

A

699

Hardware Description
Languages

APPENDIX

A.1

Introduction

This appendix gives a quick introduction to the SystemVerilog and VHDL Hardware
Description Languages (HDLs). Many books treat HDLs as programming languages, but
HDLs are better understood as a shorthand for describing digital hardware. It is best to
begin your design process by planning, on paper or in your mind, the hardware you want.
(For example, the MIPS processor consists of an FSM controller and a datapath built
from registers, adders, multiplexers, etc.) Then, write the HDL code that implies that
hardware to a synthesis tool. A common error among beginners is to write a program
without thinking about the hardware that is implied. If you don’t know what hardware you
are implying, you are almost certain to get something that you don’t want. Sometimes, this
means extra latches appearing in your circuit in places you didn’t expect. Other times, it
means that the circuit is much slower than required or it takes far more gates than it would
if it were more carefully described.

The treatment in this appendix is unusual in that both SystemVerilog and VHDL are
covered together. Discussion of the languages is divided into two columns for literal side-
by-side comparison with SystemVerilog on the left and VHDL on the right. When you
read the appendix for the first time, focus on one language or the other. Once you know
one, you’ll quickly master the other if you need it. Religious wars have raged over which
HDL is superior. According to a large 2007 user survey [Cooley07], 73% of respondents
primarily used Verilog/SystemVerilog and 20% primarily used VHDL, but 41% needed to
use both on their project because of legacy code, intellectual property blocks, or because
Verilog is better suited to netlists. Thus, many designers need to be bilingual and most
CAD tools handle both.

In our experience, the best way to learn an HDL is by example. HDLs have specific
ways of describing various classes of logic; these ways are called

idioms

. This appendix will
teach you how to write the proper HDL idiom for each type of block and put the blocks
together to produce a working system. We focus on a

synthesizable subset

 of HDL suffi-
cient to describe any hardware function. When you need to describe a particular kind of
hardware, look for a similar example and adapt it to your purpose. The languages contain
many other capabilities that are mostly beneficial for writing test fixtures and that are
beyond the scope of this book. We do not attempt to define all the syntax of the HDLs
rigorously because that is deathly boring and because it tends to encourage thinking of
HDLs as programming languages, not shorthand for hardware. Be careful when experi-
menting with other features in code that is intended to be synthesized. There are many
ways to write HDL code whose behavior in simulation and synthesis differ, resulting in
improper chip operation or the need to fix bugs after synthesis is complete. The subset of
the language covered here has been carefully selected to minimize such discrepancies.

Appendix A Hardware Description Languages

700

A.1.1 Modules

A block of hardware with inputs and outputs is called a

module

. An AND gate, a multiplexer,
and a priority circuit are all examples of hardware modules. The two general styles for
describing module functionality are

behavioral

 and

structural

. Behavioral models describe
what a module does. Structural models describe how a module is built from simpler pieces; it
is an application of hierarchy. The SystemVerilog and VHDL code in Example A.1 illustrate
behavioral descriptions of a module computing a random Boolean function,

Y

=

ABC

+

ABC

+

ABC

. Each module has three inputs,

A

,

B

, and

C

, and one output,

Y

.

Verilog and SystemVerilog
Verilog was developed by Gateway Design Automation as a propri-
etary language for logic simulation in 1984. Gateway was acquired
by Cadence in 1989 and Verilog was made an open standard in
1990 under the control of Open Verilog International. The language
became an IEEE standard in 1995 and was updated in 2001
[IEEE1364-01]. In 2005, it was updated again with minor clarifica-
tions; more importantly, SystemVerilog [IEEE 1800-2009] was intro-
duced, which streamlines many of the annoyances of Verilog and
adds high-level programming language features that have proven
useful in verification. This appendix uses some of SystemVerilog’s
features.

There are many texts on Verilog, but the IEEE standard itself is
readable as well as authoritative.

VHDL
VHDL is an acronym for the VHSIC Hardware Description Language.
In turn, VHSIC is an acronym for the Very High Speed Integrated
Circuits project. VHDL was originally developed in 1981 by the
Department of Defense to describe the structure and function of
hardware. Its roots draw from the Ada programming language. The
IEEE standardized VHDL in 1987 and updated the standard several
times since [IEEE1076-08]. The language was first envisioned
for documentation, but quickly was adopted for simulation and
synthesis.

VHDL is heavily used by U.S. military contractors and Euro-
pean companies. By some quirk of fate, it also has a majority of uni-
versity users.

[Pedroni10] offers comprehensive coverage of the language.

SystemVerilog
module sillyfunction(input logic a, b, c,
 output logic y);

 assign y = ~a & ~b & ~c |
 a & ~b & ~c |
 a & ~b & c;
endmodule

A module begins with a listing of the inputs and outputs. The
assign statement describes combinational logic. ~ indicates NOT,
& indicates AND, and | indicates OR.

logic signals such as the inputs and outputs are Boolean
variables (0 or 1). They may also have floating and undefined values
that will be discussed in Section A.2.8.

The logic type was introduced in SystemVerilog. It super-
sedes the reg type, which was a perennial source of confusion in
Verilog. logic should be used everywhere except on nets with
multiple drivers, as will be explained in Section A.7.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of sillyfunction is
begin
 y <= ((not a) and (not b) and (not c)) or
 (a and (not b) and (not c)) or
 (a and (not b) and c);
end;

VHDL code has three parts: the library use clause, the entity
declaration, and the architecture body. The library use
clause is required and will be discussed in Section A.7. The entity
declaration lists the module’s inputs and outputs. The architec-
ture body defines what the module does.

VHDL signals such as inputs and outputs must have a type dec-
laration. Digital signals should be declared to be STD_LOGIC type.
STD_LOGIC signals can have a value of ‘0’ or ‘1,’ as well as floating
and undefined values that will be described in Section A.2.8. The
STD_LOGIC type is defined in the IEEE.STD_LOGIC_1164
library, which is why the library must be used.

VHDL lacks a good default order of operations, so Boolean
equations should be parenthesized.

Example A.1

 Combinational Logic

A.1 Introduction

701

The true power of HDLs comes from the higher level of abstraction that they offer as
compared to schematics. For example, a 32-bit adder schematic is a complicated structure.
The designer must choose what type of adder architecture to use. A carry ripple adder has
32 full adder cells, each of which in turn contains half a dozen gates or a bucketful of tran-
sistors. In contrast, the adder can be specified with one line of behavioral HDL code, as
shown in Example A.2.

Example A.2

 32-Bit Adder

A.1.2 Simulation and Synthesis

The two major purposes of HDLs are logic

simulation

 and

synthesis

. Dur-
ing simulation, inputs are applied to a module and the outputs are checked
to verify that the module operates correctly. During synthesis, the textual
description of a module is transformed into logic gates.

A.1.2.1 Simulation.

Figure A.1 shows waveforms from a ModelSim
simulation of the previous

sillyfunction

 module demonstrating that
the module works correctly.

Y

 is true when

A

,

B

, and

C

 are 000, 100, or
101, as specified by the Boolean equation.

A.1.2.2 Synthesis.

Logic synthesis transforms HDL code into a

netlist

describing the hardware; e.g., logic gates and the wires connecting
them. The logic synthesizer may perform optimizations to reduce the
amount of hardware required. The netlist may be a text file, or it may be
displayed as a schematic to help visualize the circuit. Figure A.2 shows
the results of synthesizing the

sillyfunction

 module with Synplify
Pro. Notice how the three 3-input AND gates are optimized down to a
pair of 2-input ANDs. Similarly, Figure A.3 shows a schematic for the
adder module. Each subsequent code example in this appendix is fol-
lowed by the schematic that it implies.

SystemVerilog
module adder(input logic [31:0] a,
 input logic [31:0] b,
 output logic [31:0] y);

 assign y = a + b;
endmodule

Note that the inputs and outputs are 32-bit busses.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity adder is
 port(a, b: in STD_LOGIC_VECTOR(31 downto 0);
 y: out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture synth of adder is
begin
 y <= a + b;
end;

Observe that the inputs and outputs are 32-bit vectors. They must
be declared as STD_LOGIC_VECTOR.

un5_y

un8_y

y

yc
b

a

FIGURE A.2 Synthesized silly_function circuit

FIGURE A.1 Simulation waveforms

y_1[31:0]

+ y[31:0]
b[31:0]

a[31:0]

FIGURE A.3 Synthesized adder

Appendix A Hardware Description Languages

702

A.2

Combinational Logic

The outputs of combinational logic depend only on the current inputs; combinational
logic has no memory. This section describes how to write behavioral models of combina-
tional logic with HDLs.

A.2.1 Bitwise Operators

Bitwise

 operators act on single-bit signals or on multibit busses. For example, the

inv

module in Example A.3 describes four inverters connected to 4-bit busses.

The

gates

 module in HDL Example A.4 demonstrates bitwise operations acting on
4-bit busses for other basic logic functions.

SystemVerilog

module inv(input logic [3:0] a,
 output logic [3:0] y);

 assign y = ~a;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of inv is
begin
 y <= not a;
end;

y[3:0]

y[3:0]a[3:0]

FIGURE A.4 inv

Example A.3

 Inverters

Example A.4

 Logic Gates

SystemVerilog

module gates(input logic [3:0] a, b,
 output logic [3:0] y1, y2,
 y3, y4, y5);

 /* Five different two-input logic
 gates acting on 4 bit busses */
 assign y1 = a & b; // AND
 assign y2 = a | b; // OR
 assign y3 = a ^ b; // XOR
 assign y4 = ~(a & b); // NAND
 assign y5 = ~(a | b); // NOR
endmodule

~

,

^

, and | are examples of SystemVerilog operators, while a, b, and
y1 are operands. A combination of operators and operands, such as
a & b, or ~(a | b) are called expressions. A complete command
such as assign y4 = ~(a & b); is called a statement.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity gates is
 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);
 y1, y2, y3, y4,
 y5: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of gates is
begin
 -- Five different two-input logic gates
 -- acting on 4 bit busses
 y1 <= a and b;
 y2 <= a or b;
 y3 <= a xor b;
 y4 <= a nand b;
 y5 <= a nor b;
end;

A.2 Combinational Logic 703

A.2.2 Comments and White Space
Example A.4 showed how to format comments. SystemVerilog and VHDL are not picky
about the use of white space; i.e., spaces, tabs, and line breaks. Nevertheless, proper
indenting and use of blank lines is essential to make nontrivial designs readable. Be consis-
tent in your use of capitalization and underscores in signal and module names.

SystemVerilog (continued)
assign out = in1 op in2; is called a continuous assignment
statement. Continuous assignment statements end with a semico-
lon. Any time the inputs on the right side of the = in a continuous
assignment statement change, the output on the left side is recom-
puted. Thus, continuous assignment statements describe combina-
tional logic.

VHDL (continued)
not, xor, and or are examples of VHDL operators, while a, b, and
y1 are operands. A combination of operators and operands, such as
a and b, or a nor b are called expressions. A complete com-
mand such as y4 <= a nand b; is called a statement.

out <= in1 op in2; is called a concurrent signal assign-
ment statement. VHDL assignment statements end with a semico-
lon. Any time the inputs on the right side of the <= in a concurrent
signal assignment statement change, the output on the left side is
recomputed. Thus, concurrent signal assignment statements
describe combinational logic.

y1[3:0]

y2[3:0]

y3[3:0]

y4[3:0]

y5[3:0]

y5[3:0]

y4[3:0]

y3[3:0]

y2[3:0]

y1[3:0]

b[3:0]
a[3:0]

FIGURE A.5 Gates

SystemVerilog

SystemVerilog comments are just like those in C or Java. Comments
beginning with /* continue, possibly across multiple lines, to the
next */. Comments beginning with // continue to the end of the
line.

SystemVerilog is case-sensitive. y1 and Y1 are different sig-
nals in SystemVerilog. However, using separate signals that only dif-
fer in their capitalization is a confusing and dangerous practice.

VHDL
VHDL comments begin with -- and continue to the end of the line.
Comments spanning multiple lines must use -- at the beginning of
each line.

VHDL is not case-sensitive. y1 and Y1 are the same signal in
VHDL. However, other tools that may read your file might be case-
sensitive, leading to nasty bugs if you blithely mix uppercase and
lowercase.

A.2.3 Reduction Operators
Reduction operators imply a multiple-input gate acting on a single bus. For example,
Example A.5 describes an 8-input AND gate with inputs a0, a1, ..., a7.

Appendix A Hardware Description Languages704

A.2.4 Conditional Assignment
Conditional assignments select the output from among alternatives based on an input called
the condition. Example A.6 illustrates a 2:1 multiplexer using conditional assignment.

y

y

a[7:0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7][7:0]

FIGURE A.6 and8

SystemVerilog

module and8(input logic [7:0] a,
 output logic y);

 assign y = &a;

 // &a is much easier to write than
 // assign y = a[7] & a[6] & a[5] & a[4] &
 // a[3] & a[2] & a[1] & a[0];
endmodule

As one would expect, |, ^, ~&, and ~| reduction operators are
available for OR, XOR, NAND, and NOR as well. Recall that a multi-
input XOR performs parity, returning TRUE if an odd number of
inputs are TRUE.

VHDL

VHDL does not have reduction operators. Instead, it provides the
generate command (see Section A.8). Alternately, the operation
can be written explicitly:

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and8 is
 port(a: in STD_LOGIC_VECTOR(7 downto 0);
 y: out STD_LOGIC);
end;

architecture synth of and8 is
begin
 y <= a(7) and a(6) and a(5) and a(4) and
 a(3) and a(2) and a(1) and a(0);
end;

Example A.5 8-Input AND

SystemVerilog

The conditional operator ?: chooses, based on a first expression,
between a second and third expression. The first expression is
called the condition. If the condition is 1, the operator chooses the
second expression. If the condition is 0, the operator chooses the
third expression.

?: is especially useful for describing a multiplexer because,
based on a first input, it selects between two others. The following
code demonstrates the idiom for a 2:1 multiplexer with 4-bit inputs
and outputs using the conditional operator.

module mux2(input logic [3:0] d0, d1,
 input logic s,
 output logic [3:0] y);

 assign y = s ? d1 : d0;
endmodule

If s = 1, then y = d1. If s = 0, then y = d0.

