON ON OFF

a

b

0

a

b

1

a

b

11 0 1

a

b

0 0

a

b

0

a

b

1

a

b

11 0 1

a

b

g1 g2

FIGURE 1.14 General logic gate using
pull-up and pull-down networks

Output

Inputs

pMOS
pull-up
network

nMOS
pull-down
network

1.4 CMOS Logic 11

1.4.4 The NOR Gate
A 2-input NOR gate is shown in Figure 1.16. The nMOS transistors are in parallel to pull
the output low when either input is high. The pMOS transistors are in series to pull the
output high when both inputs are low, as indicated in Table 1.4. The output is never crow-
barred or left floating.

Example 1.1

Sketch a 3-input CMOS NOR gate.

SOLUTION: Figure 1.17 shows such a gate. If any input is high, the output is pulled low
through the parallel nMOS transistors. If all inputs are low, the output is pulled high
through the series pMOS transistors.

1.4.5 Compound Gates
A compound gate performing a more complex logic function in a single stage of logic is
formed by using a combination of series and parallel switch structures. For example, the
derivation of the circuit for the function Y = (A · B) + (C · D) is shown in Figure 1.18.
This function is sometimes called AND-OR-INVERT-22, or AOI22 because it per-
forms the NOR of a pair of 2-input ANDs. For the nMOS pull-down network, take the
uninverted expression ((A · B) + (C · D)) indicating when the output should be pulled to
‘0.’ The AND expressions (A · B) and (C · D) may be implemented by series connections
of switches, as shown in Figure 1.18(a). Now ORing the result requires the parallel con-
nection of these two structures, which is shown in Figure 1.18(b). For the pMOS pull-up
network, we must compute the complementary expression using switches that turn on
with inverted polarity. By DeMorgan’s Law, this is equivalent to interchanging AND and
OR operations. Hence, transistors that appear in series in the pull-down network must
appear in parallel in the pull-up network. Transistors that appear in parallel in the pull-
down network must appear in series in the pull-up network. This principle is called con-
duction complements and has already been used in the design of the NAND and NOR
gates. In the pull-up network, the parallel combination of A and B is placed in series with
the parallel combination of C and D. This progression is evident in Figure 1.18(c) and
Figure 1.18(d). Putting the networks together yields the full schematic (Figure 1.18(e)).
The symbol is shown in Figure 1.18(f).

TABLE 1.3 Output states of CMOS logic gates

pull-up OFF pull-up ON
pull-down OFF Z 1
pull-down ON 0 crowbarred (X)

TABLE 1.4 NOR gate truth table

A B Y

0 0 1
0 1 0
1 0 0
1 1 0

FIGURE 1.16 2-input NOR
gate schematic (a) and symbol
(b) Y = A + B

FIGURE 1.17 3-input NOR
gate schematic Y = A + B + C

A

B
Y

(a)

(b)

A

B

Y
C

Chapter 1 Introduction12

This AOI22 gate can be used as a 2-input inverting multiplexer by connecting C = A
as a select signal. Then, Y = B if C is 0, while Y = D if C is 1. Section 1.4.8 shows a way to
improve this multiplexer design.

Example 1.2

Sketch a static CMOS gate computing Y = (A + B + C) · D.

SOLUTION: Figure 1.19 shows such an OR-AND-INVERT-3-1 (OAI31) gate. The
nMOS pull-down network pulls the output low if D is 1 and either A or B or C are 1,
so D is in series with the parallel combination of A, B, and C. The pMOS pull-up net-
work is the conduction complement, so D must be in parallel with the series combina-
tion of A, B, and C.

1.4.6 Pass Transistors and Transmission Gates
The strength of a signal is measured by how closely it approximates an ideal voltage source.
In general, the stronger a signal, the more current it can source or sink. The power sup-
plies, or rails, (VDD and GND) are the source of the strongest 1s and 0s.

An nMOS transistor is an almost perfect switch when passing a 0 and thus we say it
passes a strong 0. However, the nMOS transistor is imperfect at passing a 1. The high
voltage level is somewhat less than VDD, as will be explained in Section 2.5.4. We say it
passes a degraded or weak 1. A pMOS transistor again has the opposite behavior, passing
strong 1s but degraded 0s. The transistor symbols and behaviors are summarized in Figure
1.20 with g, s, and d indicating gate, source, and drain.

When an nMOS or pMOS is used alone as an imperfect switch, we sometimes call it
a pass transistor. By combining an nMOS and a pMOS transistor in parallel (Figure
1.21(a)), we obtain a switch that turns on when a 1 is applied to g (Figure 1.21(b)) in
which 0s and 1s are both passed in an acceptable fashion (Figure 1.21(c)). We term this a
transmission gate or pass gate. In a circuit where only a 0 or a 1 has to be passed, the appro-
priate transistor (n or p) can be deleted, reverting to a single nMOS or pMOS device.

FIGURE 1.18 CMOS compound gate for function Y = (A · B) + (C · D)

A

B

C

D

A B C D
A B

C D

A

B

C

D

A

C
B

D

Y

(a)

(c)

(e)

(b)

(d)

(f)

A

B

C

D

B

D

Y
A

C

FIGURE 1.19
CMOS compound gate
for function
Y = (A + B + C) · D

A B

Y

C

D

DC

B

A

1.4 CMOS Logic 13

Note that both the control input and its complement are required by the transmission
gate. This is called double rail logic. Some circuit symbols for the transmission gate are
shown in Figure 1.21(d).1 None are easier to draw than the simple schematic, so we will
use the schematic version to represent a transmission gate in this book.

In all of our examples so far, the inputs drive the gate terminals of nMOS transistors
in the pull-down network and pMOS transistors in the complementary pull-up network,
as was shown in Figure 1.14. Thus, the nMOS transistors only need to pass 0s and the
pMOS only pass 1s, so the output is always strongly driven and the levels are never
degraded. This is called a fully restored logic gate and simplifies circuit design considerably.
In contrast to other forms of logic, where the pull-up and pull-down switch networks have
to be ratioed in some manner, static CMOS gates operate correctly independently of the
physical sizes of the transistors. Moreover, there is never a path through ‘ON’ transistors
from the 1 to the 0 supplies for any combination of inputs (in contrast to single-channel
MOS, GaAs technologies, or bipolar). As we will find in subsequent chapters, this is the
basis for the low static power dissipation in CMOS.

FIGURE 1.20 Pass transistor strong and degraded outputs

1We call the left and right terminals a and b because each is technically the source of one of the transistors
and the drain of the other.

FIGURE 1.21 Transmission gate

g

s d

g = 0

s d

g = 1

s d

0 strong 0

Input Output

1 degraded 1

(a) (b) (c)

g

s d

g = 0

s d

g = 1

s d

0 degraded 0

Input Output

1 strong 1

(d) (e) (f)

nMOS

pMOS

g = 1

g = 1

g = 0

g = 0

g = 0, gb = 1

a b

g = 1, gb = 0

a b

0 strong 0

Input Output

1 strong 1

(c)(a) (b)

g

gb

a b

(d)

a b

g

gb

a b

g

gb

a b

g

gb

g = 1, gb = 0

g = 1, gb = 0

Chapter 1 Introduction14

A consequence of the design of static CMOS gates is that they must be inverting.
The nMOS pull-down network turns ON when inputs are 1, leading to 0 at the output.
We might be tempted to turn the transistors upside down to build a noninverting gate. For
example, Figure 1.22 shows a noninverting buffer. Unfortunately, now both the nMOS
and pMOS transistors produce degraded outputs, so the technique should be avoided.
Instead, we can build noninverting functions from multiple stages of inverting gates. Fig-
ure 1.23 shows several ways to build a 4-input AND gate from two levels of inverting
static CMOS gates. Each design has different speed, size, and power trade-offs.

Similarly, the compound gate of Figure 1.18 could be built with two AND gates, an
OR gate, and an inverter. The AND and OR gates in turn could be constructed from
NAND/NOR gates and inverters, as shown in Figure 1.24, using a total of 20 transistors,
as compared to eight in Figure 1.18. Good CMOS logic designers exploit the efficiencies
of compound gates rather than using large numbers of AND/OR gates.

FIGURE 1.22
Bad noninverting buffer

VDD

BAD

A Y

A Y

GND

FIGURE 1.23 Various implementations
of a CMOS 4-input AND gate

FIGURE 1.24 Inefficient discrete gate implementation of AOI22
with transistor counts indicated

A

2

4

4

2

4 2

AND

OR

2
B

C
D

Y

FIGURE 1.25
Tristate buffer
symbol

A Y

EN

A Y

EN

EN

1.4.7 Tristates
Figure 1.25 shows symbols for a tristate buffer. When the enable input EN is 1, the output
Y equals the input A, just as in an ordinary buffer. When the enable is 0, Y is left floating (a
‘Z’ value). This is summarized in Table 1.5. Sometimes both true and complementary
enable signals EN and EN are drawn explicitly, while sometimes only EN is shown.

The transmission gate in Figure 1.26 has the same truth table as a tristate buffer. It
only requires two transistors but it is a nonrestoring circuit. If the input is noisy or other-
wise degraded, the output will receive the same noise. We will see in Section 4.4.2 that the
delay of a series of nonrestoring gates increases rapidly with the number of gates.

TABLE 1.5 Truth table for tristate

EN / EN A Y

0 / 1 0 Z
0 / 1 1 Z
1 / 0 0 0
1 / 0 1 1

FIGURE 1.26
Transmission gate

A Y

EN

EN

1.4 CMOS Logic 15

Figure 1.27(a) shows a tristate inverter. The output is
actively driven from VDD or GND, so it is a restoring logic
gate. Unlike any of the gates considered so far, the tristate
inverter does not obey the conduction complements rule
because it allows the output to float under certain input com-
binations. When EN is 0 (Figure 1.27(b)), both enable tran-
sistors are OFF, leaving the output floating. When EN is 1
(Figure 1.27(c)), both enable transistors are ON. They are
conceptually removed from the circuit, leaving a simple
inverter. Figure 1.27(d) shows symbols for the tristate
inverter. The complementary enable signal can be generated
internally or can be routed to the cell explicitly. A tristate
buffer can be built as an ordinary inverter followed by a
tristate inverter.

Tristates were once commonly used to allow multiple units to drive a common bus, as
long as exactly one unit is enabled at a time. If multiple units drive the bus, contention
occurs and power is wasted. If no units drive the bus, it can float to an invalid logic level
that causes the receivers to waste power. Moreover, it can be difficult to switch enable sig-
nals at exactly the same time when they are distributed across a large chip. Delay between
different enables switching can cause contention. Given these problems, multiplexers are
now preferred over tristate busses.

1.4.8 Multiplexers
Multiplexers are key components in CMOS memory elements and data manipulation
structures. A multiplexer chooses the output from among several inputs based on a select
signal. A 2-input, or 2:1 multiplexer, chooses input D0 when the select is 0 and input D1
when the select is 1. The truth table is given in Table 1.6; the logic function is
Y = S · D0 + S · D1.

Two transmission gates can be tied together to form a compact 2-input multiplexer, as
shown in Figure 1.28(a). The select and its complement enable exactly one of the two
transmission gates at any given time. The complementary select S is often not drawn in
the symbol, as shown in Figure 1.28(b).

Again, the transmission gates produce a nonrestoring multiplexer. We could build a
restoring, inverting multiplexer out of gates in several ways. One is the compound gate of
Figure 1.18(e), connected as shown in Figure 1.29(a). Another is to gang together two
tristate inverters, as shown in Figure 1.29(b). Notice that the schematics of these two
approaches are nearly identical, save that the pull-up network has been slightly simplified
and permuted in Figure 1.29(b). This is possible because the select and its complement are
mutually exclusive. The tristate approach is slightly more compact and faster because it

TABLE 1.6 Multiplexer truth table

S / S D1 D 0 Y

0 / 1 X 0 0
0 / 1 X 1 1
1 / 0 0 X 0
1 / 0 1 X 1

FIGURE 1.27 Tristate Inverter

(a) (b) (c) (d)

A

Y
EN

EN

A

Y

EN = 0
Y = 'Z'

Y

EN = 1
Y = A

A

FIGURE 1.28 Transmission
gate multiplexer

(a)

S

S

D0

D1

Y

0

1

(b)

S

D0

D1
Y

S

Chapter 1 Introduction16

requires less internal wire. Again, if the complementary select is generated within the cell,
it is omitted from the symbol (Figure 1.29(c)).

Larger multiplexers can be built from multiple 2-input multiplexers or by directly
ganging together several tristates. The latter approach requires decoded enable signals for
each tristate; the enables should switch simultaneously to prevent contention. 4-input
(4:1) multiplexers using each of these approaches are shown in Figure 1.30. In practice,
both inverting and noninverting multiplexers are simply called multiplexers or muxes.