VHDL
Conditional signal assignments perform different operations
depending on some condition. They are especially useful for
describing a multiplexer. For example, a 2:1 multiplexer can use
conditional signal assignment to select one of two 4-bit inputs.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
 port(d0, d1:in STD_LOGIC_VECTOR(3 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture synth of mux2 is
begin
 y <= d0 when s = '0' else d1;
end;

Example A.6 2:1 Multiplexer

A.2 Combinational Logic 705

Example A.7 shows a 4:1 multiplexer based on the same principle.

y[3:0]

0

1
y[3:0]

s

d1[3:0]

d0[3:0]

FIGURE A.7 mux2

SystemVerilog

A 4:1 multiplexer can select one of four inputs using nested condi-
tional operators.

module mux4(input logic [3:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [3:0] y);

 assign y = s[1] ? (s[0] ? d3 : d2)
 : (s[0] ? d1 : d0);
endmodule

If s[1] = 1, then the multiplexer chooses the first expression,
(s[0] ? d3 : d2). This expression in turn chooses either d3 or
d2 based on s[0] (y = d3 if s[0] = 1 and d2 if s[0] = 0). If
s[1] = 0, then the multiplexer similarly chooses the second expres-
sion, which gives either d1 or d0 based on s[0].

VHDL

A 4:1 multiplexer can select one of four inputs using multiple else
clauses in the conditional signal assignment.

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is
 port(d0, d1,

d2, d3: in STD_LOGIC_VECTOR(3 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);

y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth1 of mux4 is
begin
 y <= d0 when s = "00" else
 d1 when s = "01" else
 d2 when s = "10" else
 d3;
end;

VHDL also supports selected signal assignment statements to pro-
vide a shorthand when selecting from one of several possibilities.
They are analogous to using a case statement in place of multiple
if/else statements in most programming languages. The 4:1
multiplexer can be rewritten with selected signal assignment as

architecture synth2 of mux4 is
begin
 with s select y <=
 d0 when "00",
 d1 when "01",
 d2 when "10",
 d3 when others;
end;

Example A.7 4:1 Multiplexer

SystemVerilog (continued)
?: is also called a ternary operator because it takes three

inputs. It is used for the same purpose in the C and Java program-
ming languages.

VHDL (continued)
The conditional signal assignment sets y to d0 if s is 0. Otherwise it
sets y to d1.

Appendix A Hardware Description Languages706

Figure A.8 shows the schematic for the 4:1 multiplexer produced by Synplify Pro.
The software uses a different multiplexer symbol than this text has shown so far. The mul-
tiplexer has multiple data (d) and one-hot enable (e) inputs. When one of the enables is
asserted, the associated data is passed to the output. For example, when s[1] = s[0] = 0,
the bottom AND gate un1_s_5 produces a 1, enabling the bottom input of the multiplexer
and causing it to select d0[3:0].

A.2.5 Internal Variables
Often, it is convenient to break a complex function into intermediate steps. For example, a
full adder, described in Section 11.2.1, is a circuit with three inputs and two outputs
defined by the equations

(A.1)

If we define intermediate signals P and G

(A.2)

S A B C

C AB AC BC

= ⊕ ⊕
= + +

in

out in in

P A B

G AB

= ⊕
=

un1_s_2

un1_s_3

un1_s_4

un1_s_5

y[3:0]

e
d

e
d

e
d

e
d

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]
d1[3:0]

d0[3:0]

[0]

[1]

[1]

[0]

[0]

[1]

[0]

[1]

FIGURE A.8 mux4

A.2 Combinational Logic 707

we can rewrite the full adder as

(A.3)

P and G are called internal variables because they are neither inputs nor outputs but are
only used internal to the module. They are similar to local variables in programming lan-
guages. Example A.8 shows how they are used in HDLs.

S P C

C G PC

= ⊕
= +

in

out in

SystemVerilog

In SystemVerilog, internal signals are usually declared as logic.

module fulladder(input logic a, b, cin,
 output logic s, cout);

 logic p, g;

 assign p = a ^ b;
 assign g = a & b;

 assign s = p ^ cin;
 assign cout = g | (p & cin);
endmodule

VHDL

In VHDL, signals are used to represent internal variables whose val-
ues are defined by concurrent signal assignment statements such
as p <= a xor b.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in STD_LOGIC;
 s, cout: out STD_LOGIC);
end;

architecture synth of fulladder is
 signal p, g: STD_LOGIC;
begin
 p <= a xor b;
 g <= a and b;

 s <= p xor cin;
 cout <= g or (p and cin);
end;

Example A.8 Full Adder

p

g s

un1_cout
cout

cout

s

cin

b
a

FIGURE A.9 fulladder

HDL assignment statements (assign in SystemVerilog and <= in VHDL) take place
concurrently. This is different from conventional programming languages like C or Java in
which statements are evaluated in the order they are written. In a conventional language, it
is important that comes after because the statements are exe-
cuted sequentially. In an HDL, the order does not matter. Like hardware, HDL assign-
ment statements are evaluated any time the signals on the right-hand side change their
value, regardless of the order in which they appear in a module.

S P C= ⊕ in P A B= ⊕

Appendix A Hardware Description Languages708

A.2.6 Precedence and Other Operators
Notice that we parenthesized the cout computation to define the order of operations as
Cout = G + (P · C in), rather than Cout = (G + P) · C in. If we had not used parentheses, the
default operation order is defined by the language. Example A.9 specifies this operator
precedence from highest to lowest for each language.

SystemVerilog

The operator precedence for SystemVerilog is much like you would
expect in other programming languages. In particular, as shown in
Table A.1, AND has precedence over OR. We could take advantage
of this precedence to eliminate the parentheses.

assign cout = g | p & cin;

VHDL

As shown in Table A.2, multiplication has precedence over addition
in VHDL, as you would expect. However, all of the logical operations
(and, or, etc.) have equal precedence, unlike what one might
expect in Boolean algebra. Thus, parentheses are necessary; other-
wise cout <= g or p and cin would be interpreted from left
to right as cout <= (g or p) and cin.

TABLE A.1 SystemVerilog operator precedence

Op Meaning

H
i
g
h
e
s
t

L
o
w
e
s
t

~ NOT

*, /, % MUL, DIV, MOD

+, - PLUS, MINUS

<<, >> Logical Left / Right Shift

<<<, >>> Arithmetic Left / Right Shift

<, <=, >, >= Relative Comparison

==, != Equality Comparison

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

?: Conditional

TABLE A.2 VHDL operator precedence

Op Meaning

H
i
g
h
e
s
t

L
o
w
e
s
t

not NOT

*, /,
mod, rem

MUL, DIV,
MOD, REM

+, -,
&

PLUS, MINUS,
CONCATENATE

rol, ror,
srl, sll,
sra, sla

Rotate,
Shift logical,
Shift arithmetic

=, /=,
<, <=,
>, >=

Comparison

and, or,
nand, nor,

xor

Logical
Operations

Example A.9 Operator Precedence

Note that the precedence tables include other arithmetic, shift, and comparison oper-
ators. See Chapter 11 for hardware implementations of these functions. Subtraction
involves a two’s complement and addition. Multipliers and shifters use substantially more
area (unless they involve easy constants). Division and modulus in hardware is so costly
that it may not be synthesizable. Equality comparisons imply N 2-input XORs to deter-
mine equality of each bit and an N-input AND to combine all of the bits. Relative com-
parison involves a subtraction.

A.2.7 Numbers
Numbers can be specified in a variety of bases. Underscores in numbers are ignored and
can be helpful to break long numbers into more readable chunks. Example A.10 explains
how numbers are written in each language.

A.2 Combinational Logic 709

A.2.8 Zs and Xs
HDLs use z to indicate a floating value. z is particularly useful for describing a tristate
buffer, whose output floats when the enable is 0. A bus can be driven by several tristate
buffers, exactly one of which should be enabled. Example A.11 shows the idiom for a
tristate buffer. If the buffer is enabled, the output is the same as the input. If the buffer is
disabled, the output is assigned a floating value (z).

SystemVerilog

As shown in Table A.3, SystemVerilog numbers can specify their
base and size (the number of bits used to represent them). The for-
mat for declaring constants is N'Bvalue, where N is the size in bits,
B is the base, and value gives the value. For example 9'h25 indi-
cates a 9-bit number with a value of 2516 = 3710 = 0001001012.
SystemVerilog supports 'b for binary (base 2), 'o for octal (base 8),
'd for decimal (base 10), and 'h for hexadecimal (base 16). If the
base is omitted, the base defaults to decimal.

If the size is not given, the number is assumed to have as
many bits as the expression in which it is being used. Zeros are
automatically padded on the front of the number to bring it up to full
size. For example, if w is a 6-bit bus, assign w = 'b11 gives w
the value 000011. It is better practice to explicitly give the size. An
exception is that '0 and '1 are SystemVerilog shorthands for filling
a bus with all 0s and all 1s.

VHDL

In VHDL, STD_LOGIC numbers are written in binary and enclosed in
single quotes. '0' and '1' indicate logic 0 and 1.

STD_LOGIC_VECTOR numbers are written in binary or hexa-
decimal and enclosed in double quotes. The base is binary by
default and can be explicitly defined with the prefix X for hexadeci-
mal or B for binary, as shown in Table A.4.

TABLE A.3 SystemVerilog numbers

Numbers Bits Base Val Stored
3'b101 3 2 5 101

'b11 ? 2 3 000...0011

8'b11 8 2 3 00000011

8'b1010_1011 8 2 171 10101011

3'd6 3 10 6 110

6'o42 6 8 34 100010

8'hAB 8 16 171 10101011

42 ? 10 42 00...0101010

'1 ? n/a 11...111

TABLE A.4 VHDL numbers

Numbers Bits Base Val Stored
"101" 3 2 5 101

B"101" 3 2 5 101

X"AB" 8 16 161 10101011

Example A.10 Numbers

SystemVerilog

module tristate(input logic [3:0] a,
 input logic en,
 output tri [3:0] y);

 assign y = en ? a : 4'bz;
endmodule

Notice that y is declared as tri rather than logic. logic signals
can only have a single driver. Tristate busses can have multiple
drivers, so they should be declared as a net. Two types of nets in Sys-
temVerilog are called tri and trireg. Typically, exactly one driver
on a net is active at a time, and the net takes on that value. If no driver
is active, a tri floats (z), while a trireg retains the previous value.
If no type is specified for an input or output, tri is assumed.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity tristate is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of tristate is
begin
 y <= "ZZZZ" when en = '0' else a;
end;

Example A.11 Tristate Buffer

Appendix A Hardware Description Languages710

Similarly, HDLs use x to indicate an invalid logic level. If a bus is simultaneously
driven to 0 and 1 by two enabled tristate buffers (or other gates), the result is x, indicating
contention. If all the tristate buffers driving a bus are simultaneously OFF, the bus will
float, indicated by z.

At the start of simulation, state nodes such as flip-flop outputs are initialized to an
unknown state (x in SystemVerilog and u in VHDL). This is helpful to track errors caused
by forgetting to reset a flip-flop before its output is used.

If a gate receives a floating input, it may produce an x output when it can’t determine
the correct output value. Similarly, if it receives an illegal or uninitialized input, it may
produce an x output. Example A.12 shows how SystemVerilog and VHDL combine these
different signal values in logic gates.

y_1[3:0]

y[3:0]

en

a[3:0]

FIGURE A.10 tristate

SystemVerilog

SystemVerilog signal values are 0, 1, z, and x. Constants starting
with z or x are padded with leading zs or xs (instead of 0s) to reach
their full length when necessary.

Table A.5 shows a truth table for an AND gate using all four
possible signal values. Note that the gate can sometimes determine
the output despite some inputs being unknown. For example 0 & z
returns 0 because the output of an AND gate is always 0 if either
input is 0. Otherwise, floating or invalid inputs cause invalid outputs,
displayed as x.

VHDL

VHDL STD_LOGIC signals are '0', '1', 'z', 'x', and 'u'.
Table A.6 shows a truth table for an AND gate using all five

possible signal values. Notice that the gate can sometimes deter-
mine the output despite some inputs being unknown. For example,
'0' and 'z' returns '0' because the output of an AND gate is
always '0' if either input is '0'. Otherwise, floating or invalid
inputs cause invalid outputs, displayed as 'x' in VHDL. Uninitial-
ized inputs cause uninitialized outputs, displayed as 'u' in VHDL.

TABLE A.5 SystemVerilog AND
gate truth table with z and x

& A

0 1 z x

0 0 0 0 0

1 0 1 x x

B z 0 x x x

x 0 x x x

TABLE A.6 VHDL AND gate truth
table with z, x, and u

AND A

0 1 z x u

0 0 0 0 0 0

1 0 1 x x u

B z 0 x x x u

x 0 x x x u

u 0 u u u u

Example A.12 Truth Tables with Undefined and Floating Inputs

Seeing x or u values in simulation is almost always an indication of a bug or bad cod-
ing practice. In the synthesized circuit, this corresponds to a floating gate input or unini-
tialized state. The x or u may randomly be interpreted by the circuit as 0 or 1, leading to
unpredictable behavior.

A.2 Combinational Logic 711

A.2.9 Bit Swizzling
Often, it is necessary to operate on a subset of a bus or to concatenate, i.e., join together,
signals to form busses. These operations are collectively known as bit swizzling. In Exam-
ple A.13, y is given the 9-bit value c2c1d0d0d0c0101 using bit swizzling operations.

SystemVerilog

assign y = {c[2:1], {3{d[0]}}, c[0], 3'b101};

The {} operator is used to concatenate busses.
{3{d[0]}} indicates three copies of d[0].
Don’t confuse the 3-bit binary constant 3'b101 with bus b.

Note that it was critical to specify the length of 3 bits in the constant;
otherwise, it would have had an unknown number of leading zeros
that might appear in the middle of y.

If y were wider than 9 bits, zeros would be placed in the most
significant bits.