1.4.9 Sequential Circuits
So far, we have considered combinational circuits, whose outputs depend only on the cur-
rent inputs. Sequential circuits have memory: their outputs depend on both current and
previous inputs. Using the combinational circuits developed so far, we can now build
sequential circuits such as latches and flip-flops. These elements receive a clock, CLK, and
a data input, D, and produce an output, Q. A D latch is transparent when CLK = 1, mean-
ing that Q follows D. It becomes opaque when CLK = 0, meaning Q retains its previous
value and ignores changes in D. An edge-triggered flip-flop copies D to Q on the rising edge
of CLK and remembers its old value at other times.

FIGURE 1.29 Inverting multiplexer

FIGURE 1.30 4:1 multiplexer

(c)(b)(a)

Y
D0

D1

S

S

S

D0

S

D1

S

D0 D1

Y
SS

S
S

D0

D1
Y

0

1

S0

D0

D1

0

1

0

1

0

1
Y

S1

D2

D3

D0

D1

D2

D3

Y

S1S0 S1S0 S1S0 S1S0

(a) (b)

1.4 CMOS Logic 17

1.4.9.1 Latches A D latch built from a 2-input multiplexer and two inverters is shown in
Figure 1.31(a). The multiplexer can be built from a pair of transmission gates, shown in
Figure 1.31(b), because the inverters are restoring. This latch also produces a complemen-
tary output, Q. When CLK = 1, the latch is transparent and D flows through to Q (Figure
1.31(c)). When CLK falls to 0, the latch becomes opaque. A feedback path around the
inverter pair is established (Figure 1.31(d)) to hold the current state of Q indefinitely.

The D latch is also known as a level-sensitive latch because the state of the output is
dependent on the level of the clock signal, as shown in Figure 1.31(e). The latch shown is
a positive-level-sensitive latch, represented by the symbol in Figure 1.31(f). By inverting
the control connections to the multiplexer, the latch becomes negative-level-sensitive.

1.4.9.2 Flip-Flops By combining two level-sensitive latches, one negative-sensitive and
one positive-sensitive, we construct the edge-triggered flip-flop shown in Figure 1.32(a–
b). The first latch stage is called the master and the second is called the slave.

While CLK is low, the master negative-level-sensitive latch output (QM) follows the
D input while the slave positive-level-sensitive latch holds the previous value (Figure
1.32(c)). When the clock transitions from 0 to 1, the master latch becomes opaque and
holds the D value at the time of the clock transition. The slave latch becomes transparent,
passing the stored master value (QM) to the output of the slave latch (Q). The D input is
blocked from affecting the output because the master is disconnected from the D input
(Figure 1.32(d)). When the clock transitions from 1 to 0, the slave latch holds its value
and the master starts sampling the input again.

While we have shown a transmission gate multiplexer as the input stage, good design
practice would buffer the input and output with inverters, as shown in Figure 1.32(e), to

FIGURE 1.31 CMOS positive-level-sensitive D latch

1

0

D

CLK

Q

(a)

CLK

CLKCLK

CLK

DQ Q

Q

(b)

CLK = 1

D Q

Q

(c)

CLK = 0

D Q

Q

(d)

CLK

D

La
tc

h

Q

(e)

D

CLK

Q
(f)

Chapter 1 Introduction18

preserve what we call “modularity.” Modularity is explained further in Section 1.6.2 and
robust latches and registers are discussed further in Section 10.3.

In summary, this flip-flop copies D to Q on the rising edge of the clock, as shown in
Figure 1.32(f). Thus, this device is called a positive-edge triggered flip-flop (also called a
D flip-flop, D register, or master–slave flip-flop). Figure 1.32(g) shows the circuit symbol for
the flip-flop. By reversing the latch polarities, a negative-edge triggered flip-flop may be

FIGURE 1.32 CMOS positive-edge-triggered D flip-flop

(b)

CLK = 1

D

(c)

CLK = 0

(d)

QM

Q

D

QM

QM

CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

Q

(g)

F
lo

p

CLK

D Q

D Q
QM

CLK

CLK

(a)

(f)

D

CLK

Q

QM

CLK

CLKCLK

CLK

Q

CLK

CLK

CLK

CLK

D

(e)

La
tc

h

La
tc

h

1.5 CMOS Fabrication and Layout 19

constructed. A collection of D flip-flops sharing a common clock input is called a register.
A register is often drawn as a flip-flop with multi-bit D and Q busses.

In Section 10.2.5 we will see that flip-flops may experience hold-time failures if the
system has too much clock skew, i.e., if one flip-flop triggers early and another triggers late
because of variations in clock arrival times. In industrial designs, a great deal of effort is
devoted to timing simulations to catch hold-time problems. When design time is more
important (e.g., in class projects), hold-time problems can be avoided altogether by dis-
tributing a two-phase nonoverlapping clock. Figure 1.33 shows the flip-flop clocked with
two nonoverlapping phases. As long as the phases never overlap, at least one latch will be
opaque at any given time and hold-time problems cannot occur.

1.5 CMOS Fabrication and Layout
Now that we can design logic gates and registers from transistors, let us consider how the
transistors are built. Designers need to understand the physical implementation of circuits
because it has a major impact on performance, power, and cost.

Transistors are fabricated on thin silicon wafers that serve as both a mechanical sup-
port and an electrical common point called the substrate. We can examine the physical lay-
out of transistors from two perspectives. One is the top view, obtained by looking down on
a wafer. The other is the cross-section, obtained by slicing the wafer through the middle of
a transistor and looking at it edgewise. We begin by looking at the cross-section of a com-
plete CMOS inverter. We then look at the top view of the same inverter and define a set
of masks used to manufacture the different parts of the inverter. The size of the transistors
and wires is set by the mask dimensions and is limited by the resolution of the manufac-
turing process. Continual advancements in this resolution have fueled the exponential
growth of the semiconductor industry.

1.5.1 Inverter Cross-Section
Figure 1.34 shows a cross-section and corresponding schematic of an inverter. (See the
inside front cover for a color cross-section.) In this diagram, the inverter is built on a
p-type substrate. The pMOS transistor requires an n-type body region, so an n-well is dif-
fused into the substrate in its vicinity. As described in Section 1.3, the nMOS transistor

FIGURE 1.33 CMOS flip-flop with two-phase nonoverlapping clocks

φ2

QM
QD

φ1

φ2
φ2

φ2

φ2 φ1

φ1
φ1

φ1

Chapter 1 Introduction20

has heavily doped n-type source and drain regions and a polysilicon gate over a thin layer
of silicon dioxide (SiO2, also called gate oxide). n+ and p+ diffusion regions indicate heavily
doped n-type and p-type silicon. The pMOS transistor is a similar structure with p-type
source and drain regions. The polysilicon gates of the two transistors are tied together
somewhere off the page and form the input A. The source of the nMOS transistor is con-
nected to a metal ground line and the source of the pMOS transistor is connected to a
metal VDD line. The drains of the two transistors are connected with metal to form the
output Y. A thick layer of SiO2 called field oxide prevents metal from shorting to other
layers except where contacts are explicitly etched.

A junction between metal and a lightly doped semiconductor forms a Schottky diode that
only carries current in one direction. When the semiconductor is doped more heavily, it
forms a good ohmic contact with metal that provides low resistance for bidirectional current
flow. The substrate must be tied to a low potential to avoid forward-biasing the p-n junction
between the p-type substrate and the n+ nMOS source or drain. Likewise, the n-well must
be tied to a high potential. This is done by adding heavily doped substrate and well contacts,
or taps, to connect GND and VDD to the substrate and n-well, respectively.

1.5.2 Fabrication Process
For all their complexity, chips are amazingly inexpensive because all the transistors and wires
can be printed in much the same way as books. The fabrication sequence consists of a series
of steps in which layers of the chip are defined through a process called photolithography.
Because a whole wafer full of chips is processed in each step, the cost of the chip is propor-
tional to the chip area, rather than the number of transistors. As manufacturing advances
allow engineers to build smaller transistors and thus fit more in the same area, each transis-
tor gets cheaper. Smaller transistors are also faster because electrons don’t have to travel as
far to get from the source to the drain, and they consume less energy because fewer elec-
trons are needed to charge up the gates! This explains the remarkable trend for computers
and electronics to become cheaper and more capable with each generation.

The inverter could be defined by a hypothetical set of six masks: n-well, polysilicon,
n+ diffusion, p+ diffusion, contacts, and metal (for fabrication reasons discussed in Chap-
ter 3, the actual mask set tends to be more elaborate). Masks specify where the compo-
nents will be manufactured on the chip. Figure 1.35(a) shows a top view of the six masks.
(See also the inside front cover for a color picture.) The cross-section of the inverter from
Figure 1.34 was taken along the dashed line. Take some time to convince yourself how the
top view and cross-section relate; this is critical to understanding chip layout.

FIGURE 1.34 Inverter cross-section with well and substrate contacts. Color version on inside front cover.

n+n+

p-substrate

p+

n-well

A

p+
Substrate Tap Well Tap

n+ p+

SiO2

n+ diffusion

p+ diffusion

polysilicon

metal1

nMOS Transistor pMOS Transistor

VDD

A

Y
GND

Source Drain Drain Source

Gate Gate

GND Y VDD

1.5 CMOS Fabrication and Layout 21

Consider a simple fabrication process to illustrate the concept. The process begins with
the creation of an n-well on a bare p-type silicon wafer. Figure 1.36 shows cross-sections of
the wafer after each processing step involved in forming the n-well; Figure 1.36(a) illus-
trates the bare substrate before processing. Forming the n-well requires adding enough
Group V dopants into the silicon substrate to change the substrate from p-type to n-type in
the region of the well. To define what regions receive n-wells, we grow a protective layer of

FIGURE 1.35 Inverter mask set. Color version on inside front cover.

(a)

(b)

(c)

(d)

(e)

(f)

Metal

Polysilicon

Contact

n+ Diffusion

p+ Diffusion

n-well

Substrate Tap Well Tap
nMOS Transistor pMOS Transistor

(g)

VDDGND

Y

Chapter 1 Introduction22

oxide over the entire wafer, then remove it where we want the wells. We then add the n-
type dopants; the dopants are blocked by the oxide, but enter the substrate and form the
wells where there is no oxide. The next paragraph describes these steps in detail.

The wafer is first oxidized in a high-temperature (typically 900–1200 °C) furnace that
causes Si and O2 to react and become SiO2 on the wafer surface (Figure 1.36(b)). The
oxide must be patterned to define the n-well. An organic photoresist2 that softens where

FIGURE 1.36 Cross-sections while manufacturing the n-well

p-substrate

p-substrate

p-substrate

p-substrate

p-substrate

n-well

p-substrate

n-well

SiO2

SiO2

Photoresist

SiO2

Photoresist

SiO2

SiO2

(a)

(b)

(c)

(d)

(e)

(f)

(g)

p-substrate

SiO2

Photoresist

(h)

2Engineers have experimented with many organic polymers for photoresists. In 1958, Brumford and
Walker reported that Jello™ could be used for masking. They did extensive testing, observing that “various
Jellos™ were evaluated with lemon giving the best result.”

1.5 CMOS Fabrication and Layout 23

exposed to light is spun onto the wafer (Figure 1.36(c)). The photoresist is exposed
through the n-well mask (Figure 1.35(b)) that allows light to pass through only where the
well should be. The softened photoresist is removed to expose the oxide (Figure 1.36(d)).
The oxide is etched with hydrofluoric acid (HF) where it is not protected by the photore-
sist (Figure 1.36(e)), then the remaining photoresist is stripped away using a mixture of
acids called piranha etch (Figure 1.36(f)). The well is formed where the substrate is not
covered with oxide. Two ways to add dopants are diffusion and ion implantation. In the
diffusion process, the wafer is placed in a furnace with a gas containing the dopants. When
heated, dopant atoms diffuse into the substrate. Notice how the well is wider than the hole
in the oxide on account of lateral diffusion (Figure 1.36(g)). With ion implantation, dopant
ions are accelerated through an electric field and blasted into the substrate. In either
method, the oxide layer prevents dopant atoms from entering the substrate where no well
is intended. Finally, the remaining oxide is stripped with HF to leave the bare wafer with
wells in the appropriate places.

The transistor gates are formed next. These consist of polycrystalline silicon, generally
called polysilicon, over a thin layer of oxide. The thin oxide is grown in a furnace. Then the
wafer is placed in a reactor with silane gas (SiH4) and heated again to grow the polysilicon
layer through a process called chemical vapor deposition. The polysilicon is heavily doped to
form a reasonably good conductor. The resulting cross-section is shown in Figure 1.37(a).
As before, the wafer is patterned with photoresist and the polysilicon mask (Figure
1.35(c)), leaving the polysilicon gates atop the thin gate oxide (Figure 1.37(b)).

The n+ regions are introduced for the transistor active area and the well contact. As
with the well, a protective layer of oxide is formed (Figure 1.37(c)) and patterned with the
n-diffusion mask (Figure 1.35(d)) to expose the areas where the dopants are needed (Fig-
ure 1.37(d)). Although the n+ regions in Figure 1.37(e) are typically formed with ion
implantation, they were historically diffused and thus still are often called n-diffusion.
Notice that the polysilicon gate over the nMOS transistor blocks the diffusion so the
source and drain are separated by a channel under the gate. This is called a self-aligned pro-
cess because the source and drain of the transistor are automatically formed adjacent to the
gate without the need to precisely align the masks. Finally, the protective oxide is stripped
(Figure 1.37(f)).

The process is repeated for the p-diffusion mask (Figure 1.35(e)) to give the structure
of Figure 1.38(a). Oxide is used for masking in the same way, and thus is not shown. The
field oxide is grown to insulate the wafer from metal and patterned with the contact mask
(Figure 1.35(f)) to leave contact cuts where metal should attach to diffusion or polysilicon
(Figure 1.38(b)). Finally, aluminum is sputtered over the entire wafer, filling the contact
cuts as well. Sputtering involves blasting aluminum into a vapor that evenly coats the
wafer. The metal is patterned with the metal mask (Figure 1.35(g)) and plasma etched to
remove metal everywhere except where wires should remain (Figure 1.38(c)). This com-
pletes the simple fabrication process.

 Modern fabrication sequences are more elaborate because they must create complex
doping profiles around the channel of the transistor and print features that are smaller
than the wavelength of the light being used in lithography. However, masks for these elab-
orations can be automatically generated from the simple set of masks we have just exam-
ined. Modern processes also have 5–10+ layers of metal, so the metal and contact steps
must be repeated for each layer. Chip manufacturing has become a commodity, and many
different foundries will build designs from a basic set of masks.

Chapter 1 Introduction24

1.5.3 Layout Design Rules
Layout design rules describe how small features can be and how closely they can be reli-
ably packed in a particular manufacturing process. Industrial design rules are usually spec-
ified in microns. This makes migrating from one process to a more advanced process or a
different foundry’s process difficult because not all rules scale in the same way.

Universities sometimes simplify design by using scalable design rules that are conser-
vative enough to apply to many manufacturing processes. Mead and Conway [Mead80]
popularized scalable design rules based on a single parameter, λ, that characterizes the res-
olution of the process. λ is generally half of the minimum drawn transistor channel length.
This length is the distance between the source and drain of a transistor and is set by the
minimum width of a polysilicon wire. For example, a 180 nm process has a minimum
polysilicon width (and hence transistor length) of 0.18 μm and uses design rules with

FIGURE 1.37 Cross-sections while manufacturing polysilicon and n-diffusion

n-well

n-well

p-substrate

p-substrate

p-substrate

p-substrate

n+n+ n+

p-substrate

n+n+ n+

Thin gate oxide

(a)

(b)

(c)

(d)

(e)

(f)

Polysilicon

p-substrate

n-well

Thin gate oxide
Polysilicon

n-well

n-well

n-well

1.5 CMOS Fabrication and Layout 25

λ = 0.09 μm.3 Lambda-based rules are necessarily conservative because they round up
dimensions to an integer multiple of λ. However, they make scaling layout trivial; the
same layout can be moved to a new process simply by specifying a new value of λ. This
chapter will present design rules in terms of λ. The potential density advantage of micron
rules is sacrificed for simplicity and easy scalability of lambda rules. Designers often
describe a process by its feature size. Feature size refers to minimum transistor length, so λ
is half the feature size.

Unfortunately, below 180 nm, design rules have become so complex and process-
specific that scalable design rules are difficult to apply. However, the intuition gained from
a simple set of scalable rules is still a valuable foundation for understanding the more com-
plex rules. Chapter 3 will examine some of these process-specific rules in more detail.

The MOSIS service [Piña02] is a low-cost prototyping service that collects designs
from academic, commercial, and government customers and aggregates them onto one
mask set to share overhead costs and generate production volumes sufficient to interest
fabrication companies. MOSIS has developed a set of scalable lambda-based design rules
that covers a wide range of manufacturing processes. The rules describe the minimum
width to avoid breaks in a line, minimum spacing to avoid shorts between lines, and mini-
mum overlap to ensure that two layers completely overlap.

A conservative but easy-to-use set of design rules for layouts with two metal layers in
an n-well process is as follows:

� Metal and diffusion have minimum width and spacing of 4 λ.

� Contacts are 2 λ × 2 λ and must be surrounded by 1 λ on the layers above and
below.

� Polysilicon uses a width of 2 λ.

FIGURE 1.38 Cross-sections while manufacturing p-diffusion, contacts, and metal

p-substrate

p-substrate

p-substrate

(a)

(b)

(c)

Thick field oxide

Metal

Thick field oxide

n-well

n+n+ n+p+p+p+

n-well

n+n+ n+p+p+p+

n-well

n+n+ n+p+p+p+

3Some 180 nm lambda-based rules actually set λ = 0.10 μm, then shrink the gate by 20 nm while generating
masks. This keeps 180 nm gate lengths but makes all other features slightly larger.

Chapter 1 Introduction26

� Polysilicon overlaps diffusion by 2 λ where a transistor is desired and has a spacing
of 1 λ away where no transistor is desired.

� Polysilicon and contacts have a spacing of 3 λ from other polysilicon or contacts.

� N-well surrounds pMOS transistors by 6 λ and avoids nMOS transistors by 6 λ.

Figure 1.39 shows the basic MOSIS design rules for a process with two metal layers.
Section 3.3 elaborates on these rules and compares them with industrial design rules.

In a three-level metal process, the width of the third layer is typically 6 λ and the
spacing 4 λ. In general, processes with more layers often provide thicker and wider top-
level metal that has a lower resistance.

Transistor dimensions are often specified by their Width/Length (W/L) ratio. For
example, the nMOS transistor in Figure 1.39 formed where polysilicon crosses n-diffusion
has a W/L of 4/2. In a 0.6 μm process, this corresponds to an actual width of 1.2 μm and a
length of 0.6 μm. Such a minimum-width contacted transistor is often called a unit transis-
tor.4 pMOS transistors are often wider than nMOS transistors because holes move more
slowly than electrons so the transistor has to be wider to deliver the same current. Figure
1.40(a) shows a unit inverter layout with a unit nMOS transistor and a double-sized
pMOS transistor. Figure 1.40(b) shows a schematic for the inverter annotated with Width/
Length for each transistor. In digital systems, transistors are typically chosen to have the
minimum possible length because short-channel transistors are faster, smaller, and consume
less power. Figure 1.40(c) shows a shorthand we will often use, specifying multiples of unit
width and assuming minimum length.

FIGURE 1.39 Simplified λ-based design rules

4 λ

Metal1 Metal2 Diffusion Polysilicon

Metal1-
Diffusion
Contact

Metal1-
Polysilicon
Contact

Metal1-
Metal2
Vias

n-well

4 λ 4 λ 4 λ

3 λ

2 λ

3 λ

2 λ

6 λ

6 λ
1 λ 2 λ

4 λ 4 λ

widthspacing

4Such small transistors in modern processes often behave slightly differently than their wider counterparts.
Moreover, the transistor will not operate if either contact is damaged. Industrial designers often use a tran-
sistor wide enough for two contacts (9 λ) as the unit transistor to avoid these problems.

1.5 CMOS Fabrication and Layout 27

1.5.4 Gate Layouts
A good deal of ingenuity can be exercised and a vast amount of
time wasted exploring layout topologies to minimize the size of
a gate or other cell such as an adder or memory element. For
many applications, a straightforward layout is good enough and
can be automatically generated or rapidly built by hand. This
section presents a simple layout style based on a “line of diffu-
sion” rule that is commonly used for standard cells in automated
layout systems. This style consists of four horizontal strips:
metal ground at the bottom of the cell, n-diffusion, p-diffusion,
and metal power at the top. The power and ground lines are
often called supply rails. Polysilicon lines run vertically to form
transistor gates. Metal wires within the cell connect the transis-
tors appropriately.

Figure 1.41(a) shows such a layout for an inverter. The
input A can be connected from the top, bottom, or left in
polysilicon. The output Y is available at the right side of the
cell in metal. Recall that the p-substrate and n-well must be tied to ground and power,
respectively. Figure 1.41(b) shows the same inverter with well and substrate taps placed
under the power and ground rails, respectively. Figure 1.42 shows a 3-input NAND gate.
Notice how the nMOS transistors are connected in series while the pMOS transistors are
connected in parallel. Power and ground extend 2 λ on each side so if two gates were abut-
ted the contents would be separated by 4 λ, satisfying design rules. The height of the cell is
36 λ, or 40 λ if the 4 λ space between the cell and another wire above it is counted. All
these examples use transistors of width 4 λ. Choice of transistor width is addressed further
in Chapters 4–5 and cell layout styles are discussed in Section 14.7.

These cells were designed such that the gate connections are made from the top or
bottom in polysilicon. In contemporary standard cells, polysilicon is generally not used as
a routing layer so the cell must allow metal2 to metal1 and metal1 to polysilicon contacts

FIGURE 1.41 Inverter cell layout

(a) (b)

A Y

Well Tap

Substrate Tap

VDD

GNDGND

VDD

A Y

FIGURE 1.40 Inverter with dimensions labeled

8/2

4/2

2

1

(a) (b) (c)

VDD

A Y

GND

FIGURE 1.42 3-input NAND standard
cell gate layouts

A

Y

B C 40 λ

32 λ

4 λ

VDD

GND

Chapter 1 Introduction28

to each gate. While this increases the size of the cell, it allows free access to all terminals
on metal routing layers.

1.5.5 Stick Diagrams
Because layout is time-consuming, designers need fast ways
to plan cells and estimate area before committing to a full
layout. Stick diagrams are easy to draw because they do not
need to be drawn to scale. Figure 1.43 and the inside front
cover show stick diagrams for an inverter and a 3-input
NAND gate. While this book uses stipple patterns, layout
designers use dry-erase markers or colored pencils.

With practice, it is easy to estimate the area of a layout
from the corresponding stick diagram even though the dia-
gram is not to scale. Although schematics focus on transis-
tors, layout area is usually determined by the metal wires.
Transistors are merely widgets that fit under the wires. We
define a routing track as enough space to place a wire and the
required spacing to the next wire. If our wires have a width
of 4 λ and a spacing of 4 λ to the next wire, the track pitch is
8 λ, as shown in Figure 1.44(a). This pitch also leaves room
for a transistor to be placed between the wires (Figure
1.44(b)). Therefore, it is reasonable to estimate the height
and width of a cell by counting the number of metal tracks
and multiplying by 8 λ. A slight complication is the required
spacing of 12 λ between nMOS and pMOS transistors set
by the well, as shown in Figure 1.45(a). This space can be
occupied by an additional track of wire, shown in Figure
1.45(b). Therefore, an extra track must be allocated between
nMOS and pMOS transistors regardless of whether wire is
actually used in that track. Figure 1.46 shows how to count
tracks to estimate the size of a 3-input NAND. There are
four vertical wire tracks, multiplied by 8 λ per track to give a
cell width of 32 λ. There are five horizontal tracks, giving a
cell height of 40 λ. Even though the horizontal tracks are
not drawn to scale, they are still easy to count. Figure 1.42

FIGURE 1.43 Stick diagrams of inverter and 3-input NAND gate. Color version on inside front cover.

(a) (b)

VDD
A

Y

GND GND

VDD

Y

A B C
Contact

Metal1

pdiff

ndiff

Polysilicon

FIGURE 1.44 Pitch of routing tracks

FIGURE 1.45 Spacing between nMOS and pMOS transistors

4 λ

(a)

(b)

4 λ

4 λ

4 λ

4 λ

4 λ

(a) (b)

4 λ

12 λ 12 λ

4 λ

4 λ

1.6 Design Partitioning 29

shows that the actual NAND gate layout matches the
dimensions predicted by the stick diagram. If transis-
tors are wider than 4 λ, the extra width must be fac-
tored into the area estimate. Of course, these estimates
are oversimplifications of the complete design rules and
a trial layout should be performed for truly critical cells.

Example 1.3

Sketch a stick diagram for a CMOS gate computing
Y = (A + B + C) · D (see Figure 1.18) and estimate
the cell width and height.

SOLUTION: Figure 1.47 shows a stick diagram.
Counting horizontal and vertical pitches gives an
estimated cell size of 40 by 48 λ.

1.6 Design Partitioning
By this point, you know that MOS transistors behave as voltage-controlled switches. You
know how to build logic gates out of transistors. And you know how transistors are fabri-
cated and how to draw a layout that specifies how transistors should be placed and con-
nected together. You know enough to start building your own simple chips.