VHDL

y <= c(2 downto 1) & d(0) & d(0) & d(0) &
 c(0) & "101";

The & operator is used to concatenate (join together) busses. y
must be a 9-bit STD_LOGIC_VECTOR. Do not confuse & with the
and operator in VHDL.

Example A.13 Bit Swizzling

Example A.14 shows how to split an output into two pieces using bit swizzling and
Example A.15 shows how to sign extend a 16-bit number to 32 bits by copying the most
significant bit into the upper 16 positions.

SystemVerilog

module mul(input logic [7:0] a, b,
 output logic [7:0] upper, lower);

 assign {upper, lower} = a*b;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity mul is
 port(a, b: in STD_LOGIC_VECTOR(7 downto 0);
 upper, lower:
 out STD_LOGIC_VECTOR(7 downto 0));
end;
architecture behave of mul is
 signal prod: STD_LOGIC_VECTOR(15 downto 0);
begin
 prod <= a * b;
 upper <= prod(15 downto 8);
 lower <= prod(7 downto 0);
end;

Example A.14 Output Splitting

lower_1[15:0]

*

lower[7:0]
[7:0]

upper[7:0]
[15:8]

b[7:0]

a[7:0] [15:0]

FIGURE A.11 Multipliers

Appendix A Hardware Description Languages712

A.2.10 Delays
HDL statements may be associated with delays specified in arbitrary units. They are help-
ful during simulation to predict how fast a circuit will work (if you specify meaningful
delays) and also for debugging purposes to understand cause and effect (deducing the
source of a bad output is tricky if all signals change simultaneously in the simulation
results). These delays are ignored during synthesis; the delay of a gate produced by the
synthesizer depends on its tpd and tcd specifications, not on numbers in HDL code.

Example A.16 adds delays to the original function from Example A.1: Y = ABC + ABC
+ ABC. It assumes inverters have a delay of 1 ns, 3-input AND gates have a delay of 2 ns,
and 3-input OR gates have a delay of 4 ns. Figure A.13 shows the simulation waveforms,
with y lagging 7 ns of time after the inputs. Note that y is initially unknown at the begin-
ning of the simulation.

SystemVerilog

module signextend(input logic [15:0] a,
 output logic [31:0] y);

 assign y = {{16{a[15]}}, a[15:0]};
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity signext is -- sign extender
 port(a: in STD_LOGIC_VECTOR (15 downto 0);
 y: out STD_LOGIC_VECTOR (31 downto 0));
end;
architecture behave of signext is
begin
 y <= X"0000" & a when a (15) = '0' else X"ffff" & a;
end;

Example A.15 Sign Extension

y[31:0]

a[15:0]
[15:0]

[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15:0]

FIGURE A.12 Sign extension

A.3 Structural Modeling 713

A.3 Structural Modeling
The previous section discussed behavioral modeling, describing a module in terms of the
relationships between inputs and outputs. This section examines structural modeling,
describing a module in terms of how it is composed of simpler modules.

Example A.17 shows how to assemble a 4:1 multiplexer from three 2:1 multiplexers.
Each copy of the 2:1 multiplexer is called an instance. Multiple instances of the same mod-
ule are distinguished by distinct names. This is an example of regularity, in which the 2:1
multiplexer is reused three times.

SystemVerilog

`timescale 1ns/1ps

module example(input logic a, b, c,
 output logic y);

 logic ab, bb, cb, n1, n2, n3;

 assign #1 {ab, bb, cb} = ~{a, b, c};
 assign #2 n1 = ab & bb & cb;
 assign #2 n2 = a & bb & cb;
 assign #2 n3 = a & bb & c;
 assign #4 y = n1 | n2 | n3;
endmodule

SystemVerilog files can include a timescale directive that indicates
the value of each time unit. The statement is of the form `time-
scale unit/step. In this file, each unit is 1ns, and the simula-
tion has 1 ps resolution. If no timescale directive is given in the file,
a default unit and step (usually 1 ns for both) is used. In System-
Verilog, a # symbol is used to indicate the number of units of delay.
It can be placed in assign statements, as well as nonblocking (<=)
and blocking (=) assignments that will be discussed in Section
A.5.4.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity example is
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of example is
 signal ab, bb, cb, n1, n2, n3: STD_LOGIC;
begin
 ab <= not a after 1 ns;
 bb <= not b after 1 ns;
 cb <= not c after 1 ns;
 n1 <= ab and bb and cb after 2 ns;
 n2 <= a and bb and cb after 2 ns;
 n3 <= a and bb and c after 2 ns;
 y <= n1 or n2 or n3 after 4 ns;
end;

In VHDL, the after clause is used to indicate delay. The units, in
this case, are specified as nanoseconds.

Example A.16 Logic Gates with Delays

FIGURE A.13 Example simulation waveforms with delays

Appendix A Hardware Description Languages714

SystemVerilog

module mux4(input logic [3:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [3:0] y);

 logic [3:0] low, high;

 mux2 lowmux(d0, d1, s[0], low);
 mux2 highmux(d2, d3, s[0], high);
 mux2 finalmux(low, high, s[1], y);
endmodule

The three mux2 instances are called lowmux, highmux, and
finalmux. The mux2 module must be defined elsewhere in the
SystemVerilog code.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
 port(d0, d1,

d2, d3: in STD_LOGIC_VECTOR(3 downto 0);
s: in STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture struct of mux4 is
 component mux2
 port(d0,

d1: in STD_LOGIC_VECTOR(3 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end component;
signal low, high: STD_LOGIC_VECTOR(3 downto 0);

begin
lowmux: mux2 port map(d0, d1, s(0), low);
highmux: mux2 port map(d2, d3, s(0), high);
finalmux: mux2 port map(low, high, s(1), y);

end;

The architecture must first declare the mux2 ports using the compo-
nent declaration statement. This allows VHDL tools to check that the
component you wish to use has the same ports as the component that
was declared somewhere else in another entity statement, preventing
errors caused by changing the entity but not the instance. However,
component declaration makes VHDL code rather cumbersome.

Note that this architecture of mux4 was named struct, while
architectures of modules with behavioral descriptions from Section
A.2 were named synth. VHDL allows multiple architectures (imple-
mentations) for the same entity; the architectures are distinguished
by name. The names themselves have no significance to the CAD
tools, but struct and synth are common. However, synthesizable
VHDL code generally contains only one architecture for each entity,
so we will not discuss the VHDL syntax to configure which architec-
ture is used when multiple architectures are defined.

Example A.17 Structural Model of 4:1 Multiplexer

mux2

lowmux

mux2

highmux

mux2

finalmux

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]

d1[3:0]

d0[3:0]

[0]
s

d0[3:0]

d1[3:0]

y[3:0]

[0]
s

d0[3:0]

d1[3:0]

y[3:0]

[1]
s

d0[3:0]

d1[3:0]

y[3:0]

FIGURE A.14 mux4

A.3 Structural Modeling 715

Example A.19 shows how modules can access part of a bus. An 8-bit wide 2:1 multi-
plexer is built using two of the 4-bit 2:1 multiplexers already defined, operating on the low
and high nibbles of the byte.

SystemVerilog

module mux2(input logic [3:0] d0, d1,
 input logic s,
 output tri [3:0] y);

 tristate t0(d0, ~s, y);
 tristate t1(d1, s, y);
endmodule

In SystemVerilog, expressions such as ~s are permitted in the port
list for an instance. Arbitrarily complicated expressions are legal, but
discouraged because they make the code difficult to read.

Note that y is declared as tri rather than logic because it
has two drivers.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
 port(d0, d1: in STD_LOGIC_VECTOR(3 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture struct of mux2 is
 component tristate
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 signal sbar: STD_LOGIC;
begin
 sbar <= not s;
 t0: tristate port map(d0, sbar, y);
 t1: tristate port map(d1, s, y);
end;

In VHDL, expressions such as not s are not permitted in the port map
for an instance. Thus, sbar must be defined as a separate signal.

Example A.18 Structural Model of 2:1 Multiplexer

Similarly, Example A.18 constructs a 2:1 multiplexer from a pair of tristate buffers.
Building logic out of tristates is not recommended, however.

tristate

t0

tristate

t1

y[3:0]
s

d1[3:0]

d0[3:0]

en

a[3:0]
y[3:0]

en

a[3:0]
y[3:0]

FIGURE A.15 mux2

Appendix A Hardware Description Languages716

In general, complex systems are designed hierarchically. The overall system is described
structurally by instantiating its major components. Each of these components is described
structurally from its building blocks, and so forth recursively until the pieces are simple
enough to describe behaviorally. It is good style to avoid (or at least minimize) mixing
structural and behavioral descriptions within a single module.

SystemVerilog

module mux2_8(input logic [7:0] d0, d1,
 input logic s,
 output logic [7:0] y);

 mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
 mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2_8 is
 port(d0, d1:in STD_LOGIC_VECTOR(7 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture struct of mux2_8 is
 component mux2
 port(d0, d1: in STD_LOGIC_VECTOR(3
 downto 0);

s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

 end component;
begin

 lsbmux: mux2
 port map(d0(3 downto 0), d1(3 downto 0),

s, y(3 downto 0));
 msbhmux: mux2
 port map(d0(7 downto 4), d1(7 downto 4),

s, y(7 downto 4));
end;

Example A.19 Accessing Parts of Busses

mux2

lsbmux

mux2

msbmux

y[7:0]
[7:0]

s

d1[7:0]
[7:0]

d0[7:0]
[7:0]

s
[3:0]

d0[3:0]
[3:0]

d1[3:0]

[3:0]
y[3:0]

s
[7:4]

d0[3:0]
[7:4]

d1[3:0]

[7:4]
y[3:0]

FIGURE A.16 mux2_8

A.4 Sequential Logic 717

A.4 Sequential Logic
HDL synthesizers recognize certain idioms and turn them into specific sequential circuits.
Other coding styles may simulate correctly, but synthesize into circuits with blatant or
subtle errors. This section presents the proper idioms to describe registers and latches.

A.4.1 Registers
The vast majority of modern commercial systems are built with registers using positive
edge-triggered D flip-flops. Example A.20 shows the idiom for such flip-flops.

SystemVerilog

module flop(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_ff @(posedge clk)
 q <= d;
endmodule

A Verilog always statement is written in the form

always @(sensitivity list)
 statement;

The statement is executed only when the event specified in the sensi-
tivity list occurs. In this example, the statement is q <= d (pro-
nounced “q gets d”). Hence, the flip-flop copies d to q on the positive
edge of the clock and otherwise remembers the old state of q.

<= is called a nonblocking assignment. Think of it as a regular
= sign for now; we’ll return to the more subtle points in Section
A.5.4. Note that <= is used instead of assign inside an always
statement.

As will be seen in subsequent sections, always statements
can be used to imply flip-flops, latches, or combinational logic,
depending on the sensitivity list and statement. Because of this flex-
ibility, it is easy to produce the wrong hardware inadvertently. Sys-
temVerilog introduces always_ff , always_latch , and
always_comb to reduce the risk of common errors. always_ff
behaves like always, but is used exclusively to imply flip-flops and
allows tools to produce a warning if anything else is implied.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flop is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of flop is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 q <= d;
 end if;
 end process;
end;

A VHDL process is written in the form

process(sensitivity list) begin
 statement;
end process;

The statement is executed when any of the variables in the sensitiv-
ity list change. In this example, the if statement is executed when
clk changes, indicated by clk'event. If the change is a rising
edge (clk = '1' after the event), then q <= d. Hence, the flip-
flop copies d to q on the positive edge of the clock and otherwise
remembers the old state of q.

An alternative VHDL idiom for a flip-flop is

process(clk) begin
 if RISING_EDGE(clk) then
 q <= d;
 end if;
end process;

RISING_EDGE(clk) is synonymous with clk'event and clk
= '1'.

Example A.20 Register

Appendix A Hardware Description Languages718

In SystemVerilog always statements and VHDL process statements, signals keep
their old value until an event takes place that explicitly causes them to change. Hence,
such code, with appropriate sensitivity lists, can be used to describe sequential circuits with
memory. For example, the flip-flop only includes clk in the sensitivity list. It remembers
its old value of q until the next rising edge of the clk, even if d changes in the interim.

In contrast, SystemVerilog continuous assignment statements and VHDL concurrent
assignment statements are reevaluated any time any of the inputs on the right-hand side
changes. Therefore, such code necessarily describes combinational logic.

A.4.2 Resettable Registers
When simulation begins or power is first applied to a circuit, the output of the flop is
unknown. This is indicated with x in SystemVerilog and 'u' in VHDL. Generally, it is
good practice to use resettable registers so that on power up you can put your system in a
known state. The reset may be either synchronous or asynchronous. Recall that synchro-
nous reset occurs on the rising edge of the clock, while asynchronous reset occurs immedi-
ately. Example A.21 demonstrates the idioms for flip-flops with synchronous and
asynchronous resets. Note that distinguishing synchronous and asynchronous reset in a
schematic can be difficult. The schematic produced by Synplify Pro places synchronous
reset on the left side of a flip-flop and synchronous reset at the bottom.

Synchronous reset takes fewer transistors and reduces the risk of timing problems on
the trailing edge of reset. However, if clock gating is used, care must be taken that all flip-
flops reset properly at startup.

q[3:0]d[3:0]
clk

Q[3:0]D[3:0]

FIGURE A.17 flop

SystemVerilog

module flopr(input logic clk,
 input logic reset,
 input logic [3:0] d,
 output logic [3:0] q);

 // synchronous reset
 always_ff @(posedge clk)
 if (reset) q <= 4'b0;
 else q <= d;
endmodule

module flopr(input logic clk,
 input logic reset,
 input logic [3:0] d,
 output logic [3:0] q);

 // asynchronous reset
 always_ff @(posedge clk, posedge reset)
 if (reset) q <= 4'b0;
 else q <= d;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is
 port(clk,
 reset: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopr is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then
 q <= "0000";
 else q <= d;
 end if;
 end if;
 end process;
end;

Example A.21 Resettable Register

A.4 Sequential Logic 719

A.4.3 Enabled Registers
Enabled registers only respond to the clock when the enable is asserted. Example A.22
shows a synchronously resettable enabled register that retains its old value if both reset
and en are FALSE.