The greatest challenge in modern VLSI design is not in designing the individual
transistors but rather in managing system complexity. Modern System-On-Chip (SOC)
designs combine memories, processors, high-speed I/O interfaces, and dedicated
application-specific logic on a single chip. They use hundreds of millions or billions of
transistors and cost tens of millions of dollars (or more) to design. The implementation

FIGURE 1.47 CMOS compound gate for function Y = (A + B + C) · D

5 tracks = 40 λ

6 tracks = 48 λ
Y

GND

VDD

A B C D

FIGURE 1.46 3-input NAND gate area estimation

40 λ

32 λ

Chapter 1 Introduction30

must be divided among large teams of engineers and each engineer must be highly pro-
ductive. If the implementation is too rigidly partitioned, each block can be optimized
without regard to its neighbors, leading to poor system results. Conversely, if every task is
interdependent with every other task, design will progress too slowly. Design managers
face the challenge of choosing a suitable trade-off between these extremes. There is no
substitute for practical experience in making these choices, and talented engineers who
have experience with multiple designs are very important to the success of a large project.
Design proceeds through multiple levels of abstraction, hiding details until they become
necessary. The practice of structured design, which is also used in large software projects,
uses the principles of hierarchy, regularity, modularity, and locality to manage the com-
plexity.

1.6.1 Design Abstractions
Digital VLSI design is often partitioned into five levels of abstractions: architecture design,
microarchitecture design, logic design, circuit design, and physical design. Architecture
describes the functions of the system. For example, the x86 microprocessor architecture
specifies the instruction set, register set, and memory model. Microarchitecture describes
how the architecture is partitioned into registers and functional units. The 80386, 80486,
Pentium, Pentium II, Pentium III, Pentium 4, Core, Core 2, Atom, Cyrix MII, AMD
Athlon, and Phenom are all microarchitectures offering different performance / transistor
count / power trade-offs for the x86 architecture. Logic describes how functional units are
constructed. For example, various logic designs for a 32-bit adder in the x86 integer unit
include ripple carry, carry lookahead, and carry select. Circuit design describes how transis-
tors are used to implement the logic. For example, a carry lookahead adder can use static
CMOS circuits, domino circuits, or pass transistors. The circuits can be tailored to empha-
size high performance or low power. Physical design describes the layout of the chip. Analog
and RF VLSI design involves the same steps but with different layers of abstraction.

These elements are inherently interdependent and all influence each of the design
objectives. For example, choices of microarchitecture and logic are strongly dependent on
the number of transistors that can be placed on the chip, which depends on the physical
design and process technology. Similarly, innovative circuit design that reduces a cache
access from two cycles to one can influence which microarchitecture is most desirable. The
choice of clock frequency depends on a complex interplay of microarchitecture and logic,
circuit design, and physical design. Deeper pipelines allow higher frequencies but consume
more power and lead to greater performance penalties when operations early in the pipe-
line are dependent on those late in the pipeline. Many functions have various logic and
circuit designs trading speed for area, power, and design effort. Custom physical design
allows more compact, faster circuits and lower manufacturing costs, but involves an enor-
mous labor cost. Automatic layout with CAD systems reduces the labor and achieves
faster times to market.

To deal with these interdependencies, microarchitecture, logic, circuit, and physical
design must occur, at least in part, in parallel. Microarchitects depend on circuit and phys-
ical design studies to understand the cost of proposed microarchitectural features. Engi-
neers are sometimes categorized as “short and fat” or “tall and skinny” (nothing personal,
we assure you!). Tall, skinny engineers understand something about a broad range of top-
ics. Short, fat engineers understand a large amount about a narrow field. Digital VLSI
design favors the tall, skinny engineer who can evaluate how choices in one part of the sys-
tem impact other parts of the system.

1.6 Design Partitioning 31

1.6.2 Structured Design
Hierarchy is a critical tool for managing complex designs. A large system can be parti-
tioned hierarchically into multiple cores. Each core is built from various units. Each unit in
turn is composed of multiple functional blocks.5 These blocks in turn are built from cells,
which ultimately are constructed from transistors. The system can be more easily under-
stood at the top level by viewing components as black boxes with well-defined interfaces
and functions rather than looking at each individual transistor. Logic, circuit, and physical
views of the design should share the same hierarchy for ease of verification. A design hier-
archy can be viewed as a tree structure with the overall chip as the root and the primitive
cells as leafs.

Regularity aids the management of design complexity by designing the minimum
number of different blocks. Once a block is designed and verified, it can be reused in many
places. Modularity requires that the blocks have well-defined interfaces to avoid unantici-
pated interactions. Locality involves keeping information where it is used, physically and
temporally. Structured design is discussed further in Section 14.2.

1.6.3 Behavioral, Structural, and Physical Domains
An alternative way of viewing design partitioning is shown with the Y-chart shown in Fig-
ure 1.48 [Gajski83, Kang03]. The radial lines on the Y-chart represent three distinct
design domains: behavioral, structural, and physical. These domains can be used to
describe the design of almost any artifact and thus form a general taxonomy for describing

FIGURE 1.48 Y Diagram (Reproduced from [Kang03] with permission of The McGraw-Hill
Companies.)

Structural Behavioral

Geometrical/Physical

Processor

Register ALU

Leaf Cell

Transistor

Mask

Cell

Module

Chip

Boolean

Module

Finite

Algorithm

Placement

Placement

Equation

Description

State Machine

Floorplan

Domain

Domain

Domain

5Some designers refer to both units and functional blocks as modules.

Chapter 1 Introduction32

the design process. Within each domain there are a number of levels of design abstraction
that start at a very high level and descend eventually to the individual elements that need
to be aggregated to yield the top level function (i.e., transistors in the case of chip design).

The behavioral domain describes what a particular system does. For instance, at the
highest level we might specify a telephone touch-tone generator. This behavior can be suc-
cessively refined to more precisely describe what needs to be done in order to build the
tone generator (i.e., the frequencies desired, output levels, distortion allowed, etc.).

At each abstraction level, a corresponding structural description can be developed.
The structural domain describes the interconnection of modules necessary to achieve a
particular behavior. For instance, at the highest level, the touch-tone generator might con-
sist of a keypad, a tone generator chip, an audio amplifier, a battery, and a speaker. Eventu-
ally at lower levels of abstraction, the individual gate and then transistor connections
required to build the tone generator are described.

For each level of abstraction, the physical domain description explains how to physi-
cally construct that level of abstraction. At high levels, this might consist of an engineer-
ing drawing showing how to put together the keypad, tone generator chip, battery, and
speaker in the associated housing. At the top chip level, this might consist of a floorplan,
and at lower levels, the actual geometry of individual transistors.

The design process can be viewed as making transformations from one domain to
another while maintaining the equivalency of the domains. Behavioral descriptions are
transformed to structural descriptions, which in turn are transformed to physical descrip-
tions. These transformations can be manual or automatic. In either case, it is normal
design practice to verify the transformation of one domain to the other. This ensures that
the design intent is carried across the domain boundaries. Hierarchically specifying each
domain at successively detailed levels of abstraction allows us to design very large systems.

The reason for strictly describing the domains and levels of abstraction is to define a
precise design process in which the final function of the system can be traced all the way
back to the initial behavioral description. In an ideal flow, there should be no opportunity
to produce an incorrect design. If anomalies arise, the design process is corrected so that
those anomalies will not reoccur in the future. A designer should acquire a rigid discipline
with respect to the design process, and be aware of each transformation and how and why
it is failproof. Normally, these steps are fully automated in a modern design process, but it
is important to be aware of the basis for these steps in order to debug them if they go
astray.

The Y diagram can be used to illustrate each domain and the transformations
between domains at varying levels of design abstraction. As the design process winds its
way from the outer to inner rings, it proceeds from higher to lower levels of abstraction
and hierarchy.

Most of the remainder of this chapter is a case study in the design of a simple micro-
processor to illustrate the various aspects of VLSI design applied to a nontrivial system.
We begin by describing the architecture and microarchitecture of the processor. We then
consider logic design and discuss hardware description languages. The processor is built
with static CMOS circuits, which we examined in Section 1.4; transistor-level design and
netlist formats are discussed. We continue exploring the physical design of the processor
including floorplanning and area estimation. Design verification is critically important
and happens at each level of the hierarchy for each element of the design. Finally, the lay-
out is converted into masks so the chip can be manufactured, packaged, and tested.

1.7 Example: A Simple MIPS Microprocessor 33

1.7 Example: A Simple MIPS Microprocessor
We consider an 8-bit subset of the MIPS microprocessor architecture [Patterson04,
Harris07] because it is widely studied and is relatively simple, yet still large enough to
illustrate hierarchical design. This section describes the architecture and the multicycle
microarchitecture we will be implementing. If you are not familiar with computer archi-
tecture, you can regard the MIPS processor as a black box and skip to Section 1.8.

A set of laboratory exercises is available at www.cmosvlsi.com in which you can
learn VLSI design by building the microprocessor yourself using a free open-source CAD
tool called Electric or with commercial design tools from Cadence and Synopsys.

1.7.1 MIPS Architecture
The MIPS32 architecture is a simple 32-bit RISC architecture with relatively few idiosyn-
crasies. Our subset of the architecture uses 32-bit instruction encodings but only eight
8-bit general-purpose registers named $0–$7. We also use an 8-bit program counter
(PC). Register $0 is hardwired to contain the number 0. The instructions are ADD, SUB,
AND, OR, SLT, ADDI, BEQ, J, LB, and SB.

The function and encoding of each instruction is given in Table 1.7. Each instruction
is encoded using one of three templates: R, I, and J. R-type instructions (register-based)
are used for arithmetic and specify two source registers and a destination register. I-type
instructions are used when a 16-bit constant (also known as an immediate) and two regis-
ters must be specified. J-type instructions (jumps) dedicate most of the instruction word to
a 26-bit jump destination. The format of each encoding is defined in Figure 1.49. The six
most significant bits of all formats are the operation code (op). R-type instructions all
share op = 000000 and use six more funct bits to differentiate the functions.

TABLE 1.7 MIPS instruction set (subset supported)

Instruction Function Encoding op funct

add $1, $2, $3 addition: $1 <- $2 + $3 R 000000 100000

sub $1, $2, $3 subtraction: $1 <- $2 – $3 R 000000 100010

and $1, $2, $3 bitwise and: $1 <- $2 and $3 R 000000 100100

or $1, $2, $3 bitwise or: $1 <- $2 or $3 R 000000 100101

slt $1, $2, $3 set less than:

$1 <- 1 if $2 < $3
$1 <- 0 otherwise

R 000000 101010

addi $1, $2, imm add immediate: $1 <- $2 + imm I 001000 n/a
beq $1, $2, imm branch if equal:

PC <- PC + imm × 4a

a.Technically, MIPS addresses specify bytes. Instructions require a 4-byte word and must begin at addresses that are a mul-
tiple of four. To most effectively use instruction bits in the full 32-bit MIPS architecture, branch and jump constants are
specified in words and must be multiplied by four (shifted left 2 bits) to be converted to byte addresses.

I 000100 n/a

j destination jump: PC <- destinationa J 000010 n/a
lb $1, imm($2) load byte: $1 <- mem[$2 + imm] I 100000 n/a
sb $1, imm($2) store byte: mem[$2 + imm] <- $1 I 101000 n/a

Chapter 1 Introduction34

We can write programs for the MIPS processor in assembly language, where each line
of the program contains one instruction such as ADD or BEQ. However, the MIPS hard-
ware ultimately must read the program as a series of 32-bit numbers called machine lan-
guage. An assembler automates the tedious process of translating from assembly language
to machine language using the encodings defined in Table 1.7 and Figure 1.49. Writing
nontrivial programs in assembly language is also tedious, so programmers usually work in
a high-level language such as C or Java. A compiler translates a program from high-level
language source code into the appropriate machine language object code.

Example 1.4

Figure 1.50 shows a simple C program that computes the nth Fibonacci number fn
defined recursively for n > 0 as fn = fn–1 + fn–2, f–1 = –1, f0 = 1. Translate the program
into MIPS assembly language and machine language.

SOLUTION: Figure 1.51 gives a commented assembly language program. Figure 1.52
translates the assembly language to machine language.

1.7.2 Multicycle MIPS Microarchitecture
We will implement the multicycle MIPS microarchitecture given in Chapter 5 of
[Patterson04] and Chapter 7 of [Harris07] modified to process 8-bit data. The micro-
architecture is illustrated in Figure 1.53. Light lines indicate individual signals while heavy

FIGURE 1.49 Instruction encoding formats

int fib(void)
{
 int n = 8; /* compute nth Fibonacci number */
 int f1 = 1, f2 = -1; /* last two Fibonacci numbers */

 while (n != 0) { /* count down to n = 0 */
 f1 = f1 + f2;
 f2 = f1 - f2;
 n = n - 1;
 }
 return f1;

FIGURE 1.50 C Code for Fibonacci program

Format Example Encoding

R

I

J

0 ra rb rd 0 funct

op

op

ra rb imm

6

6

6

65 5 5 5

5 5 16

26

add $rd, $ra, $rb

beq $ra, $rb, imm

j dest dest

1.7 Example: A Simple MIPS Microprocessor 35

fib.asm
Register usage: $3: n $4: f1 $5: f2
return value written to address 255
fib: addi $3, $0, 8 # initialize n=8
 addi $4, $0, 1 # initialize f1 = 1
 addi $5, $0, -1 # initialize f2 = -1
loop: beq $3, $0, end # Done with loop if n = 0
 add $4, $4, $5 # f1 = f1 + f2
 sub $5, $4, $5 # f2 = f1 - f2
 addi $3, $3, -1 # n = n - 1
 j loop # repeat until done
end: sb $4, 255($0) # store result in address 255

FIGURE 1.51 Assembly language code for Fibonacci program

Hexadecimal
Instruction Binary Encoding Encoding
addi $3, $0, 8 001000 00000 00011 0000000000001000 20030008
addi $4, $0, 1 001000 00000 00100 0000000000000001 20040001
addi $5, $0, -1 001000 00000 00101 1111111111111111 2005ffff
beq $3, $0, end 000100 00011 00000 0000000000000100 10600004
add $4, $4, $5 000000 00100 00101 00100 00000 100000 00852020
sub $5, $4, $5 000000 00100 00101 00101 00000 100010 00852822
addi $3, $3, -1 001000 00011 00011 1111111111111111 2063ffff
j loop 000010 0000000000000000000000000011 08000003
sb $4, 255($0) 101000 00000 00100 0000000011111111 a00400ff

FIGURE 1.52 Machine language code for Fibonacci program

FIGURE 1.53 Multicycle MIPS microarchitecture. Adapted from [Patterson04] and [Harris07] with permission from Elsevier.

Imm

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

0
1PC 0

1

PCNext

Instr
25:21

20:16

7:0

5:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

31:26

R
egD

st

Branch

MemWrite

M
em

toR
eg

ALUSrcA

RegWrite
Op

Funct

Control
Unit

Zero

CLK

CLK

ALUControl2:0

A
LU

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

00
01

10

11

1

CLK

ENEN

ALUSrcB1:0IRWrite3:0

IorD

PCWrite
PCEn

PCSrc1:0

00
01

10

ImmX4

W
riteD

ata

M
em

D
ata

Chapter 1 Introduction36

lines indicate busses. The control logic and signals are highlighted in blue while the data-
path is shown in black. Control signals generally drive multiplexer select signals and regis-
ter enables to tell the datapath how to execute an instruction.

Instruction execution generally flows from left to right. The program counter (PC)
specifies the address of the instruction. The instruction is loaded 1 byte at a time over four
cycles from an off-chip memory into the 32-bit instruction register (IR). The Op field (bits
31:26 of the instruction) is sent to the controller, which sequences the datapath through
the correct operations to execute the instruction. For example, in an ADD instruction, the
two source registers are read from the register file into temporary registers A and B. On
the next cycle, the aludec unit commands the Arithmetic/Logic Unit (ALU) to add the
inputs. The result is captured in the ALUOut register. On the third cycle, the result is writ-
ten back to the appropriate destination register in the register file.

The controller contains a finite state machine (FSM) that generates multiplexer select
signals and register enables to sequence the datapath. A state transition diagram for the
FSM is shown in Figure 1.54. As discussed, the first four states fetch the instruction from

FIGURE 1.54 Multicycle MIPS control FSM (Adapted from [Patterson04] and [Harris07] with permission from Elsevier.)

Instruction decode/
register fetch

R-type completion

7

0

4

121195

1086

Reset

1 2 3

ALUSrcA = 0
IorD = 0
IRWrite0

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
IorD = 0
IRWrite1

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
IorD = 0
IRWrite2

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
IorD = 0
IRWrite3

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Instruction fetch

Memory address
computation

(Op = 'LB') or (Op = 'SB') (Op = R-type)

(O
p

=
'B

EQ
')

Execution

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
Branch = 1
PCSrc = 01

PCWrite
PCSrc = 10

Branch
completion

Jump
completion(O

p
=

 'J
')

(O
p

=
 'L

B
')

(O
p = 'SB')

Memory
access

Memory
access

IorD = 1 MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

Write-back step

RegDst = 0
RegWrite

MemtoReg = 1

1.7 Example: A Simple MIPS Microprocessor 37

memory. The FSM then is dispatched based on Op to execute the particular instruction.
The FSM states for ADDI are missing and left as an exercise for the reader.

Observe that the FSM produces a 2-bit ALUOp output. The ALU decoder unit in
the controller uses combinational logic to compute a 3-bit ALUControl signal from
the ALUOp and Funct fields, as specified in Table 1.8. ALUControl drives multiplexers in
the ALU to select the appropriate computation.

Example 1.5

Referring to Figures 1.53 and 1.54, explain how the MIPS processor fetches and exe-
cutes the SUB instruction.

SOLUTION: The first step is to fetch the 32-bit instruction. This takes four cycles
because the instruction must come over an 8-bit memory interface. On each cycle, we
want to fetch a byte from the address in memory specified by the program counter, then
increment the program counter by one to point to the next byte.

The fetch is performed by states 0–3 of the FSM in Figure 1.54. Let us start with
state 0. The program counter (PC) contains the address of the first byte of the instruc-
tion. The controller must select IorD = 0 so that the multiplexer sends this address to
the memory. MemRead must also be asserted so the memory reads the byte onto the
MemData bus. Finally, IRWrite0 should be asserted to enable writing memdata into
the least significant byte of the instruction register (IR).

Meanwhile, we need to increment the program counter. We can do this with the
ALU by specifying PC as one input, 1 as the other input, and ADD as the operation. To
select PC as the first input, ALUSrcA = 0. To select 1 as the other input, ALUSrcB = 01.
To perform an addition, ALUOp = 00, according to Table 1.8. To write this result back
into the program counter at the end of the cycle, PCSrc = 00 and PCEn = 1 (done by
setting PCWrite = 1).

All of these control signals are indicated in state 0 of Figure 1.54. The other regis-
ter enables are assumed to be 0 if not explicitly asserted and the other multiplexer
selects are don’t cares. The next three states are identical except that they write bytes 1,
2, and 3 of the IR, respectively.

The next step is to read the source registers, done in state 4. The two source registers
are specified in bits 25:21 and 20:16 of the IR. The register file reads these registers and
puts the values into the A and B registers. No control signals are necessary for SUB
(although state 4 performs a branch address computation in case the instruction is BEQ).

TABLE 1.8 ALUControl determination

ALUOp Funct ALUControl Meaning

00 x 010 ADD

01 x 110 SUB

10 100000 010 ADD

10 100010 110 SUB

10 100100 000 AND

10 100101 001 OR

10 101010 111 SLT

11 x x undefined

Chapter 1 Introduction38

The next step is to perform the subtraction. Based on the Op field (IR bits 31:26),
the FSM jumps to state 9 because SUB is an R-type instruction. The two source regis-
ters are selected as input to the ALU by setting ALUSrcA = 1 and ALUSrcB = 00.
Choosing ALUOp = 10 directs the ALU Control decoder to select the ALUControl sig-
nal as 110, subtraction. Other R-type instructions are executed identically except that
the decoder receives a different Funct code (IR bits 5:0) and thus generates a different
ALUControl signal. The result is placed in the ALUOut register.

Finally, the result must be written back to the register file in state 10. The data
comes from the ALUOut register so MemtoReg = 0. The destination register is speci-
fied in bits 15:11 of the instruction so RegDst = 1. RegWrite must be asserted to per-
form the write. Then, the control FSM returns to state 0 to fetch the next instruction.

1.8 Logic Design
We begin the logic design by defining the top-level chip interface and block diagram. We
then hierarchically decompose the units until we reach leaf cells. We specify the logic with
a Hardware Description Language (HDL), which provides a higher level of abstraction
than schematics or layout. This code is often called the Register Transfer Level (RTL)
description.

1.8.1 Top-Level Interfaces
The top-level inputs and outputs are listed in Table 1.9. This example uses a two-phase
clocking system to avoid hold-time problems. Reset initializes the PC to 0 and the con-
trol FSM to the start state.

The remainder of the signals are used for an 8-bit memory interface (assuming the mem-
ory is located off chip). The processor sends an 8-bit address Adr and optionally asserts
MemWrite. On a read cycle, the memory returns a value on the MemData lines while on a
write cycle, the memory accepts input from WriteData. In many systems, MemData and
WriteData can be combined onto a single bidirectional bus, but for this example we pre-
serve the interface of Figure 1.53. Figure 1.55 shows a simple computer system built from
the MIPS processor, external memory, reset switch, and clock generator.

1.8.2 Block Diagrams
The chip is partitioned into two top-level units: the controller and datapath, as shown in
the block diagram in Figure 1.56. The controller comprises the control FSM, the ALU
decoder, and the two gates used to compute PCEn. The ALU decoder consists of combina-

TABLE 1.9 Top-level inputs and outputs

Inputs Outputs

ph1 MemWrite

ph2 Adr[7:0]

reset WriteData[7:0]

MemData[7:0]

1.8 Logic Design 39

tional logic to determine ALUControl. The 8-bit datapath contains the remainder of the
chip. It can be viewed as a collection of wordslices or bitslices. A wordslice is a column con-
taining an 8-bit flip-flop, adder, multiplexer, or other element. For example, Figure 1.57
shows a wordslice for an 8-bit 2:1 multiplexer. It contains eight individual 2:1 multiplex-
ers, along with a zipper containing a buffer and inverter to drive the true and complemen-
tary select signals to all eight multiplexers.6 Factoring these drivers out into the zipper
saves space as compared to putting inverters in each multiplexer. Alternatively, the
datapath can be viewed as eight rows of bitslices. Each bitslice has one bit of each compo-
nent, along with the horizontal wires connecting the bits together.

The chip partitioning is influenced by the intended physical design. The datapath
contains most of the transistors and is very regular in structure. We can achieve high den-
sity with moderate design effort by handcrafting each wordslice or bitslice and tiling the

FIGURE 1.55 MIPS computer system

FIGURE 1.56 Top-level MIPS block diagram

reset

ph1

ph2

crystal
oscillator MIPS

processor Adr

WriteData

MemData

external
memory

MemWrite

8

8

8

2-phase
clock
generator

datapath

controller

ph1

ph2

reset

memdata[7:0]

writedata[7:0]

adr[7:0]

memwrite

op[5:0]

zero

irw
rite[3:0]

regw
rite

iord

regdst

m
em

toreg

pcsource[1:0]

pcen

alusrcb[1:0]

alusrca

alucontrol[2:0]

funct[5:0]

aludec

aluop[1:0]

6In this example, the zipper is shown at the top of the wordslice. In wider datapaths, the zipper is sometimes
placed in the middle of the wordslice so that it drives shorter wires. The name comes from the way the
layout resembles a plaid sweatshirt with a zipper down the middle.

FIGURE 1.57 8-bit 2:1
multiplexer wordslice

0D1[7]

1

0

1

0

1

s s

sel

zipper

D0[7]

D1[6]

D0[6]

D1[0]

D0[0]

Y[7]

Y[6]

Y[0]

Chapter 1 Introduction40

circuits together. Building datapaths using wordslices is usually easier because certain
structures, such as the zero detection circuit in the ALU, are not identical in each bitslice.
However, thinking about bitslices is a valuable way to plan the wiring across the datapath.
The controller has much less structure. It is tedious to translate an FSM into gates by
hand, and in a new design, the controller is the most likely portion to have bugs and last-
minute changes. Therefore, we will specify the controller more abstractly with a hardware
description language and automatically generate it using synthesis and place & route tools
or a programmable logic array (PLA).

1.8.3 Hierarchy
The best way to design complex systems is to decompose them into simpler pieces. Figure
1.58 shows part of the design hierarchy for the MIPS processor. The controller contains
the controller_pla and aludec, which in turn is built from a library of standard cells such as
NANDs, NORs, and inverters. The datapath is composed of 8-bit wordslices, each of
which also is typically built from standard cells such as adders, register file bits, multiplex-
ers, and flip-flops. Some of these cells are reused in multiple places.

The design hierarchy does not necessarily have to be identical in the logic, circuit, and
physical designs. For example, in the logic view, a memory may be best treated as a black
box, while in the circuit implementation, it may have a decoder, cell array, column multi-
plexers, and so forth. Different hierarchies complicate verification, however, because they
must be flattened until the point that they agree. As a matter of practice, it is best to make
logic, circuit, and physical design hierarchies agree as far as possible.

1.8.4 Hardware Description Languages
Designers need rapid feedback on whether a logic design is reasonable. Translating block
diagrams and FSM state transition diagrams into circuit schematics is time-consuming
and prone to error; before going through this entire process it is wise to know if the top-
level design has major bugs that will require complete redesign. HDLs provide a way to
specify the design at a higher level of abstraction to raise designer productivity. They were
originally intended for documentation and simulation, but are now used to synthesize
gates directly from the HDL.