SystemVerilog (continued)
Multiple signals in an always statement sensitivity list are sepa-
rated with a comma or the word or. Notice that posedge reset
is in the sensitivity list on the asynchronously resettable flop, but not
on the synchronously resettable flop. Thus, the asynchronously
resettable flop immediately responds to a rising edge on reset, but
the synchronously resettable flop only responds to reset on the
rising edge of the clock.

Because the modules above have the same name, flopr, you
must only include one or the other in your design.

VHDL (continued)
architecture asynchronous of flopr is
begin
 process(clk, reset) begin
 if reset = '1' then
 q <= "0000";
 elsif clk'event and clk = '1' then
 q <= d;
 end if;
 end process;
end;

Multiple signals in a process sensitivity list are separated with a
comma. Notice that reset is in the sensitivity list on the asynchro-
nously resettable flop, but not on the synchronously resettable flop.
Thus, the asynchronously resettable flop immediately responds to a
rising edge on reset, but the synchronously resettable flop only
responds to reset on the rising edge of the clock.

Recall that the state of a flop is initialized to ‘u’ at startup dur-
ing VHDL simulation.

As mentioned earlier, the name of the architecture (asynchro-
nous or synchronous, in this example) is ignored by the VHDL tools
but may be helpful to someone reading the code. Because both
architectures describe the entity flopr, you should only include
one or the other in your design.

FIGURE A.18 flopr (a) synchronous reset, (b) asynchronous reset

q[3:0]d[3:0]
reset

clk
Q[3:0]D[3:0]

R

(a)

R

q[3:0]d[3:0]

reset

clk
Q[3:0]D[3:0]

(b)

Appendix A Hardware Description Languages720

A.4.4 Multiple Registers
A single always / process statement can be used to describe multiple pieces of hard-
ware. For example, consider describing a synchronizer made of two back-to-back flip-
flops, as shown in Figure A.20. Example A.23 describes the synchronizer. On the rising
edge of clk, d is copied to n1. At the same time, n1 is copied to q.

SystemVerilog

module flopenr(input logic clk,
 input logic reset,
 input logic en,
 input logic [3:0] d,
 output logic [3:0] q);

 // synchronous reset
 always_ff @(posedge clk)
 if (reset) q <= 4'b0;
 else if (en) q <= d;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is
 port(clk,
 reset,
 en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopenr is
-- synchronous reset
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then
 q <= "0000";
 elsif en = '1' then
 q <= d;
 end if;
 end if;
 end process;
end;

Example A.22 Resettable Enabled Register

R

q[3:0]d[3:0]
en

reset

clk
Q[3:0]D[3:0]

E

FIGURE A.19 flopenr

clk clk

D Q
N1

FIGURE A.20
Synchronizer circuit

A.4 Sequential Logic 721

A.4.5 Latches
Recall that a D latch is transparent when the clock is HIGH, allowing data to flow from
input to output. The latch becomes opaque when the clock is LOW, retaining its old state.
Example A.24 shows the idiom for a D latch.

SystemVerilog

module sync(input logic clk,
 input logic d,
 output logic q);

 logic n1;

 always_ff @(posedge clk)
 begin
 n1 <= d;
 q <= n1;
 end
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sync is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC;
 q: out STD_LOGIC);
end;

architecture synth of sync is
 signal n1: STD_LOGIC;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 n1 <= d;
 q <= n1;
 end if;
 end process;
end;

Example A.23 Synchronizer

SystemVerilog

module latch(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always_latch
 if (clk) q <= d;
endmodule

always_latch is equivalent to always @(clk, d) and is the
preferred way of describing a latch in SystemVerilog. It evaluates any
time clk or d changes. If clk is HIGH, d flows through to q, so this
code describes a positive level sensitive latch. Otherwise, q keeps its
o ld va lue. SystemVer i log can generate a warn ing i f the
always_latch block doesn’t imply a latch.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity latch is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of latch is
begin
 process(clk, d) begin
 if clk = '1' then q <= d;
 end if;
 end process;
end;

The sensitivity list contains both clk and d, so the process evalu-
ates any time clk or d changes. If clk is HIGH, d flows through to q.

Example A.24 D Latch

n1 q

qd
clk

QD QD

FIGURE A.21 sync

Appendix A Hardware Description Languages722

Not all synthesis tools support latches well. Unless you know that your tool supports
latches and you have a good reason to use them, avoid them and use edge-triggered flip-
flops instead. Furthermore, take care that your HDL does not imply any unintended
latches, something that is easy to do if you aren't attentive. Many synthesis tools warn you
if a latch is created; if you didn’t expect one, track down the bug in your HDL. And if you
don’t know whether you intended to have a latch or not, you are probably approaching
HDLs like programming languages and have bigger problems lurking.

A.4.6 Counters
Consider two ways of describing a 4-bit counter with synchronous reset. The first scheme
(behavioral) implies a sequential circuit containing both the 4-bit register and an adder.
The second scheme (structural) explicitly declares modules for the register and adder.
Either scheme is good for a simple circuit such as a counter. As you develop more complex
finite state machines, it is a good idea to separate the next state logic from the registers in
your HDL code. Examples A.25 and A.26 demonstrate these styles.

lat

q[3:0]

q[3:0]
d[3:0]

clk
D[3:0]

Q[3:0]
C

FIGURE A.22 latch

SystemVerilog

module counter(input logic clk,
 input logic reset,
 output logic [3:0] q);

 always_ff @(posedge clk)
 if (reset) q <= 4'b0;
 else q <= q+1;
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity counter is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of counter is
 signal q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then q_int <= "0000";
 else q_int <= q_int + "0001";
 end if;
 end if;
 end process;
 q <= q_int;
end;

In VHDL, an output cannot also be used on the right-hand side in an
expression; q <= q + 1 would be illegal. Thus, an internal stat sig-
nal q_int is defined, and the output q is a copy of q_int. This is
discussed further in Section A.7.

Example A.25 Counter (Behavioral Style)

A.4 Sequential Logic 723

un3_q[3:0]

+ q[3:0]

reset

clk

1 Q[3:0]D[3:0]
R

FIGURE A.23 Counter (behavioral)

Example A.26 Counter (Structural Style)

SystemVerilog

module counter(input logic clk,
 input logic reset,
 output logic [3:0] q);

 logic [3:0] nextq;

 flopr qflop(clk, reset, nextq, q);
 adder inc(q, 4'b0001, nextq);
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity counter is
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture struct of counter is
 component flopr
 port(clk: in STD_LOGIC;
 reset: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 component adder
 port(a, b: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 signal nextq, q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
 qflop: flopr port map(clk, reset, nextq, q_int);
 inc: adder port map(q_int, "0001", nextq);
 q <= q_int;
end;

flopr

qflop

adder

inc

q[3:0]

reset
clk

clk
reset

d[3:0]

q[3:0]
a[3:0]

0001
b[3:0]

y[3:0]

FIGURE A.24 Counter (structural)

Appendix A Hardware Description Languages724

A.4.7 Shift Registers
Example A.27 describes a shift register with a parallel load input.

SystemVerilog

module shiftreg(input logic clk,
 input logic reset, load,
 input logic sin,
 input logic [3:0] d,
 output logic [3:0] q,
 output logic sout);

 always_ff @(posedge clk)
 if (reset) q <= 0;
 else if (load) q <= d;
 else q <= {q[2:0], sin};

 assign sout = q[3];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shiftreg is
 port(clk, reset,
 load: in STD_LOGIC;
 sin: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(3 downto 0);
 q: out STD_LOGIC_VECTOR(3 downto 0);
 sout: out STD_LOGIC);
end;

architecture synth of shiftreg is
 signal q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then q_int <= "0000";
 elsif load = '1' then q_int <= d;
 else q_int <= q_int(2 downto 0) & sin;
 end if;
 end if;
 end process;

 q <= q_int;
 sout <= q_int(3);
end;

Example A.27 Shift Register with Parallel Load

0

1 R

sout

q[3:0]

d[3:0]

sin

load

reset
clk

[2:0]

[3:0]
Q[3:0]D[3:0]

[3]

FIGURE A.25 Synthesized shiftreg

A.5 Combinational Logic
with Always / Process Statements
In Section A.2, we used assignment statements to describe combinational logic behavior-
ally. SystemVerilog always statements and VHDL process statements are used to

A.5 Combinational Logic with Always / Process Statements 725

describe sequential circuits because they remember the old state when no new state is pre-
scribed. However, always / process statements can also be used to describe combina-
tional logic behaviorally if the sensitivity list is written to respond to changes in all of the
inputs and the body prescribes the output value for every possible input combination. For
example, Example A.28 uses always / process statements to describe a bank of four
inverters (see Figure A.4 for the schematic).

SystemVerilog

module inv(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 y = ~a;
endmodule

always_comb is equivalent to always @(*) and is the preferred
way of descr ibing combinat ional logic in SystemVeri log.
always_comb reevaluates the statements inside the always
statement any time any of the signals on the right-hand side of <=
or = inside the always statement change. Thus, always_comb is
a safe way to model combinational logic. In this particular example,
always @(a) would also have sufficed.

The = in the always statement is called a blocking assign-
ment, in contrast to the <= nonblocking assignment. In SystemVer-
i log, i t is good pract ice to use blocking assignments for
combinational logic and nonblocking assignments for sequential
logic. This will be discussed further in Section A.5.4.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture proc of inv is
begin
 process(a) begin
 y <= not a;
 end process;
end;

The begin and end process statements are required in VHDL
even though the process only contains one assignment.

Example A.28 Inverter (Using always / process)

HDLs support blocking and nonblocking assignments in an always / process state-
ment. A group of blocking assignments are evaluated in the order they appear in the code,
just as one would expect in a standard programming language. A group of nonblocking
assignments is evaluated concurrently; all of the expressions on the right-hand sides are
evaluated before any of the left-hand sides are updated. For reasons that will be discussed
in Section A.5.4, it is most efficient to use blocking assignments for combinational logic
and safest to use nonblocking assignments for sequential logic.

SystemVerilog

In an always statement, = indicates a blocking assignment and <=
indicates a nonblocking assignment.

Do not confuse either type with continuous assignment using
the assign statement. assign statements are normally used out-
side always statements and are also evaluated concurrently.

VHDL

In a VHDL process statement, := indicates a blocking assignment
and <= indicates a nonblocking assignment (also called a concur-
rent assignment). This is the first section where := is introduced.

Nonblocking assignments are made to outputs and to signals.
Blocking assignments are made to variables, which are declared in
process statements (see the next example).

<= can also appear outside process statements, where it is
also evaluated concurrently.

Example A.29 defines a full adder using intermediate signals p and g to compute s
and cout. It produces the same circuit from Figure A.9, but uses always / process
statements in place of assignment statements.

Appendix A Hardware Description Languages726

These two examples are poor applications of always / process statements for
modeling combinational logic because they require more lines than the equivalent
approach with assign statements from Section A.2.1. Moreover, they pose the risk of
inadvertently implying sequential logic if the sensitivity list leaves out inputs. However,
case and if statements are convenient for modeling more complicated combinational
logic. case and if statements can only appear within always / process statements.

A.5.1 Case Statements
A better application of using the always / process statement for combinational logic is
a 7-segment display decoder that takes advantage of the case statement, which must
appear inside an always / process statement.

The design process for describing large blocks of combinational logic with Boolean
equations is tedious and prone to error. HDLs offer a great improvement, allowing you to
specify the function at a higher level of abstraction, then automatically synthesize the
function into gates. Example A.30 uses case statements to describe a 7-segment display
decoder based on its truth table. A 7-segment display is shown in Figure A.26. The

SystemVerilog

module fulladder(input logic a, b, cin,
 output logic s, cout);

 logic p, g;

 always_comb
 begin
 p = a ^ b; // blocking
 g = a & b; // blocking

 s = p ^ cin;
 cout = g | (p & cin);
 end
endmodule

In this case, always @(a, b, cin) or always @(*) would
have been equivalent to always_comb. All three reevaluate the
contents of the always block any time a, b, or cin change. How-
ever, always_comb is preferred because it is succinct and allows
SystemVerilog tools to generate a warning if the block inadvertently
describes sequential logic.

Notice that the begin / end construct is necessary
because multiple statements appear in the always statement. This
is analogous to { } in C or Java. The begin / end was not
needed in the flopr example because if / else counts as a
single statement.

This example uses blocking assignments, first computing p,
then g, then s, and finally cout.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in STD_LOGIC;
 s, cout: out STD_LOGIC);
end;

architecture synth of fulladder is
begin
 process (a, b, cin)
 variable p, g: STD_LOGIC;
 begin
 p := a xor b; -- blocking
 g := a and b; -- blocking

 s <= p xor cin;
 cout <= g or (p and cin);
 end process;
end;

The process sensitivity list must include a, b, and cin because
combinational logic should respond to changes of any input. If any
of these inputs were omitted, the code might synthesize to sequen-
tial logic or might behave differently in simulation and synthesis.

This example uses blocking assignments for p and g so that
they get their new values before being used to compute s and
cout that depend on them.

Because p and g appear on the left-hand side of a blocking
assignment (:=) in a process statement, they must be declared to
be variable rather than signal. The variable declaration
appears before the begin in the process where the variable is
used.

Example A.29 Full Adder (Using always / process)

a

b

c

d

e

f

g

FIGURE A.26
7-segment display

A.5 Combinational Logic with Always / Process Statements 727

decoder takes a 4-bit number and displays its decimal value on the segments. For example,
the number 0111 = 7 should turn on segments a, b, and c.

The case statement performs different actions depending on the value of its input. A
case statement implies combinational logic if all possible input combinations are consid-
ered; otherwise it implies sequential logic because the output will keep its old value in the
undefined cases.