FIGURE 1.58 MIPS design hierarchy

mips

controller datapath

alu

fulladder

nand2 nor2inv

controller_pla aludec

and2_8 adder_8or2_8

regramarray

mux4_8flop_8

a2o1

mux4invbuf and2 or2flop

zerodetect

1.8 Logic Design 41

The two most popular HDLs are Verilog and VHDL. Verilog was developed by
Advanced Integrated Design Systems (later renamed Gateway Design Automation) in
1984 and became a de facto industry open standard by 1991. In 2005, the SystemVerilog
extensions were standardized, and some of these features are used in this book. VHDL,
which stands for VHSIC Hardware Description Language, where VHSIC in turn was a
Department of Defense project on Very High Speed Integrated Circuits, was developed
by committee under government sponsorship. As one might expect from their pedigrees,
Verilog is less verbose and closer in syntax to C, while VHDL supports some abstractions
useful for large team projects. Many Silicon Valley companies use Verilog while defense
and telecommunications companies often use VHDL. Neither language offers a decisive
advantage over the other so the industry is saddled with supporting both. Appendix A
offers side-by-side tutorials on Verilog and VHDL. Examples in this book are given in
Verilog for the sake of brevity.

When coding in an HDL, it is important to remember that you are specifying hard-
ware that operates in parallel rather than software that executes in sequence. There are two
general coding styles. Structural HDL specifies how a cell is composed of other cells or
primitive gates and transistors. Behavioral HDL specifies what a cell does.

A logic simulator simulates HDL code; it can report whether results match expecta-
tions, and can display waveforms to help debug discrepancies. A logic synthesis tool is simi-
lar to a compiler for hardware: it maps HDL code onto a library of gates called standard
cells to minimize area while meeting some timing constraints. Only a subset of HDL con-
structs are synthesizable; this subset is emphasized in the appendix. For example, file I/O
commands used in testbenches are obviously not synthesizable. Logic synthesis generally
produces circuits that are neither as dense nor as fast as those handcrafted by a skilled
designer. Nevertheless, integrated circuit processes are now so advanced that synthesized
circuits are good enough for the great majority of application-specific integrated circuits
(ASICs) built today. Layout may be automatically generated using place & route tools.

Verilog and VHDL models for the MIPS processor are listed in Appendix A.12. In
Verilog, each cell is called a module. The inputs and outputs are declared much as in a C
program and bit widths are given for busses. Internal signals must also be declared in a way
analogous to local variables. The processor is described hierarchically using structural Ver-
ilog at the upper levels and behavioral Verilog for the leaf cells. For example, the controller
module shows how a finite state machine is specified in behavioral Verilog and the aludec
module shows how complex combinational logic is specified. The datapath is specified
structurally in terms of wordslices, which are in turn described behaviorally.

For the sake of illustration, the 8-bit adder wordslice could be described structurally
as a ripple carry adder composed of eight cascaded full adders.
The full adder could be expressed structurally as a sum and a
carry subcircuit. In turn, the sum and carry subcircuits could
be expressed behaviorally. The full adder block is shown in
Figure 1.59 while the carry subcircuit is explored further in
Section 1.9.

module adder(input logic [7:0] a, b,
 input logic c,
 output logic [7:0] s,
 output logic cout);

 wire [6:0] carry;
FIGURE 1.59 Full adder

a b

c

s

cout carry
sum

s

a b c

cout

fulladder

sum

Chapter 1 Introduction42

 fulladder fa0(a[0], b[0], c, s[0], carry[0]);
 fulladder fa1(a[1], b[1], carry[0], s[1], carry[1]);
 fulladder fa2(a[2], b[2], carry[1], s[2], carry[2]);
 ...
 fulladder fa7(a[7], b[7], carry[6], s[7], cout);
endmodule

module fulladder(input logic a, b, c,
 output logic s, cout);

 sum s1(a, b, c, s);
 carry c1(a, b, c, cout);
endmodule

module carry(input logic a, b, c,
 output logic cout);

 assign cout = (a&b) | (a&c) | (b&c);
endmodule

1.9 Circuit Design
Circuit design is concerned with arranging transistors to perform a particular logic func-
tion. Given a circuit design, we can estimate the delay and power. The circuit can be repre-
sented as a schematic, or in textual form as a netlist. Common transistor level netlist
formats include Verilog and SPICE. Verilog netlists are used for functional verification,
while SPICE netlists have more detail necessary for delay and power simulations.

Because a transistor gate is a good insulator, it can be modeled as a capacitor, C.
When the transistor is ON, some current I flows between source and drain. Both the cur-
rent and capacitance are proportional to the transistor width.

The delay of a logic gate is determined by the current that it can deliver and the
capacitance that it is driving, as shown in Figure 1.60 for one inverter driving another
inverter. The capacitance is charged or discharged according to the constitutive equation

If an average current I is applied, the time t to switch between 0 and VDD is

Hence, the delay increases with the load capacitance and decreases with the drive current.
To make these calculations, we will have to delve below the switch-level model of a tran-
sistor. Chapter 2 develops more detailed models of transistors accounting for the current
and capacitance. One of the goals of circuit design is to choose transistor widths to meet
delay requirements. Methods for doing so are discussed in Chapter 4.

I C
dV
dt

=

t
C
I

VDD=
FIGURE 1.60 Circuit delay
and power: (a) inverter pair,
(b) transistor-level model
showing capacitance and
current during switching, (c)
static leakage current during
quiescent operation

VDD

VDD

X

Y

GND

X

Y

I C

(a)

(b)

1

GND

ON

OFF
Istatic0

(c)

1.9 Circuit Design 43

 Energy is required to charge and discharge the load capacitance. This is called
dynamic power because it is consumed when the circuit is actively switching. The dynamic
power consumed when a capacitor is charged and discharged at a frequency f is

Even when the gate is not switching, it draws some static power. Because an OFF transis-
tor is leaky, a small amount of current Istatic flows between power and ground, resulting in
a static power dissipation of

Chapter 5 examines power in more detail.
A particular logic function can be implemented in many ways.

Should the function be built with ANDs, ORs, NANDs, or NORs?
What should be the fan-in and fan-out of each gate? How wide should
the transistors be on each gate? Each of these choices influences the
capacitance and current and hence the speed and power of the circuit, as
well as the area and cost.

As mentioned earlier, in many design methodologies, logic synthe-
sis tools automatically make these choices, searching through the stan-
dard cells for the best implementation. For many applications, synthesis
is good enough. When a system has critical requirements of high speed
or low power or will be manufactured in large enough volume to justify
the extra engineering, custom circuit design becomes important for criti-
cal portions of the chip.

Circuit designers often draw schematics at the transistor and/or gate
level. For example, Figure 1.61 shows two alternative circuit designs for
the carry circuit in a full adder. The gate-level design in Figure 1.61(a)
requires 26 transistors and four stages of gate delays (recall that ANDs
and ORs are built from NANDs and NORs followed by inverters). The
transistor-level design in Figure 1.61(b) requires only 12 transistors and
two stages of gate delays, illustrating the benefits of optimizing circuit
designs to take advantage of CMOS technology.

These schematics are then netlisted for simulation and verification.
One common netlist format is structural Verilog HDL. The gate-level
design can be netlisted as follows:

module carry(input logic a, b, c,
 output logic cout);

 logic x, y, z;

 and g1(x, a, b);
 and g2(y, a, c);
 and g3(z, b, c);
 or g4(cout, x, y, z);
endmodule

P CV fDDdynamic = 2

P I VDDstatic static=

FIGURE 1.61 Carry subcircuit

a
b

a
c

b
c

cout

x

y

z

g1

g2

g3

g4

(a)

a b

c

c

a b

b

a

a

b

coutcn

n1 n2

n3

n4

n5 n6

p6p5

p4

p3

p2p1

(b)

i1

i3

i2

i4

Chapter 1 Introduction44

This is a technology-independent structural description, because generic gates have
been used and the actual gate implementations have not been specified. The transistor-
level netlist follows:

module carry(input logic a, b, c,
 output tri cout);

 tri i1, i2, i3, i4, cn;
 supply0 gnd;
 supply1 vdd;

 tranif1 n1(i1, gnd, a);
 tranif1 n2(i1, gnd, b);
 tranif1 n3(cn, i1, c);
 tranif1 n4(i2, gnd, b);
 tranif1 n5(cn, i2, a);
 tranif0 p1(i3, vdd, a);
 tranif0 p2(i3, vdd, b);
 tranif0 p3(cn, i3, c);
 tranif0 p4(i4, vdd, b);
 tranif0 p5(cn, i4, a);
 tranif1 n6(cout, gnd, cn);
 tranif0 p6(cout, vdd, cn);
endmodule

Transistors are expressed as

Transistor-type name(drain, source, gate);

tranif1 corresponds to nMOS transistors that turn ON when the gate is 1 while
tranif0 corresponds to pMOS transistors that turn ON when the gate is 0. Appendix
A.11 covers Verilog netlists in more detail.

With the description generated so far, we still do not have the information required to
determine the speed or power consumption of the gate. We need to specify the size of the
transistors and the stray capacitance. Because Verilog was designed as a switch-level and
gate-level language, it is poorly suited to structural descriptions at this level of detail.
Hence, we turn to another common structural language used by the circuit simulator
SPICE. The specification of the transistor-level carry subcircuit at the circuit level might
be represented as follows:

.SUBCKT CARRY A B C COUT VDD GND
MN1 I1 A GND GND NMOS W=2U L=0.6U AD=1.8P AS=3P
MN2 I1 B GND GND NMOS W=2U L=0.6U AD=1.8P AS=3P
MN3 CN C I1 GND NMOS W=2U L=0.6U AD=3P AS=3P
MN4 I2 B GND GND NMOS W=2U L=0.6U AD=0.9P AS=3P
MN5 CN A I2 GND NMOS W=2U L=0.6U AD=3P AS=0.9P
MP1 I3 A VDD VDD PMOS W=4U L=0.6U AD=3.6P AS=6P
MP2 I3 B VDD VDD PMOS W=4U L=0.6U AD=3.6P AS=6P
MP3 CN C I3 VDD PMOS W=4U L=0.6U AD=6P AS=6P

1.10 Physical Design 45

MP4 I4 B VDD VDD PMOS W=4U L=0.6U AD=1.8P AS=6P
MP5 CN A I4 VDD PMOS W=4U L=0.6U AD=6P AS=1.8P
MN6 COUT CN GND GND NMOS W=4U L=0.6U AD=6P AS=6P
MP6 COUT CN VDD VDD PMOS W=8U L=0.6U AD=12P AS=12P
CI1 I1 GND 6FF
CI3 I3 GND 9FF
CA A GND 12FF
CB B GND 12FF
CC C GND 6FF
CCN CN GND 12FF
CCOUT COUT GND 6FF
.ENDS

Transistors are specified by lines beginning with an M as follows:

Mname drain gate source body type W=width L=length
 AD=drain area AS=source area

Although MOS switches have been masquerading as three terminal devices (gate,
source, and drain) until this point, they are in fact four terminal devices with the substrate
or well forming the body terminal. The body connection was not listed in Verilog but is
required for SPICE. The type specifies whether the transistor is a p-device or n-device.
The width, length, and area parameters specify physical dimensions of the actual transis-
tors. Units include U (micro, 10–6), P (pico, 10–12), and F (femto, 10–15). Capacitors are
specified by lines beginning with C as follows:

Cname node1 node2 value

In this description, the MOS model in SPICE calculates the parasitic capacitances inher-
ent in the MOS transistor using the device dimensions specified. The extra capacitance
statements in the above description designate additional routing capacitance not inherent
to the device structure. This depends on the physical design of the gate. Long wires also
contribute resistance, which increases delay. At the circuit level of structural specification,
all connections are given that are necessary to fully characterize the carry gate in terms of
speed, power, and connectivity. Chapter 8 describes SPICE models in more detail.

1.10 Physical Design

1.10.1 Floorplanning
Physical design begins with a floorplan. The floorplan estimates the area of major units in
the chip and defines their relative placements. The floorplan is essential to determine
whether a proposed design will fit in the chip area budgeted and to estimate wiring lengths
and wiring congestion. An initial floorplan should be prepared as soon as the logic is
loosely defined. As usual, this process involves feedback. The floorplan will often suggest
changes to the logic (and microarchitecture), which in turn changes the floorplan. For
example, suppose microarchitects assume that a cache requires a 2-cycle access latency. If
the floorplan shows that the data cache can be placed adjacent to the execution units in the

Chapter 1 Introduction46

datapath, the cache access time might reduce to a single cycle. This could allow the
microarchitects to reduce the cache capacity while providing the same performance. Once
the cache shrinks, the floorplan must be reconsidered to take advantage of the newly avail-
able space near the datapath. As a complex design begins to stabilize, the floorplan is often
hierarchically subdivided to describe the functional blocks within the units.

The challenge of floorplanning is estimating the size of each unit without proceeding
through a detailed design of the chip (which would depend on the floorplan and wire
lengths). This section assumes that good estimates have been made and describes what a
floorplan looks like. The next sections describe each of the types of components that
might be in a floorplan and suggests ways to estimate the component sizes.

Figure 1.62 shows the chip floorplan for the MIPS processor including the pad frame.
The top-level blocks are the controller and datapath. A wiring channel is located between the
two blocks to provide room to route control signals to the datapath. The datapath is further
partitioned into wordslices. The pad frame includes 40 I/O pads, which are wired to the pins
on the chip package. There are 29 pads used for signals; the remainder are VDD and GND.

The floorplan is drawn to scale and annotated with dimensions. The chip is designed in
a 0.6 μm process on a 1.5 × 1.5 mm die so the die is 5000 λ on a side. Each pad is 750 λ ×

FIGURE 1.62 MIPS floorplan

2550 λ

wiring channel: 25 tracks = 200λ

3500 λ

5000 λ

10 I/O pads

10 I/O pads

8 bitslices + 1 zipper row + 3 decoder rows =
12 rows x 110 λ / row = 1320 λ height
width determined from slice plan

height determined from
PLA size width matches
datapath

mips
(4.8 Mλ2)

control
2550λ x 380λ

(1.0 Mλ2)

datapath
2550λ x 1320λ

(3.4 Mλ2)

1900 λ
3500 λ

5000 λ

10 I/O
 pads

10 I/O
 pads

1.10 Physical Design 47

350 λ, so the maximum possible core area inside the pad frame is 3500 λ × 3500 λ = 12.25
Mλ2. Due to the wiring channel, the actual core area of 4.8 Mλ2 is larger than the sum of
the block areas. This design is said to be pad-limited because the I/O pads set the chip area.
Most commercial chips are core-limited because the chip area is set by the logic excluding the
pads. In general, blocks in a floorplan should be rectangular because it is difficult for a
designer to stuff logic into an odd-shaped region (although some CAD tools do so just fine).

Figure 1.63 shows the actual chip layout. Notice the 40 I/O pads around the periph-
ery. Just inside the pad frame are metal2 VDD and GND rings, marked with + and –.

FIGURE 1.63 MIPS layout

Chapter 1 Introduction48

On-chip structures can be categorized as random logic, datapaths, arrays, analog, and
input/output (I/O). Random logic, like the aludecoder, has little structure. Datapaths oper-
ate on multi-bit data words and perform roughly the same function on each bit so they
consist of multiple N-bit wordslices. Arrays, like RAMs, ROMs, and PLAs, consist of
identical cells repeated in two dimensions. Productivity is highest if layout can be reused
or automatically generated. Datapaths and arrays are good VLSI building blocks because a
single carefully crafted cell is reused in one or two dimensions. Automatic layout genera-
tors exist for memory arrays and random logic but are not as mature for datapaths. There-
fore, many design methodologies ignore the potential structure of datapaths and instead
lay them out with random logic tools except when performance or area are vital. Analog
circuits still require careful design and simulation but tend to involve only small amounts
of layout because they have relatively few transistors. I/O cells are also highly tuned to
each fabrication process and are often supplied by the process vendor.

Random logic and datapaths are typically built from standard cells such as inverters,
NAND gates, and flip-flops. Standard cells increase productivity because each cell only
needs to be drawn and verified once. Often, a standard cell library is purchased from a
third party vendor.

Another important decision during floorplanning is to choose the metal orientation.
The MIPS floorplan uses horizontal metal1 wires, vertical metal2 wires, and horizontal
metal3 wires. Alternating directions between each layer makes it easy to cross wires on dif-
ferent layers.

1.10.2 Standard Cells
A simple standard cell library is shown on the inside front cover. Power and ground run
horizontally in metal1. These supply rails are 8 λ wide (to carry more current) and are sep-
arated by 90 λ center-to-center. The nMOS transistors are placed in the bottom 40 λ of
the cell and the pMOS transistors are placed in the top 50 λ. Thus, cells can be connected
by abutment with the supply rails and n-well matching up. Substrate and well contacts are
placed under the supply rails. Inputs and outputs are provided in metal2, which runs verti-
cally. Each cell is a multiple of 8 λ in width so that it offers an integer number of metal2
tracks. Within the cell, poly is run vertically to form gates and diffusion and metal1 are
run horizontally, though metal1 can also be run vertically to save space when it does not
interfere with other connections.

Cells are tiled in rows. Each row is separated vertically by at least 110 λ from the base
of the previous row. In a 2-level metal process, horizontal metal1 wires are placed in rout-
ing channels between the rows. The number of wires that must be routed sets the height of
the routing channels. Layout is often generated with automatic place & route tools. Figure
1.64 shows the controller layout generated by such a tool. Note that in this and subsequent
layouts, the n-well around the pMOS transistors will usually not be shown.

When more layers of metal are available, routing takes place over the cells and routing
channels may become unnecessary. For example, in a 3-level metal process, metal3 is
run horizontally on a 10 λ pitch. Thus, 11 horizontal tracks can run over each cell. If this
is sufficient to accommodate all of the horizontal wires, the routing channels can be
eliminated.

Automatic synthesis and place & route tools have become good enough to map entire
designs onto standard cells. Figure 1.65 shows the entire 8-bit MIPS processor synthesized
from the VHDL model given in Appendix A.12 onto a cell library in a 130 nm process with

1.10 Physical Design 49

seven metal layers. Compared to Figure 1.63, the synthesized design shows little discernible
structure except that 26 rows of standard cells can be identified beneath the wires. The area is
approximately 4 Mλ2. Synthesized designs tend to be somewhat slower than a good custom
design, but they also take an order of magnitude less design effort.

FIGURE 1.64 MIPS controller layout (synthesized)

FIGURE 1.65 Synthesized MIPS processor

Chapter 1 Introduction50

1.10.3 Pitch Matching
The area of the controller in Figure 1.64 is dominated by the routing channels. When the
logic is more regular, layout density can be improved by including the wires in cells that
“snap together.” Snap-together cells require more design and layout effort but lead to
smaller area and shorter (i.e., faster) wires. The key issue in designing snap-together cells
is pitch-matching. Cells that connect must have the same size along the connecting edge.
Figure 1.66 shows several pitch-matched cells. Reducing the size of cell D does not help
the layout area. On the other hand, increasing the size of cell D also affects the area of B
and/or C.

Figure 1.67 shows the MIPS datapath in more detail. The eight horizontal bitslices
are clearly visible. The zipper at the top of the layout includes three rows for the decoder
that is pitch-matched to the register file in the datapath. Vertical metal2 wires are used for
control, including clocks, multiplexer selects, and register enables. Horizontal metal3
wires run over the tops of cells to carry data along a bitslice.

The width of the transistors in the cells and the number of wires that must run over
the datapath determines the minimum height of the datapath cells. 60–100 λ are typical
heights for relatively simple datapaths. The width of the cell depends on the cell contents.

1.10.4 Slice Plans
Figure 1.68 shows a slice plan of the datapath. The diagram illustrates the ordering of
wordslices and the allocation of wiring tracks within each bitslice. Dots indicate that a bus
passes over a cell and is also used in that cell. Each cell is annotated with its type and
width (in number of tracks). For example, the program counter (pc) is an output of the
PC flop and is also used as an input to the srcA and address multiplexers. The slice plan

FIGURE 1.67 MIPS datapath layout

FIGURE 1.66 Pitch-matching
of snap-together cells

A A A A

A A A A

A A A A

A A A A

B

B

B

B

C C D

1.10 Physical Design 51

makes it easy to calculate wire lengths and evaluate wiring congestion before laying out the
datapath. In this case, it is evident that the greatest congestion takes place over the register
file, where seven wiring tracks are required.

The slice plan is also critical for estimating area of datapaths. Each wordslice is anno-
tated with its width, measured in tracks. This information can be obtained by looking at the
cell library layouts. By adding up the widths of each element in the slice plan, we see that the
datapath is 319 tracks wide, or 2552 λ wide. There are eight bitslices in the 8-bit datapath.
In addition, there is one more row for the zipper and three more for the three register file
address decoders, giving a total of 12 rows. At a pitch of 110 λ / row, the datapath is 1320 λ
tall. The address decoders only occupy a small fraction of their rows, leaving wasted empty
space. In a denser design, the controller could share some of the unused area.

1.10.5 Arrays
Figure 1.69 shows a programmable logic array (PLA) used for the control FSM next state
and output logic. A PLA can compute any function expressed in sum of products form.
The structure on the left is called the AND plane and the structure on the right is the OR
plane. PLAs are discussed further in Section 12.7.

This PLA layout uses 2 vertical tracks for each input and 3 for each output plus about
6 for overhead. It uses 1.5 horizontal tracks for each product or minterm, plus about 14 for
overhead. Hence, the size of a PLA is easy to calculate. The total PLA area is 500 λ × 350
λ, plus another 336 λ × 220 λ for the four external flip-flops needed in the control FSM.
The height of the controller is dictated by the height of the PLA plus a few wiring tracks
to route inputs and outputs. In comparison, the synthesized controller from Figure 1.64
has a size of 1500 λ × 400 λ because the wiring tracks waste so much space.

1.10.6 Area Estimation
A good floorplan depends on reasonable area estimates, which may be difficult to make
before logic is finalized. An experienced designer may be able to estimate block area by

FIGURE 1.68 Datapath slice plan

m
ux2

flopen

flopen

flopen

flop

m
ux2

regram
0

regram

regram

regram

regram

flop

m
ux4

flop

m
ux2

flop

m
ux3

flop

zerodetect

inv

m
ux2

and2

or2

fulladder

m
ux4

register file
ramslices

ALU

adrm
ux

flopen

M
D

R

IR3...0

w
ritem

ux

srcB srcA

aluout

PC

adr

aluresult

srcB
srcA

rd1

6 17 17 17 17 13 6 9 9 9 9 9 13 13 13 13 66 213 10 135 4 4 16

memdata
writedata

pc
aluout

immediate

regram

regram

regram

9 9 97 6 3 6

(w
iring)

(w
iring)

(w
iring)

(w
iring)

op[6:0] funct[6:0]register
adrs

rd2

Chapter 1 Introduction52

comparison to the area of a comparable block drawn in the past. In the absence of data for
such comparison, Table 1.10 lists some typical numbers. Be certain to account for large
wiring channels at a pitch of 8 λ / track. Larger transistors clearly occupy a greater area, so
this may be factored into the area estimates as a function of W and L (width and length).
For memories, don’t forget about the decoders and other periphery circuits, which often
take as much area as the memory bits themselves. Your mileage may vary, but datapaths
and arrays typically achieve higher densities than standard cells.

 Given enough time, it is nearly always possible to shave a few lambda here or there
from a design. However, such efforts are seldom a good investment unless an element is
repeated so often that it accounts for a major fraction of the chip area or if floorplan errors
have led to too little space for a block and the block must be shrunk before the chip can be
completed. It is wise to make conservative area estimates in floorplans, especially if there is
risk that more functionality may be added to a block.

FIGURE 1.69 PLA for control FSM

TABLE 1.10 Typical layout densities

Element Area

random logic (2-level metal process) 1000 – 1500 λ2 / transistor

datapath 250 – 750 λ2 / transistor or
6 WL + 360 λ2 / transistor

SRAM 1000 λ2 / bit

DRAM (in a DRAM process) 100 λ2 / bit

ROM 100 λ2 / bit

1.11 Design Verification 53

Some cell library vendors specify typical routed standard cell layout densities in
kgates / mm2.7 Commonly, a gate is defined as a 3-input static CMOS NAND or NOR
with six transistors. A 65 nm process (λ ≈ 0.03 μm) with eight metal layers may achieve a
density of 160–500 kgates / mm2 for random logic. This corresponds to about
370–1160 λ2 / transistor. Processes with many metal layers obtain high density because
routing channels are not needed.

1.11 Design Verification
Integrated circuits are complicated enough that if anything can go wrong, it probably will.
Design verification is essential to catching the errors before manufacturing and commonly
accounts for half or more of the effort devoted to a chip.

As design representations become more detailed, verification time increases. It is not
practical to simulate an entire chip in a circuit-level simulator such as SPICE for a large
number of cycles to prove that the layout is correct. Instead, the design is usually tested for
functionality at the architectural level with a model in a language such
as C and at the logic level by simulating the HDL description. Then,
the circuits are checked to ensure that they are a faithful representation
of the logic and the layout is checked to ensure it is a faithful represen-
tation of the circuits, as shown in Figure 1.70. Circuits and layout must
meet timing and power specifications as well.

A testbench is used to verify that the logic is correct. The testbench
instantiates the logic under test. It reads a file of inputs and expected
outputs called test vectors, applies them to the module under test, and
logs mismatches. Appendix A.12 provides an example of a testbench for
verifying the MIPS processor logic.

A number of techniques are available for circuit verification. If the
logic is synthesized onto a cell library, the postsynthesis gate-level
netlist can be expressed in an HDL again and simulated using the same
test vectors. Alternatively, a transistor-level netlist can be simulated
against the test vector, although this can result in tricky race conditions
for sequential circuits. Powerful formal verification tools are also avail-
able to check that a circuit performs the same Boolean function as the
associated logic. Exotic circuits should be simulated thoroughly to
ensure that they perform the intended logic function and have adequate
noise margins; circuit pitfalls are discussed throughout this book.