SystemVerilog

module sevenseg(input logic [3:0] data,
 output logic [6:0] segments);

 always_comb
 case (data)
 // abc_defg
 0: segments = 7'b111_1110;
 1: segments = 7'b011_0000;
 2: segments = 7'b110_1101;
 3: segments = 7'b111_1001;
 4: segments = 7'b011_0011;
 5: segments = 7'b101_1011;
 6: segments = 7'b101_1111;
 7: segments = 7'b111_0000;
 8: segments = 7'b111_1111;
 9: segments = 7'b111_1011;
 default: segments = 7'b000_0000;
 endcase
endmodule

The default clause is a convenient way to define the output for all
cases not explicitly listed, guaranteeing combinational logic.

In SystemVerilog, case statements must appear inside
always statements.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity seven_seg_decoder is
 port(data: in STD_LOGIC_VECTOR(3 downto 0);
 segments: out STD_LOGIC_VECTOR(6 downto 0));
end;

architecture synth of seven_seg_decoder is
begin
 process(data) begin
 case data is
-- abcdefg
 when X"0" => segments <= "1111110";
 when X"1" => segments <= "0110000";
 when X"2" => segments <= "1101101";
 when X"3" => segments <= "1111001";
 when X"4" => segments <= "0110011";
 when X"5" => segments <= "1011011";
 when X"6" => segments <= "1011111";
 when X"7" => segments <= "1110000";
 when X"8" => segments <= "1111111";
 when X"9" => segments <= "1111011";
 when others => segments <= "0000000";
 end case;
 end process;
end;

The case statement checks the value of data. When data is 0,
the statement performs the action after the =>, setting segments
to 1111110. The case statement similarly checks other data
values up to 9 (note the use of X for hexadecimal numbers). The
others clause is a convenient way to define the output for all cases
not explicitly listed, guaranteeing combinational logic.

Unlike Verilog, VHDL supports selected signal assignment
statements (see Section A.2.4), which are much like case state-
ments but can appear outside processes. Thus, there is less reason
to use processes to describe combinational logic.

Example A.30 Seven-Segment Display Decoder

Synplify Pro synthesizes the 7-segment display decoder into a read-only memory
(ROM) containing the seven outputs for each of the 16 possible inputs. Other tools might
generate a rat’s nest of gates.

Appendix A Hardware Description Languages728

If the default or others clause were left out of the case statement, the decoder
would have remembered its previous output whenever data were in the range of 10–15.
This is strange behavior for hardware, and is not combinational logic.

Ordinary decoders are also commonly written with case statements. Example A.31
describes a 3:8 decoder.

rom

segments_1[6:0]

segments[6:0]data[3:0] DOUT[6:0]A[3:0]

FIGURE A.27 sevenseg

SystemVerilog

module decoder3_8(input logic [2:0] a,
 output logic [7:0] y);

 always_comb
 case (a)
 3'b000: y = 8'b00000001;
 3'b001: y = 8'b00000010;
 3'b010: y = 8'b00000100;
 3'b011: y = 8'b00001000;
 3'b100: y = 8'b00010000;
 3'b101: y = 8'b00100000;
 3'b110: y = 8'b01000000;
 3'b111: y = 8'b10000000;
 endcase
endmodule

No default statement is needed because all cases are covered.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder3_8 is
 port(a: in STD_LOGIC_VECTOR(2 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of decoder3_8 is
begin
 process(a) begin
 case a is
 when "000" => y <= "00000001";
 when "001" => y <= "00000010";
 when "010" => y <= "00000100";
 when "011" => y <= "00001000";
 when "100" => y <= "00010000";
 when "101" => y <= "00100000";
 when "110" => y <= "01000000";
 when "111" => y <= "10000000";
 when others => y <= (OTHERS => 'X');
 end case;
 end process;
end;

Some VHDL tools require an others clause because combinations
such as "1zx" are not covered. y <= (OTHERS => 'X') sets all
the bits of y to X; this is an unrelated use of the keyword OTHERS.

Example A.31 3:8 Decoder

A.5 Combinational Logic with Always / Process Statements 729

A.5.2 If Statements
always / process statements can also contain if statements. The if may be followed
by an else statement. When all possible input combinations are handled, the statement
implies combinational logic; otherwise it produces sequential logic (like the latch in Sec-
tion A.4.5).

Example A.32 uses if statements to describe a 4-bit priority circuit that sets one out-
put TRUE corresponding to the most significant input that is TRUE.

y41

y34

y35

y36

y37

y38

y39

y40

y[7:0]

a[2:0]
[2:0]

[0]
[1]
[2]

[0]
[1]
[2]

[0]
[1]
[2]

[1]
[0]
[2]

[0]
[1]
[2]

[2]
[0]
[1]

[0]
[2]
[1]

[1]
[2]
[0]

FIGURE A.28 3:8 decoder

Appendix A Hardware Description Languages730

SystemVerilog

module priorityckt(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 if (a[3]) y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;
 else y = 4'b0000;
endmodule

In SystemVerilog, if statements must appear inside always
statements.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priorityckt is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of priorityckt is
begin
 process(a) begin
 if a(3) = '1' then y <= "1000";
 elsif a(2) = '1' then y <= "0100";
 elsif a(1) = '1' then y <= "0010";
 elsif a(0) = '1' then y <= "0001";
 else y <= "0000";
 end if;
 end process;
end;

Unlike Verilog, VHDL supports conditional signal assignment state-
ments (see Section A.2.4), which are much like if statements but
can appear outside processes. Thus, there is less reason to use pro-
cesses to describe combinational logic.

Example A.32 Priority Circuit

un1_a_1

y23

un1_a_3

y24

y25

y[3:0]

a[3:0]
[3:0]

[3]

[2]
[3]

[2]
[3]

[1]

[1]

[0]

FIGURE A.29 Priority circuit

A.5 Combinational Logic with Always / Process Statements 731

A.5.3 SystemVerilog Casez
(This section may be skipped by VHDL users.) SystemVerilog also provides the casez
statement to describe truth tables with don’t cares (indicated with ? in the casez state-
ment). Example A.33 shows how to describe a priority circuit with casez.

SystemVerilog

module priority_casez(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 casez(a)
 4'b1???: y = 4'b1000;
 4'b01??: y = 4'b0100;
 4'b001?: y = 4'b0010;
 4'b0001: y = 4'b0001;
 default: y = 4'b0000;
 endcase
endmodule

Synplify Pro synthesizes a slightly different circuit for this mod-
ule, shown in Figure A.30, than it did for the priority circuit in Figure
A.29. However, the circuits are logically equivalent.

Example A.33 Priority Circuit Using casez

y23[0]

y24[0]

y25

y[3:0]a[3:0]
[3:0] [3]

[2]

[3]

[1]

[2]

[3]

[0]

[1]

[2]

[3]

FIGURE A.30 priority_casez

A.5.4 Blocking and Nonblocking Assignments
The following guidelines explain when and how to use each type of assignment. If these
guidelines are not followed, it is possible to write code that appears to work in simulation,
but synthesizes to incorrect hardware. The optional remainder of this section explains the
principles behind the guidelines.

VHDL

1. Use process(clk) and nonblocking assignments to model
synchronous sequential logic.

 process(clk) begin
 if clk'event and clk = '1' then
 n1 <= d; -- nonblocking
 q <= n1; -- nonblocking
 end if;
 end process;

2. Use concurrent assignments outside process statements to
model simple combinational logic.

 y <= d0 when s = '0' else d1;

SystemVerilog

1. Use always_ff @(posedge clk) and nonblocking
assignments to model synchronous sequential logic.

 always_ff @(posedge clk)
 begin
 n1 <= d; // nonblocking
 q <= n1; // nonblocking
 end

2. Use continuous assignments to model simple combinational
logic.

 assign y = s ? d1 : d0;

Appendix A Hardware Description Languages732

A.5.4.1 Combinational Logic
The full adder from Example A.29 is correctly modeled using blocking assignments. This
section explores how it operates and how it would differ if nonblocking assignments had
been used.

 Imagine that a, b, and cin are all initially 0. p, g, s, and cout are thus 0 as well. At
some time, a changes to 1, triggering the always / process statement. The four block-
ing assignments evaluate in the order shown below. Note that p and g get their new value
before s and cout are computed because of the blocking assignments. This is important
because we want to compute s and cout using the new values of p and g.

Example A.34 illustrates the use of nonblocking assignments (not recommended).

1 1 0 1
2 1 0 0
3 1 0 1
4 0 1 0 0

.
. ·
.
. ·

p

g

s

cout

← ⊕ =
← =
← ⊕ =

← + =

SystemVerilog (continued)
3. Use always_comb and blocking assignments to model more

complicated combinational logic where the always statement is
helpful.

 always_comb
 begin
 p = a ^ b; // blocking
 g = a & b; // blocking
 s = p ^ cin;
 cout = g | (p & cin);
 end

4. Do not make assignments to the same signal in more than one
always statement or continuous assignment statement. Excep-
tion: tristate busses.

VHDL (continued)
3. Use process(in1, in2, ...) to model more compli-

cated combinational logic where the process is helpful.
Use blocking assignments to internal variables.

 process(a, b, cin)
 variable p, g: STD_LOGIC;
 begin
 p := a xor b; -- blocking
 g := a and b; -- blocking
 s <= p xor cin;
 cout <= g or (p and cin);
 end process;

4. Do not make assignments to the same variable in more
than one process or concurrent assignment statement.
Exception: tristate busses.

Example A.34 Full Adder Using Nonblocking Assignments

SystemVerilog

// nonblocking assignments (not recommended)
module fulladder(input logic a, b, cin,
 output logic s, cout);

 logic p, g;

 always_comb
 begin
 p <= a ^ b; // nonblocking
 g <= a & b; // nonblocking

 s <= p ^ cin;
 cout <= g | (p & cin);
 end
endmodule

VHDL

-- nonblocking assignments (not recommended)
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
 port(a, b, cin: in STD_LOGIC;
 s, cout: out STD_LOGIC);
end;

architecture nonblocking of fulladder is
 signal p, g: STD_LOGIC;
begin
 process (a, b, cin, p, g) begin
 p <= a xor b; -- nonblocking
 g <= a and b; -- nonblocking

A.5 Combinational Logic with Always / Process Statements 733

 Consider the same case of a rising from 0 to 1 while b and cin are 0. The four non-
blocking assignments evaluate concurrently as follows:

Observe that s is computed concurrently with p and hence uses the old value of p, not
the new value. Hence, s remains 0 rather than becoming 1. However, p does change from
0 to 1. This change triggers the always / process statement to evaluate a second time as
follows:

This time, p was already 1, so s correctly changes to 1. The nonblocking assignments
eventually reached the right answer, but the always / process statement had to evalu-
ate twice. This makes simulation more time consuming, although it synthesizes to the
same hardware.

Another drawback of nonblocking assignments in modeling combinational logic is
that the HDL will produce the wrong result if you forget to include the intermediate vari-
ables in the sensitivity list, as shown below.

p g s cout← ⊕ = ← = ← ⊕ = ← + =1 0 1 1 0 0 0 0 0 0 0 0 0· ·

p g s cout← ⊕ = ← = ← ⊕ = ← + =1 0 1 1 0 0 0 0 0 01 1 1· ·

 VHDL (continued)
 s <= p xor cin;
 cout <= g or (p and cin);
 end process;
end;

Because p and g appear on the left-hand side of a nonblocking
assignment in a process statement, they must be declared to be
signal rather than variable. The signal declaration appears
before the begin in the architecture, not the process.

SystemVerilog

If the sensitivity list of the always statement were written as
always @(a, b, cin) rather than always_comb or always
@(*), then the statement would not reevaluate when p or g
change. In the previous example, s would be incorrectly left at 0,
not 1.

VHDL

If the sensitivity list of the process were written as process (a,
b, cin) rather than always process (a, b, cin, p, g),
then the statement would not reevaluate when p or g change. In the
previous example, s would be incorrectly left at 0, not 1.

Worse yet, some synthesis tools will synthesize the correct hardware even when a
faulty sensitivity list causes incorrect simulation. This leads to a mismatch between the
simulation results and what the hardware actually does.

A.5.4.2 Sequential Logic
The synchronizer from Example A.23 is correctly modeled using nonblocking assign-
ments. On the rising edge of the clock, d is copied to n1 at the same time that n1 is copied
to q, so the code properly describes two registers. For example, suppose initially that d = 0,
n1 = 1, and q = 0. On the rising edge of the clock, the following two assignments occur
concurrently, so that after the clock edge, n1 = 0 and q = 1.

n d q n1 0 1 1← = ← =

Appendix A Hardware Description Languages734

Example A.35 incorrectly tries to describe the same module using blocking assign-
ments. On the rising edge of clk, d is copied to n1. This new value of n1 is then copied to
q, resulting in d improperly appearing at both n1 and q. If d = 0 and n1 = 1, then after the
clock edge, n1 = q = 0.

Because n1 is invisible to the outside world and does not influence the behavior of q,
the synthesizer optimizes it away entirely, as shown in Figure A.31.

1 1 0
2 1 0
.
.
n d

q n

← =
← =

Example A.35 Bad Synchronizer with Blocking Assignment

SystemVerilog

// Bad implementation using blocking assignments

module syncbad(input logic clk,
 input logic d,
 output logic q);

 logic n1;

 always_ff @(posedge clk)
 begin
 n1 = d; // blocking
 q = n1; // blocking
 end
endmodule

VHDL

-- Bad implementation using blocking assignment

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC;
 q: out STD_LOGIC);
end;

architecture bad of syncbad is
begin
 process(clk)
 variable n1: STD_LOGIC;
 begin
 if clk'event and clk = '1' then
 n1 := d; -- blocking
 q <= n1;
 end if;
 end process;
end;

q

qd
clk

QD

FIGURE A.31 syncbad

The moral of this illustration is to use nonblocking assignment in always statements
exclusively when modeling sequential logic. With sufficient cleverness, such as reversing
the orders of the assignments, you could make blocking assignments work correctly, but
blocking assignments offer no advantages and only introduce the risk of unintended
behavior. Certain sequential circuits will not work with blocking assignments no matter
what the order.

A.6 Finite State Machines 735

A.6 Finite State Machines
There are two styles of finite state machines. In Mealy machines (Figure A.32(a)), the out-
put is a function of the current state and inputs. In Moore machines (Figure A.32(b)), the
output is a function of the current state only. In both types, the FSM can be partitioned
into a state register, next state logic, and output logic. HDL descriptions of state machines
are correspondingly divided into these same three parts.

clk

Next State
Logic

next
state

inputs
Output
Logic

outputs

(a)

(b)

clk

Next State
Logic

next
state

inputs
Output
Logic

outputs

FIGURE A.32 Mealy and Moore machines

A.6.1 FSM Example
Example A.36 describes the divide-by-3 FSM from Figure A.33. It provides a syn-
chronous reset to initialize the FSM. The state register uses the ordinary idiom for
flip-flops. The next state and output logic blocks are combinational. This is an example
of a Moore machine; indeed, the FSM has no inputs, only a clock and reset.

S0

out = 0

S1

out = 0

S2

out = 1

reset

FIGURE A.33 Divide-by-3
counter state transition diagram

Example A.36 Divide-by-3 Finite State Machine

SystemVerilog

module divideby3FSM(input logic clk,
 input logic reset,
 output logic y);

 logic [1:0] state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= 2'b00;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 2'b00: nextstate = 2'b01;
 2'b01: nextstate = 2'b10;
 2'b10: nextstate = 2'b00;
 default: nextstate = 2'b00;
 endcase

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
 port(clk, reset: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of divideby3FSM is
 signal state, nextstate:
 STD_LOGIC_VECTOR(1 downto 0);
begin
 -- state register
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then state <= "00";
 else state <= nextstate;
 end if;
 end if;
 end process;

(continues)

Appendix A Hardware Description Languages736

Synplify Pro just produces a block diagram and state transition diagram for state
machines; it does not show the logic gates or the inputs and outputs on the arcs and states.
Therefore, be careful that you have correctly specified the FSM in your HDL code.
Design Compiler and other synthesis tools show the gate-level implementation. Figure
A.34 shows a state transition diagram; the double circle indicates that S0 is the reset state.

 SystemVerilog (continued)
// Output Logic
 assign y = (state == 2'b00);
endmodule

Notice how a case statement is used to define the state transition
table. Because the next state logic should be combinational, a
default is necessary even though the state 11 should never arise.

The output y is 1 when the state is 00. The equality compari-
son a == b evaluates to 1 if a equals b and 0 otherwise. The
inequality comparison a != b does the inverse, evaluating to 1 if a
does not equal b.

VHDL (continued)
 -- next state logic
 nextstate <= "01" when state = "00" else
 "10" when state = "01" else
 "00";

 -- output logic
 y <= '1' when state = "00" else '0';
end;

The output y is 1 when the state is 00. The equality comparison
a = b evaluates to true if a equals b and false otherwise. The
inequality comparison a /= b does the inverse, evaluating to true
if a does not equal b.

statemachine

state[2:0]

y
reset
clk C

Q[2:0]
R

S0

S1

S2

[2]

FIGURE A.34 divideby3fsm

Note that each always / process statement implies a separate block of logic.
Therefore, a given signal can be assigned in only one always / process. Otherwise, two
pieces of hardware with shorted outputs will be implied.

A.6.2 State Enumeration
SystemVerilog and VHDL supports enumeration types as an abstract way of representing
information without assigning specific binary encodings. For example, the divide-by-3
finite state machine described in Example A.36 uses three states. We can give the states
names using the enumeration type rather than referring to them by binary values. This

A.6 Finite State Machines 737

makes the code more readable and easier to change. Example A.37 rewrites the divide-by-
3 FSM using enumerated states; the hardware is not changed.

Example A.37 State Enumeration

SystemVerilog

module divideby3FSM(input logic clk,
 input logic reset,
 output logic y);

 typedef enum logic [1:0] {S0, S1, S2} statetype;
 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S0;
 default: nextstate = S0;
 endcase

 // Output Logic
 assign y = (state == S0);
endmodule

The typedef statement defines statetype to be a two-bit
logic value with one of three possibilities: S0, S1, or S2. state
and nextstate are statetype signals.

The enumerated encodings default to numerical order: S0 =
00, S1 = 01, and S2 = 10. The encodings can be explicitly set by
the user. The following snippet encodes the states as 3-bit one-hot
values:

typedef enum logic [2:0] {S0 = 3'b001,
S1 = 3'b010,
S2 = 3'b100} statetype;

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
 port(clk, reset: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of divideby3FSM is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then state <= S0;
 else state <= nextstate;
 end if;
 end if;
 end process;

 -- next state logic
 nextstate <= S1 when state = S0 else
 S2 when state = S1 else
 S0;

 -- output logic
 y <= '1' when state = S0 else '0';
end;

This example defines a new enumeration data type, statetype,
with three possibilities: S0, S1, and S2. state and nextstate
are statetype signals.

The synthesis tool may choose the encoding of enumeration
types. A good tool may choose an encoding that simplifies the hard-
ware implementation.

If, for some reason, we had wanted the output to be HIGH in states S0 and S1, the
output logic would be modified as follows:

SystemVerilog

 // Output Logic
 assign y = (state == S0 | state == S1);

VHDL

 -- output logic
 y <= '1' when (state = S0 or state = S1) else '0';

Appendix A Hardware Description Languages738

A.6.3 FSM with Inputs
The divide-by-3 FSM had one output and no inputs. Example
A.38 describes a finite state machine with an input a and two
outputs, as shown in Figure A.35. Output x is true when the
input is the same now as it was last cycle. Output y is true
when the input is the same now as it was for the past two
cycles. The state transition diagram indicates a Mealy machine
because the output depends on the current inputs as well as the
state. The outputs are labeled on each transition after the
input.

S0

S3S1

reset

S4S2

a / x = 0, y = 0

a / x = 1, y = 0
a /

x = 0,
y = 0

a / x = 0, y = 0

a / x = 0, y = 0

a / x = 1, y = 0
a /

x = 0,
y = 0

a / x = 1, y = 1 a / x = 1, y = 1

a / x = 0, y = 0

FIGURE A.35 History FSM state transition diagram

Example A.38 History FSM

SystemVerilog

module historyFSM(input logic clk,
 input logic reset,
 input logic a,
 output logic x, y);

 typedef enum logic [2:0]
 {S0, S1, S2, S3, S4} statetype;
 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 S0: if (a) nextstate = S3;
 else nextstate = S1;
 S1: if (a) nextstate = S3;
 else nextstate = S2;
 S2: if (a) nextstate = S3;
 else nextstate = S2;
 S3: if (a) nextstate = S4;
 else nextstate = S1;
 S4: if (a) nextstate = S4;
 else nextstate = S1;
 default: nextstate = S0;
 endcase

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity historyFSM is
 port(clk, reset: in STD_LOGIC;
 a: in STD_LOGIC;
 x, y: out STD_LOGIC);
end;

architecture synth of historyFSM is
 type statetype is (S0, S1, S2, S3, S4);
 signal state, nextstate: statetype;
begin
 -- state register
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then state <= S0;
 else state <= nextstate;
 end if;
 end if;
 end process;

 -- next state logic
 process(state, a) begin
 case state is
 when S0 =>if a = '1' then nextstate <= S3;
 else nextstate <= S1;
 end if;
 when S1 => if a = '1' then nextstate <= S3;
 else nextstate <= S2;
 end if;

A.6 Finite State Machines 739

SystemVerilog (continued)
// Output Logic
assign x = ((state == S1 | state == S2) & ~a) |
 ((state == S3 | state == S4) & a);
assign y = (state == S2 & ~a) | (state == S4 & a);
endmodule

VHDL (continued)
 when S2 => if a = '1' then nextstate <= S3;

else nextstate <= S2;
end if;

 when S3 => if a = '1' then nextstate <= S4;
else nextstate <= S1;
end if;

 when S4 => if a = '1' then nextstate <= S4;
else nextstate <= S1;
end if;

 when others => nextstate <= S0;
 end case;
 end process;

 -- output logic
 x <= '1' when

((state = S1 or state = S2) and a = '0') or
((state = S3 or state = S4) and a = '1')

 else '0';
 y <= '1' when
 (state = S2 and a = '0') or
 (state = S4 and a = '1')
 else '0';
end;

statemachine

state[4:0]

un1_S0[2:0]

e
d

e
d

e
d

e
d

e
d

un1_x

un4_x

un1_y

un5_y

x

y

y

xa
clk

reset

I [4:0]
Q[4:0]C

R

[0]

000

[1]

010

[2]
[2:0]

011

[3]

100

[4]

101

[1]

[2]

[0]
[1]

[0]
[2]

S3

S4

S1

S0

S2

FIGURE A.36 historyFSM

Appendix A Hardware Description Languages740

A.7 Type Idiosyncracies
This section explains some subtleties about SystemVerilog and VHDL types in more
depth.

SystemVerilog

Standard Verilog primarily uses two types: reg and wire. Despite
its name, a reg signal might or might not be associated with a regis-
ter. This was a great source of confusion for those learning the lan-
guage. SystemVerilog introduced the logic type and relaxed some
requirements to eliminate the confusion; hence, the examples in
this appendix use logic. This section explains the reg and wire
types in more detail for those who need to read legacy Verilog code.

In Verilog, if a signal appears on the left-hand side of <= or = in
an always block, it must be declared as reg. Otherwise, it should
be declared as wire. Hence, a reg signal might be the output of a
flip-flop, a latch, or combinational logic, depending on the sensitivity
list and statement of an always block.

Input and output ports default to the wire type unless their
type is explicitly specified as reg. The following example shows how
a flip-flop is described in conventional Verilog. Notice that clk and
d default to wire, while q is explicitly defined as reg because it
appears on the left-hand side of <= in the always block.

module flop(input clk,
 input [3:0] d,
 output reg [3:0] q);

 always @(posedge clk)
 q <= d;
endmodule

SystemVerilog introduces the logic type. logic is a syn-
onym for reg and avoids misleading users about whether it is actu-
ally a flip-flop. Moreover, SystemVerilog relaxes the rules on assign
statements and hierarchical port instantiations so logic can be
used outside always blocks where a wire traditionally would be
required. Thus, nearly all SystemVerilog signals can be logic. The
exception is that signals with multiple drivers (e.g., a tristate bus)
must be declared as a net, as described in Example A.11. This rule
allows SystemVerilog to generate an error message rather than an x
value when a logic signal is accidentally connected to multiple
drivers.

The most common type of net is called a wire or tri. These
two types are synonymous, but wire is conventionally used when a
single driver is present and tri is used when multiple drivers are
present. Thus, wire is obsolete in SystemVerilog because logic is
preferred for signals with a single driver.

When a tri net is driven to a single value by one or more
drivers, it takes on that value. When it is undriven, it floats (z). When
it is driven to different values (0, 1, or x) by multiple drivers, it is in
contention (x).

There are other net types that resolve differently when
undriven or driven by multiple sources. The other types are rarely

VHDL

Unlike SystemVerilog, VHDL enforces a strict data typing system
that can protect the user from some errors but that is also clumsy at
times.

Despite its fundamental importance, the STD_LOGIC type is
not built into VHDL. Instead, it is part of the
IEEE.STD_LOGIC_1164 library. Thus, every file must contain the
library statements we have seen in the previous examples.

Moreover, IEEE.STD_LOGIC_1164 lacks basic operations
such as addition, comparison, shifts, and conversion to integers for
STD_LOGIC_VECTOR data. Most CAD vendors have adopted yet
more libraries containing these functions:

IEEE.STD_LOGIC_UNSIGNED and
IEEE.STD_LOGIC_SIGNED.

VHDL also has a BOOLEAN type with two values: true and
false. BOOLEAN values are returned by comparisons (like s =
'0') and used in conditional statements such as when. Despite the
temptation to believe a BOOLEAN true value should be equivalent
to a STD_LOGIC '1' and BOOLEAN false should mean
STD_LOGIC '0', these types are not interchangeable. Thus, the
following code is illegal:

 y <= d1 when s else d0;
 q <= (state = S2);

Instead, we must write

 y <= d1 when s = '1' else d0;
 q <= '1' when state = S2 else '0';

While we will not declare any signals to be BOOLEAN, they are auto-
matically implied by comparisons and used by conditional state-
ments.

Similarly, VHDL has an INTEGER type representing both posi-
tive and negative integers. Signals of type INTEGER span at least
the values –231 … 231-1. Integer values are used as indices of bus-
ses. For example, in the statement

 y <= a(3) and a(2) and a(1) and a(0);

0, 1, 2, and 3 are integers serving as an index to choose bits of the a
signal. We cannot directly index a bus with a STD_LOGIC or
STD_LOGIC_VECTOR signal. Instead, we must convert the signal
to an INTEGER. This is demonstrated in Example A.39 for an 8:1
multiplexer that selects one bit from a vector using a 3-bit index.
The CONV_INTEGER func t i on i s defined in the
STD_LOGIC_UNSIGNED library and performs the conversion from
STD_LOGIC_VECTOR to integer for positive (unsigned) values.

A.7 Type Idiosyncracies 741

SystemVerilog (continued)
used, but can be substituted anywhere a tri net would normally
appear (e.g., for signals with multiple drivers). Each is described in
Table A.7:

Most operations such as addition, subtraction, and Boolean
logic are identical whether a number is signed or unsigned. How-
ever, magnitude comparison, multiplication and arithmetic right
shifts are performed differently for signed numbers.

In Verilog, nets are considered unsigned by default. Adding the
signed modifier (e.g., logic signed a [31:0]) causes the net
to be treated as signed.