Layout vs. Schematic tools (LVS) check that transistors in a layout
are connected in the same way as in the circuit schematic. Design rule
checkers (DRC) verify that the layout satisfies design rules. Electrical rule
checkers (ERC) scan for other potential problems such as noise or pre-
mature wearout; such problems will also be discussed later in the book. FIGURE 1.70 Design and verification sequence

Specification

Architecture
Design

Logic
Design

Circuit
Design

Physical
Design

=

=

=

=

Function

Function

Function

Function
Timing
Power

71 kgate = 1000 gates.

Chapter 1 Introduction54

1.12 Fabrication, Packaging, and Testing
Once a chip design is complete, it is taped out for manufacturing. Tapeout gets its name
from the old practice of writing a specification of masks to magnetic tape; today, the mask
descriptions are usually sent to the manufacturer electronically. Two common formats for
mask descriptions are the Caltech Interchange Format (CIF) [Mead80] (mainly used in
academia) and the Calma GDS II Stream Format (GDS) [Calma84] (used in industry).

Masks are made by etching a pattern of chrome on glass with an electron beam. A set
of masks for a nanometer process can be very expensive. For example, masks for a large
chip in a 180 nm process may cost on the order of a quarter of a million dollars. In a 65 nm
process, the mask set costs about $3 million. The MOSIS service in the United States and
its EUROPRACTICE and VDEC counterparts in Europe and Japan make a single set of
masks covering multiple small designs from academia and industry to amortize the cost
across many customers. With a university discount, the cost for a run of 40 small chips on
a multi-project wafer can run about $10,000 in a 130 nm process down to $2000 in a
0.6 μm process. MOSIS offers certain grants to cover fabrication of class project chips.

Integrated circuit fabrication plants (fabs) now cost billions of dollars and become
obsolete in a few years. Some large companies still own their own fabs, but an increasing
number of fabless semiconductor companies contract out manufacturing to foundries such
as TSMC, UMC, and IBM.

Multiple chips are manufactured simultaneously on a single silicon wafer, typically
150–300 mm (6�–12�) in diameter. Fabrication requires many deposition, masking, etch-
ing, and implant steps. Most fabrication plants are optimized for wafer throughput rather
than latency, leading to turnaround times of up to 10 weeks. Figure 1.71 shows an engi-
neer in a clean room holding a completed 300 mm wafer. Clean rooms are filtered to elimi-
nate most dust and other particles that could damage a partially processed wafer. The
engineer is wearing a “bunny suit” to avoid contaminating the clean room. Figure 1.72 is a

FIGURE 1.71 Engineer holding processed
12-inch wafer (Photograph courtesy of the Intel
Corporation.)

FIGURE 1.72 MIPS processor photomicrograph (only part of pad frame shown)

 Summary and a Look Ahead 55

photomicrograph (a photograph taken under a microscope) of the 8-bit MIPS processor.
Processed wafers are sliced into dice (chips) and packaged. Figure 1.73 shows the 1.5 ×

1.5 mm chip in a 40-pin dual-inline package (DIP). This wire-bonded package uses thin gold
wires to connect the pads on the die to the lead frame in the center cavity of the package.
These wires are visible on the pads in Figure 1.72. More advanced packages offer different
trade-offs between cost, pin count, pin bandwidth, power handling, and reliability, as will be
discussed in Section 13.2. Flip-chip technology places small solder balls directly onto the
die, eliminating the bond wire inductance and allowing contacts over the entire chip area
rather than just at the periphery.

Even tiny defects in a wafer or dust particles can cause a chip to fail. Chips are tested
before being sold. Testers capable of handling high-speed chips cost millions of dollars, so
many chips use built-in self-test features to reduce the tester time required. Chapter 15 is
devoted to design verification and testing.

Summary and a Look Ahead
“If the automobile had followed the same development cycle as the computer, a Rolls-
Royce would today cost $100, get one million miles to the gallon, and explode once a
year . . .”

—Robert X. Cringely

CMOS technology, driven by Moore’s Law, has come to dominate the semiconductor
industry. This chapter examined the principles of designing a simple CMOS integrated
circuit. MOS transistors can be viewed as electrically controlled switches. Static CMOS
gates are built from pull-down networks of nMOS transistors and pull-up networks of
pMOS transistors. Transistors and wires are fabricated on silicon wafers using a series of
deposition, lithography, and etch steps. These steps are defined by a set of masks drawn as
a chip layout. Design rules specify minimum width and spacing between elements in the
layout. The chip design process can be divided into architecture, logic, circuit, and physical
design. The performance, area, and power of the chip are influenced by interrelated deci-
sions made at each level. Design verification plays an important role in constructing such
complex systems; the reliability requirements for hardware are much greater than those
typically imposed on software.

Primary design objectives include reliability, performance, power, and cost. Any chip
should, with high probability, operate reliably for its intended lifetime. For example, the
chip must be designed so that it does not overheat or break down from excessive voltage.
Performance is influenced by many factors including clock speed and parallelism. CMOS
transistors dissipate power every time they switch, so the dynamic power consumption is
related to the number and size of transistors and the rate at which they switch. At feature

FIGURE 1.73 Chip in a 40-pin dual-inline package

Chapter 1 Introduction56

sizes below 180 nm, transistors also leak a significant amount of current even when they
should be OFF. Thus, chips now draw static power even when they are idle. One of the
central challenges of VLSI design is making good trade-offs between performance and
power for a particular application. The cost of a chip includes nonrecurring engineering
(NRE) expenses for the design and masks, along with per-chip manufacturing costs
related to the size of the chip. In processes with smaller feature sizes, the per-unit cost
goes down because more transistors can be packed into a given area, but the NRE
increases. The latest manufacturing processes are only cost-effective for chips that will sell
in huge volumes. Nevertheless, plenty of interesting markets exist for chips in mature,
inexpensive manufacturing processes.

To quantify how a chip meets these objectives, we must develop and analyze more
complete models. The remainder of this book will expand on the material introduced in
this chapter. Of course, transistors are not simply switches. Chapter 2 examines the cur-
rent and capacitance of transistors, which are essential for estimating delay and power. A
more detailed description of CMOS processing technology and layout rules is presented
in Chapter 3. The next four chapters address the fundamental concerns of circuit design-
ers. The models from Chapter 2 are too detailed to apply by hand to large systems, yet not
detailed enough to fully capture the complexity of modern transistors. Chapter 4 develops
simplified models to estimate the delay of circuits. If modern chips were designed to
squeeze out the ultimate possible performance without regard to power, they would burn
up. Thus, it is essential to estimate and trade off the power consumption against perfor-
mance. Moreover, low power consumption is crucial to mobile battery-operated systems.
Power is considered in Chapter 5. Wires are as important as transistors in their contribu-
tion to overall performance and power, and are discussed in Chapter 6. Chapter 7
addresses design of robust circuits with a high yield and low failure rate.

Simulation is discussed in Chapter 8 and is used to obtain more accurate performance
and power predictions as well as to verify the correctness of circuits and logic. Chapter 9
considers combinational circuit design. A whole kit of circuit families are available with
different trade-offs in speed, power, complexity, and robustness. Chapter 10 continues
with sequential circuit design, including clocking and latching techniques.

The next three chapters delve into CMOS subsystems. Chapter 11 catalogs designs
for a host of datapath subsystems including adders, shifters, multipliers, and counters.
Chapter 12 similarly describes memory subsystems including SRAMs, DRAMs, CAMs,
ROMs, and PLAs. Chapter 13 addresses special-purpose subsystems including power dis-
tribution, clocking, and I/O.

The final chapters address practicalities of CMOS system design. Chapter 14 focuses
on a range of current design methods, identifying the issues peculiar to CMOS. Testing,
design-for-test, and debugging techniques are discussed in Chapter 15. Hardware
description languages (HDLs) are used in the design of nearly all digital integrated cir-
cuits today. Appendix A provides side-by-side tutorials for Verilog and VHDL, the two
dominant HDLs.

A number of sections are marked with an “optional” icon. These sections describe par-
ticular subjects in greater detail. You may skip over these sections on a first reading and
return to them when they are of practical relevance. To keep the length of this book under
control, some optional topics have been published on the Internet rather than in print.
These sections can be found at www.cmosvlsi.com and are labeled with a “Web
Enhanced” icon. A companion text, Digital VLSI Chip Design with Cadence and Synopsys
CAD Tools [Brunvand09], covers practical details of using the leading industrial CAD
tools to build chips.

 Exercises 57

Exercises
1.1 Extrapolating the data from Figure 1.4, predict the transistor count of a micropro-

cessor in 2016.

1.2 Search the Web for transistor counts of Intel’s more recent microprocessors. Make a
graph of transistor count vs. year of introduction from the Pentium Processor in
1993 to the present on a semilogarithmic scale. How many months pass between
doubling of transistor counts?

1.3 As the cost of a transistor drops from a microbuck ($10-6) toward a nanobuck, what
opportunities can you imagine to change the world with integrated circuits?

1.4 Read a biography or history about a major event in the development of integrated
circuits. For example, see Crystal Fire by Lillian Hoddesonor, Microchip by Jeffrey
Zygmont, or The Pentium Chronicles by Robert Colwell. Pick a team or individual
that made a major contribution to the field. In your opinion, what were the charac-
teristics that led to success? What traits of the team management would you seek to
emulate or avoid in your own professional life?

1.5 Sketch a transistor-level schematic for a CMOS 4-input NOR gate.

1.6 Sketch a transistor-level schematic for a compound CMOS logic gate for each of
the following functions:

a) Y = ABC + D

b) Y = (AB + C) · D

c) Y = AB + C · (A + B)

1.7 Use a combination of CMOS gates (represented by their symbols) to generate the
following functions from A, B, and C.

a) Y = A (buffer)

b) Y = AB + AB (XOR)

c) Y = A B + AB (XNOR)

d) Y = AB + BC + AC (majority)

1.8 Sketch a transistor-level schematic of a CMOS 3-input XOR gate. You may assume
you have both true and complementary versions of the inputs available.

1.9 Sketch transistor-level schematics for the following logic functions. You may assume
you have both true and complementary versions of the inputs available.

a) A 2:4 decoder defined by

Y0 = A0 · A1
Y1 = A0 · A1
Y2 = A0 · A1
Y3 = A0 · A1

b) A 3:2 priority encoder defined by

Y0 = A0 · (A1 + A2)
Y1 = A0 · A1

Chapter 1 Introduction58

1.10 Sketch a stick diagram for a CMOS 4-input NOR gate from Exercise 1.5.

1.11 Estimate the area of your 4-input NOR gate from Exercise 1.10.

1.12 Using a CAD tool of your choice, layout a 4-input NOR gate. How does its size
compare to the prediction from Exercise 1.11?

1.13 Figure 1.74 shows a stick diagram of a 2-input NAND gate. Sketch a side view
(cross-section) of the gate from X to X′.

1.14 Figure 1.75 gives a stick diagram for a level-sensitive latch. Estimate the area of the
latch.

1.15 Draw a transistor-level schematic for the latch of Figure 1.75. How does the sche-
matic differ from Figure 1.31(b)?

1.16 Consider the design of a CMOS compound OR-AND-INVERT (OAI21) gate
computing F = (A + B) · C.

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

d) layout your gate with a CAD tool using unit-sized transistors

e) compare the layout size to the estimated area

FIGURE 1.74 2-input NAND gate stick diagram

A B

Y

X

X'

VDD

GND

FIGURE 1.75 Level-sensitive latch stick diagram

VDD

CLK

CLK

GND

YD

 Exercises 59

1.17 Consider the design of a CMOS compound OR-OR-AND-INVERT (OAI22)
gate computing F = (A + B) · (C + D).

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

d) layout your gate with a CAD tool using unit-sized transistors

e) compare the layout size to the estimated area

1.18 A 3-input majority gate returns a true output if at least two of the inputs are true. A
minority gate is its complement. Design a 3-input CMOS minority gate using a
single stage of logic.

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

1.19 Design a 3-input minority gate using CMOS NANDs, NORs, and inverters. How
many transistors are required? How does this compare to a design from Exercise
1.18(a)?

1.20 A carry lookahead adder computes G = G3 + P3(G2 + P2(G1 + P1G0)). Consider
designing a compound gate to compute G.

a) sketch a transistor-level schematic

b) sketch a stick diagram

c) estimate the area from the stick diagram

1.21 www.cmosvlsi.com has a series of four labs in which you can learn VLSI design
by completing the multicycle MIPS processor described in this chapter. The labs use
the open-source Electric CAD tool or commercial tools from Cadence and Synop-
sys. They cover the following:

a) leaf cells: schematic entry, layout, icons, simulation, DRC, ERC, LVS;
hierarchical design

b) datapath design: wordslices, ALU assembly, datapath routing

c) control design: random logic or PLAs

d) chip assembly, pad frame, global routing, full-chip verification, tapeout

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