TABLE A.7 net resolution

Net Type No Driver Conflicting Drivers
tri z x

triand z 0 if any are 0

trior z 1 if any are 1

trireg previous value x

tri0 0 x

tri1 1 x

Example A.39 8:1 Multiplexer with Type Conversion

VHDL

library IEEE;
use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity mux8 is
 port(d: in STD_LOGIC_VECTOR(7 downto 0);
 s: in STD_LOGIC_VECTOR(2 downto 0);
 y: out STD_LOGIC);
end;

architecture synth of mux8 is
begin
 y <= d(CONV_INTEGER(s));
end;

VHDL is also strict about out ports being exclusively for output. For
example, the following code for 2- and 3-input AND gates is illegal
VHDL because v is used to compute w as well as to be an output.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
 port(a, b, c: in STD_LOGIC;
 v, w: out STD_LOGIC);
end;

architecture synth of and23 isun1_s_3

un1_s_4

un1_s_5

un1_s_6

un1_s_7

un1_s_8

un1_s_9

un1_s_10

y

e
d
e
d
e
d
e
d
e
d
e
d
e
d
e
d

s[2:0] [2:0]

d[7:0]

y

[7:0]

[0]
[1]
[2]

[0]
[1]
[2]

[0]
[1]
[2]

[1]
[0]
[2]

[0]
[1]
[2]

[2]
[0]
[1]

[0]
[2]
[1]

[1]
[2]
[0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7]

FIGURE A.37 mux8

Appendix A Hardware Description Languages742

A.8 Parameterized Modules
So far, all of our modules have had fixed-width inputs and outputs. For example, we had
to define separate modules for 4- and 8-bit wide 2:1 multiplexers. HDLs permit variable
bit widths using parameterized modules. Example A.40 declares a parameterized 2:1 mul-
tiplexer with a default width of 8, and then uses it to create 8- and 12-bit 4:1 multiplexers.

Example A.39 8:1 Multiplexer with Type Conversion (continued)

begin
 v <= a and b;
 w <= v and c;
end;

VHDL defines a special port type called buffer to solve this
problem. A signal connected to a buffer port behaves as an out-
put but may also be used within the module. Unfortunately, buffer
ports are a hassle for hierarchical design because higher level out-
puts of the hierarchy may also have to be converted to buffers. A
better alternative is to declare an internal signal, and then drive the
output based on this signal, as follows:

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
 port(a, b, c: in STD_LOGIC;
 v, w: out STD_LOGIC);
end;

architecture synth of and23 is
 signal v_int: STD_LOGIC;
begin
 v_int <= a and b;
 v <= v_int;
 w <= v_int and c;
end;

Example A.40 Parameterized N-bit Multiplexers

SystemVerilog

module mux2
 #(parameter width = 8)
 (input logic [width-1:0] d0, d1,
 input logic s,
 output logic [width-1:0] y);

 assign y = s ? d1 : d0;
endmodule

SystemVerilog allows a #(parameter ...) statement before the
inputs and outputs to define parameters. The parameter state-
ment includes a default value (8) of the parameter, width. The
number of bits in the inputs and outputs can depend on this param-
eter.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
 generic(width: integer := 8);
 port(d0,

d1: in STD_LOGIC_VECTOR(width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture synth of mux2 is
begin
 y <= d0 when s = '0' else d1;
end;

V W

w

v

c

b
a

FIGURE A.38 and23

A.8 Parameterized Modules 743

SystemVerilog (continued)
module mux4_8(input logic [7:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [7:0] y);

 logic [7:0] low, hi;

 mux2 lowmux(d0, d1, s[0], low);
 mux2 himux(d2, d3, s[0], hi);
 mux2 outmux(low, hi, s[1], y);
endmodule

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers using
their default widths.

In contrast, a 12-bit 4:1 multiplexer mux4_12 would need to
override the default width using #() before the instance name as
shown below.

module mux4_12(input logic [11:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [11:0] y);

 logic [11:0] low, hi;

 mux2 #(12) lowmux(d0, d1, s[0], low);
 mux2 #(12) himux(d2, d3, s[0], hi);
 mux2 #(12) outmux(low, hi, s[1], y);
endmodule

Do not confuse the use of the # sign indicating delays with the use
of #(...) in defining and overriding parameters.

VHDL (continued)
The generic statement includes a default value (8) of width.
The value is an integer.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4_8 is
 port(d0, d1, d2,
 d3: in STD_LOGIC_VECTOR(7 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture struct of mux4_8 is
 component mux2
 generic(width: integer := 8);
 port(d0,

d1: in STD_LOGIC_VECTOR(width-1 downto 0);
s: in STD_LOGIC;
y: out STD_LOGIC_VECTOR(width-1 downto 0));

 end component;
 signal low, hi: STD_LOGIC_VECTOR(7 downto 0);
begin
 lowmux: mux2 port map(d0, d1, s(0), low);
 himux: mux2 port map(d2, d3, s(0), hi);
 outmux: mux2 port map(low, hi, s(1), y);
end;

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers using
their default widths.

In contrast, a 12-bit 4:1 multiplexer mux4_12 would need to
override the default width using generic map as shown below.

 lowmux: mux2 generic map(12)
 port map(d0, d1, s(0), low);
 himux: mux2 generic map(12)
 port map(d2, d3, s(0), hi);
 outmux: mux2 generic map(12)
 port map(low, hi, s(1), y);

mux2_12

lowmux

mux2_12

himux

mux2_12

outmux

y[11:0]

s[1:0]
[1:0] [0]

[0]

d3[11:0]

d2[11:0]

d1[11:0]

d0[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]

[1]

FIGURE A.39 mux4_12

Appendix A Hardware Description Languages744

Example A.41 shows a decoder, which is an even better application of parameterized
modules. A large N:2N decoder is cumbersome to specify with case statements, but easy
using parameterized code that simply sets the appropriate output bit to 1. Specifically, the
decoder uses blocking assignments to set all the bits to 0, and then changes the appropri-
ate bit to 1. Figure A.28 showed a 3:8 decoder schematic.

Example A.41 Parameterized N:2N Decoder

SystemVerilog

module decoder #(parameter N = 3)
 (input logic [N-1:0] a,
 output logic [2**N-1:0] y);

 always_comb
 begin
 y = 0;
 y[a] = 1;
 end
endmodule

2**N indicates 2N.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity decoder is
 generic(N: integer := 3);
 port(a: in STD_LOGIC_VECTOR(N-1 downto 0);
 y: out STD_LOGIC_VECTOR(2**N-1 downto 0));
end;

architecture synth of decoder is
begin
 process (a)
 variable tmp: STD_LOGIC_VECTOR(2**N-1 downto 0);
 begin
 tmp := CONV_STD_LOGIC_VECTOR(0, 2**N);
 tmp(CONV_INTEGER(a)) := '1';
 y <= tmp;
 end process;
end;

2**N indicates 2N.
CONV_STD_LOGIC_VECTOR(0, 2**N) produces a

STD_LOGIC_VECTOR of length 2N containing all 0s. It requires the
STD_LOGIC_ARITH library. The function is useful in other parame-
terized functions such as resettable flip-flops that need to be able to
produce constants with a parameterized number of bits. The bit
index in VHDL must be an integer, so the CONV_INTEGER function
is used to convert a from a STD_LOGIC_VECTOR to an integer.

HDLs also provide generate statements to produce a variable amount of hardware
depending on the value of a parameter. generate supports for loops and if statements
to determine how many of what types of hardware to produce. Example A.42 demon-
strates how to use generate statements to produce an N-input AND function from a
cascade of 2-input ANDs.

A.9 Memory 745

Use generate statements with caution; it is easy to produce a large amount of hard-
ware unintentionally!

A.9 Memory
Memories such as RAMs and ROMs are straightforward to model in HDL. Unfortu-
nately, efficient circuit implementations are so specialized and process-specific that most
tools cannot synthesize memories directly. Instead, a special memory generator tool or
memory library may be used, or the memory can be custom-designed.

A.9.1 RAM
Example A.43 describes a single-ported 64-word × 32-bit synchronous RAM with sepa-
rate read and write data busses. When the write enable, we, is asserted, the selected
address in the RAM is written with din on the rising edge of the clock. In any event, the
RAM is read onto dout.

Example A.42 Parameterized N-input AND Gate

SystemVerilog

module andN
 #(parameter width = 8)
 (input logic [width-1:0] a,
 output logic y);

 genvar i;
 logic [width-1:1] x;

 generate
 for (i=1; i<width; i=i+1) begin:forloop
 if (i == 1)
 assign x[1] = a[0] & a[1];
 else
 assign x[i] = a[i] & x[i-1];
 end
 endgenerate
 assign y = x[width-1];
endmodule

The for statement loops through i = 1, 2, ..., width–1 to produce
many consecutive AND gates. The begin in a generate for
loop must be followed by a : and an arbitrary label (forloop, in
this case).

Of course, writing assign y = &a would be much easier!

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity andN is
 generic(width: integer := 8);
 port(a: in STD_LOGIC_VECTOR(width-1 downto 0);
 y: out STD_LOGIC);
end;

architecture synth of andN is
 signal x: STD_LOGIC_VECTOR(width-1 downto 1);
begin
 AllBits: for i in 1 to width-1 generate
 LowBit: if i = 1 generate
 A1: x(1) <= a(0) and a(1);
 end generate;
 OtherBits: if i /= 1 generate
 Ai: x(i) <= a(i) and x(i-1);
 end generate;
 end generate;
 y <= x(width-1);
end;

The generate loop variable i does not need to be declared.

x[1] x[2] x[3] x[4] x[5] x[6] x[7]

[7]

[7:0]
[0]

[1]
[1]

[2]
[2]

[1]

[3]
[3]

[2]

[4]
[4]

[3]

[5]
[5]

[4]

[6]
[6]

[5]

[7]
[7]

[6]

a[7:0]

y

FIGURE A.40 andN

Appendix A Hardware Description Languages746

Example A.44 shows how to modify the RAM to have a single bidirectional data bus.
This reduces the number of wires needed, but requires that tristate drivers be added to
both ends of the bus. Usually point-to-point wiring is preferred over tristate busses in
VLSI implementations.

Example A.43 RAM

SystemVerilog

module ram #(parameter N = 6, M = 32)
 (input logic clk,
 input logic we,
 input logic [N-1:0] adr,
 input logic [M-1:0] din,
 output logic [M-1:0] dout);

 logic [M-1:0] mem[2**N-1:0];

 always @(posedge clk)
 if (we) mem[adr] <= din;

 assign dout = mem[adr];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram_array is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

we: in STD_LOGIC;
adr: in STD_LOGIC_VECTOR(N-1 downto 0);
din: in STD_LOGIC_VECTOR(M-1 downto 0);
dout: out STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram_array is
 type mem_array is array((2**N-1) downto 0)
 of STD_LOGIC_VECTOR(M-1 downto 0);
 signal mem: mem_array;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if we = '1' then
 mem(CONV_INTEGER(adr)) <= din;
 end if;
 end if;
 end process;

 dout <= mem(CONV_INTEGER(adr));
end;

ram1

mem[15:0]

dout[15:0]
din[15:0]

we
addr[5:0]

clk

RADDR[5:0]

DATA[15:0]
DOUT[15:0]WADDR[5:0]

WE
CLK

FIGURE A.41 Synthesized ram

A.9 Memory 747

Example A.44 RAM with Bidirectional Data Bus

SystemVerilog

module ram #(parameter N = 6, M = 32)
 (input logic clk,
 input logic we,
 input logic [N-1:0] adr,
 inout tri [M-1:0] data);

 logic [M-1:0] mem[2**N-1:0];

 always @(posedge clk)
 if (we) mem[adr] <= data;

 assign data = we ? 'z : mem[adr];
endmodule

Notice that data is declared as an inout port because it can be
used both as an input and output. Also, 'z is a shorthand for filling
a bus of arbitrary length with zs.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram_array is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

we: in STD_LOGIC;
adr: in STD_LOGIC_VECTOR(N-1 downto 0);
data: inout STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram_array is
 type mem_array is array((2**N-1) downto 0)
 of STD_LOGIC_VECTOR(M-1 downto 0);
 signal mem: mem_array;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if we = '1' then
 mem(CONV_INTEGER(adr)) <= data;
 end if;
 end if;
 end process;

 data <= (OTHERS => 'Z') when we = '1'
 else mem(CONV_INTEGER(adr));
end;

we

ADR

DATA

N

M

FIGURE A.42 Synthesized ram
with bidirectional data bus

A.9.2 Multiported Register Files
A multiported register file has several read and/or write ports. Example A.45 describes a
synchronous register file with three ports. Ports 1 and 2 are read ports and port 3 is a write
port.

Appendix A Hardware Description Languages748

A.9.3 ROM
A read-only memory is usually modeled by a case statement with one entry for each
word. Example A.46 describes a 4-word by 3-bit ROM. ROMs often are synthesized into
blocks of random logic that perform the equivalent function. For small ROMs, this can be
most efficient. For larger ROMs, a ROM generator tool or library tends to be better. Fig-
ure A.27 showed a schematic of a 7-segment decoder implemented with a ROM.

Example A.45 Three-Ported Register File

SystemVerilog

module ram3port #(parameter N = 6, M = 32)
 (input logic clk,
 input logic we3,
 input logic [N-1:0] a1, a2, a3,
 output logic [M-1:0] d1, d2,
 input logic [M-1:0] d3);

 logic [M-1:0] mem[2**N-1:0];

 always @(posedge clk)
 if (we3) mem[a3] <= d3;

 assign d1 = mem[a1];
 assign d2 = mem[a2];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram3port is
 generic(N: integer := 6; M: integer := 32);
 port(clk,

we3: in STD_LOGIC;
a1,a2,a3: in STD_LOGIC_VECTOR(N-1 downto 0);
d1, d2: out STD_LOGIC_VECTOR(M-1 downto 0);
d3: in STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram3port is
 type mem_array is array((2**N-1) downto 0)
 of STD_LOGIC_VECTOR(M-1 downto 0);
 signal mem: mem_array;
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if we3 = '1' then
 mem(CONV_INTEGER(a3)) <= d3;
 end if;
 end if;
 end process;

 d1 <= mem(CONV_INTEGER(a1));
 d2 <= mem(CONV_INTEGER(a2));
end;

we3

A1

A2

A3

D3

D1

D2

N

N

N

M

M

M

FIGURE A.43
Three-ported register file

A.10 Testbenches 749

A.10 Testbenches
A testbench is an HDL module used to test another module, called the device under test
(DUT). The testbench contains statements to apply inputs to the DUT and, ideally, to
check that the correct outputs are produced. The input and desired output patterns are
called test vectors.

Consider testing the sillyfunction module from Section A.1.1 that computes Y =
ABC + ABC + ABC. This is a simple module, so we can perform exhaustive testing by
applying all eight possible test vectors.

Example A.47 demonstrates a simple testbench. It instantiates the DUT, and then
applies the inputs. Blocking assignments and delays are used to apply the inputs in the
appropriate order. The user must view the results of the simulation and verify by inspec-
tion that the correct outputs are produced. Testbenches are simulated just as other HDL
modules. However, they are not synthesizable.

Example A.46 ROM

SystemVerilog

module rom(input logic [1:0] adr,
 output logic [2:0] dout);

 always_comb
 case(adr)
 2'b00: dout = 3'b011;
 2'b01: dout = 3'b110;
 2'b10: dout = 3'b100;
 2'b11: dout = 3'b010;
 endcase
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity rom is
 port(adr: in STD_LOGIC_VECTOR(1 downto 0);
 dout: out STD_LOGIC_VECTOR(2 downto 0));
end;

architecture synth of rom is
begin
 process(adr) begin
 case adr is
 when "00" => dout <= "011";
 when "01" => dout <= "110";
 when "10" => dout <= "100";
 when "11" => dout <= "010";
 when others => dout <= (OTHERS => 'X');
 end case;
 end process;
end;

Appendix A Hardware Description Languages750

Checking for correct outputs by hand is tedious and error-prone. Moreover, deter-
mining the correct outputs is much easier when the design is fresh in your mind; if you
make minor changes and need to retest weeks later, determining the correct outputs
becomes a hassle. A much better approach is to write a self-checking testbench, shown in
Example A.48.

Example A.47 Testbench

SystemVerilog

module testbench1();
 logic a, b, c;
 logic y;

 // instantiate device under test
 sillyfunction dut(a, b, c, y);

 // apply inputs one at a time

 initial begin
 a = 0; b = 0; c = 0; #10;
 c = 1; #10;
 b = 1; c = 0; #10;
 c = 1; #10;
 a = 1; b = 0; c = 0; #10;
 c = 1; #10;
 b = 1; c = 0; #10;
 c = 1; #10;
 end
endmodule

The initial statement executes the statements in its body at the
start of simulation. In this case, it first applies the input pattern 000
and waits for 10 time units. It then applies 001 and waits 10 more
units, and so forth until all eight possible inputs have been applied.
Initial statements should only be used in testbenches for simu-
lation, not in modules intended to be synthesized into actual hard-
ware. Hardware has no way of magically executing a sequence of
special steps when it is first turned on.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench1 is -- no inputs or outputs
end;

architecture sim of testbench1 is
 component sillyfunction
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
 end component;
 signal a, b, c, y: STD_LOGIC;
begin
 -- instantiate device under test
 dut: sillyfunction port map(a, b, c, y);

 -- apply inputs one at a time
 process begin
 a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 b <= '1'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 b <= '1'; c <= '0'; wait for 10 ns;
 c <= '1'; wait for 10 ns;
 wait; -- wait forever
 end process;
end;

The process statement first applies the input pattern 000 and
waits for 10 ns. It then applies 001 and waits 10 more ns, and so
forth until all eight possible inputs have been applied.

At the end, the process waits indefinitely; otherwise, the pro-
cess would begin again, repeatedly applying the pattern of test vec-
tors.

A.10 Testbenches 751

Writing code for each test vector also becomes tedious, especially for modules that
require a large number of vectors. An even better approach is to place the test vectors in a
separate file. The testbench simply reads the test vectors, applies the input test vector,
waits, checks that the output values match the output vector, and repeats until it reaches
the end of the file.

Example A.49 demonstrates such a testbench. The testbench generates a clock using
an always / process statement with no stimulus list so that it is continuously reevalu-
ated. At the beginning of the simulation, it reads the test vectors from a disk file and

Example A.48 Self-Checking Testbench

SystemVerilog

module testbench2();
 logic a, b, c;
 logic y;

 // instantiate device under test
 sillyfunction dut(a, b, c, y);

 // apply inputs one at a time
 // checking results

 initial begin
 a = 0; b = 0; c = 0; #10;
 assert (y === 1) else $error("000 failed.");
 c = 1; #10;
 assert (y === 0) else $error("001 failed.");
 b = 1; c = 0; #10;
 assert (y === 0) else $error("010 failed.");
 c = 1; #10;
 assert (y === 0) else $error("011 failed.");
 a = 1; b = 0; c = 0; #10;
 assert (y === 1) else $error("100 failed.");
 c = 1; #10;
 assert (y === 1) else $error("101 failed.");
 b = 1; c = 0; #10;
 assert (y === 0) else $error("110 failed.");
 c = 1; #10;
 assert (y === 0) else $error("111 failed.");
 end
endmodule

The SystemVerilog assert statement checks if a specified condi-
tion is true. If it is not, it executes the else statement. The $error
system task in the else statement prints an error message describ-
ing the assertion failure. Assert is ignored during synthesis.

In SystemVerilog, comparison using == or != spuriously indi-
cates equality if one of the operands is x or z. The === and !==
operators must be used instead for testbenches because they work
correctly with x and z.

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench2 is -- no inputs or outputs
end;

architecture sim of testbench2 is
 component sillyfunction
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
 end component;
 signal a, b, c, y: STD_LOGIC;
begin
 -- instantiate device under test
 dut: sillyfunction port map(a, b, c, y);

 -- apply inputs one at a time
 -- checking results
 process begin
 a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
 assert y = '1' report "000 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '0' report "001 failed.";
 b <= '1'; c <= '0'; wait for 10 ns;
 assert y = '0' report "010 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '0' report "011 failed.";
 a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
 assert y = '1' report "100 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '1' report "101 failed.";
 b <= '1'; c <= '0'; wait for 10 ns;
 assert y = '0' report "110 failed.";
 c <= '1'; wait for 10 ns;
 assert y = '0' report "111 failed.";
 wait; -- wait forever
 end process;
end;

The assert statement checks a condition and prints the message
given in the report clause if the condition is not satisfied. Assert
is ignored during synthesis.

Appendix A Hardware Description Languages752

pulses reset for two cycles. example.tv is a text file containing the inputs and expected
output written in binary:

000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

New inputs are applied on the rising edge of the clock and the output is checked on
the falling edge of the clock. This clock (and reset) would also be provided to the DUT
if sequential logic were being tested. Errors are reported as they occur. At the end of the
simulation, the testbench prints the total number of test vectors applied and the number of
errors detected.

This testbench is overkill for such a simple circuit. However, it can easily be modified
to test more complex circuits by changing the example.tv file, instantiating the new
DUT, and changing a few lines of code to set the inputs and check the outputs.

Example A.49 Testbench with Test Vector File

SystemVerilog

module testbench3();
 logic clk, reset;
 logic a, b, c, yexpected;
 logic y;
 logic [31:0] vectornum, errors;
 logic [3:0] testvectors[10000:0];

 // instantiate device under test
 sillyfunction dut(a, b, c, y);

 // generate clock
 always
 begin
 clk = 1; #5; clk = 0; #5;
 end

 // at start of test, load vectors
 // and pulse reset
 initial
 begin
 $readmemb("example.tv", testvectors);
 vectornum = 0; errors = 0;
 reset = 1; #27; reset = 0;
 end

 // apply test vectors on rising edge of clk
 always @(posedge clk)
 begin
 #1; {a, b, c, yexpected} =
 testvectors[vectornum];
 end

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;

entity testbench3 is -- no inputs or outputs
end;

architecture sim of testbench3 is
 component sillyfunction
 port(a, b, c: in STD_LOGIC;
 y: out STD_LOGIC);
 end component;
 signal a, b, c, y: STD_LOGIC;
 signal clk, reset: STD_LOGIC;
 signal yexpected: STD_LOGIC;
 constant MEMSIZE: integer := 10000;
 type tvarray is array(MEMSIZE downto 0) of
 STD_LOGIC_VECTOR(3 downto 0);
 signal testvectors: tvarray;
 shared variable vectornum, errors: integer;
begin
 -- instantiate device under test
 dut: sillyfunction port map(a, b, c, y);

 -- generate clock
 process begin
 clk <= '1'; wait for 5 ns;
 clk <= '0'; wait for 5 ns;
 end process;

 -- at start of test, load vectors
 -- and pulse reset

A.10 Testbenches 753

SystemVerilog (continued)
// check results on falling edge of clk
 always @(negedge clk)
 if (~reset) begin // skip during reset
 if (y !== yexpected) begin

$display("Error: inputs = %b", {a, b, c});
$display(" outputs = %b (%b expected)",

 y, yexpected);
 errors = errors + 1;
 end
 vectornum = vectornum + 1;
 if (testvectors[vectornum] === 'bx) begin

$display("%d tests completed with %d
 errors", vectornum, errors);

 $finish;
 end
 end
endmodule

$readmemb reads a file of binary numbers into an array.
$readmemh is similar, but it reads a file of hexadecimal numbers.

The next block of code waits one time unit after the rising edge
of the clock (to avoid any confusion of clock and data changing
simultaneously), then sets the three inputs and the expected output
based on the 4 bits in the current test vector.

$display is a system task to print in the simulator window.
$finish terminates the simulation.

Note that even though the SystemVerilog module supports up
to 10001 test vectors, it will terminate the simulation after executing
the 8 vectors in the file.

For more information on testbenches and SystemVerilog verifi-
cation, consult [Bergeron05].

VHDL (continued)
process is
 file tv: TEXT;
 variable i, j: integer;
 variable L: line;
 variable ch: character;
 begin
 -- read file of test vectors
 i := 0;
 FILE_OPEN(tv, "example.tv", READ_MODE);
 while not endfile(tv) loop
 readline(tv, L);
 for j in 0 to 3 loop
 read(L, ch);
 if (ch = '_') then read(L, ch);
 end if;
 if (ch = '0') then
 testvectors(i)(j) <= '0';
 else testvectors(i)(j) <= '1';
 end if;
 end loop;
 i := i + 1;
 end loop;

 vectornum := 0; errors := 0;
 reset <= '1'; wait for 27 ns; reset <= '0';
 wait;
 end process;
 -- apply test vectors on rising edge of clk
 process (clk) begin
 if (clk'event and clk = '1') then

 a <= testvectors(vectornum)(0) after 1 ns;
 b <= testvectors(vectornum)(1) after 1 ns;
 c <= testvectors(vectornum)(2) after 1 ns;
 yexpected <= testvectors(vectornum)(3)
 after 1 ns;
 end if;
 end process;

 -- check results on falling edge of clk
 process (clk) begin
 if (clk'event and clk = '0' and reset = '0') then
 assert y = yexpected
 report "Error: y = " & STD_LOGIC'image(y);
 if (y /= yexpected) then
 errors := errors + 1;
 end if;
 vectornum := vectornum + 1;
 if (is_x(testvectors(vectornum))) then
 if (errors = 0) then
 report "Just kidding -- " &
 integer'image(vectornum) &
 " tests completed successfully."
 severity failure;

(continues)

Appendix A Hardware Description Languages754

A.11 SystemVerilog Netlists
As mentioned in Section 1.8.4, Verilog provides transistor and gate-level primitives that
are helpful for describing netlists. Comparable features are not built into VHDL.

Gate primitives include not, and, or, xor, nand, nor, and xnor. The output is de-
clared first; multiple inputs may follow. For example, a 4-input AND gate may be specified as

 and g1(y, a, b, c, d);

Transistor primitives include tranif1, tranif0, rtranif1, and rtranif0.
tranif1 is an nMOS transistor (i.e., one that turns ON when the gate is ‘1’) while
tranif0 is a pMOS transistor. The rtranif primitives are resistive transistors; i.e., weak
transistors that can be overcome by a stronger driver. Logic 0 and 1 values (GND and VDD)
are defined with the supply0 and supply1 types. For example, a pseudo-nMOS NOR
gate of Figure A.44 with a weak pullup is modeled with three transistors. Note that y must
be declared as a tri net because it could be driven by multiple transistors.

module nor_pseudonmos(input logic a, b,
 output tri y);

 supply0 gnd;
 supply1 vdd;

 tranif1 n1(y, gnd, a);
 tranif1 n2(y, gnd, b);
 rtranif0 p1(y, vdd, gnd);
endmodule

Modeling a latch in Verilog requires care because the feedback path turns ON at the
same time as the feedforward path turns OFF as the latch turns opaque. Depending on race
conditions, there is a risk that the state node could float or experience contention. To solve

Example A.49 Testbench with Test Vector File (continued)

VHDL (continued)
 else
 report integer'image(vectornum) &
 " tests completed, errors = " &
 integer'image(errors)
 severity failure;
 end if;
 end if;
 end if;
 end process;
end;

The VHDL code is rather ungainly and uses file reading commands
beyond the scope of this appendix, but it gives the sense of what a
self-checking testbench looks like.

A B
Y

N1 N2

P1
weak

FIGURE A.44
Pseudo-nMOS NOR gate

A.12 Example: MIPS Processor 755

this problem, the state node is modeled as a trireg (so it will not float) and the feed-
back transistors are modeled as weak (so they will not cause contention). The other
nodes are tri nets because they can be driven by multiple transistors. Figure A.45 re-
draws the latch from Figure 10.17(g) at the transistor level and highlights the weak
transistors and state node.

module latch(input logic ph, phb, d,
 output tri q);

 trireg x;
 tri xb, nn12, nn56, pp12, pp56;
 supply0 gnd;
 supply1 vdd;

 // input stage
 tranif1 n1(nn12, gnd, d);
 tranif1 n2(x, nn12, ph);
 tranif0 p1(pp12, vdd, d);
 tranif0 p2(x, pp12, phb);

 // output inverter
 tranif1 n3(q, gnd, x);
 tranif0 p3(q, vdd, x);

 // xb inverter
 tranif1 n4(xb, gnd, x);
 tranif0 p4(xb, vdd, x);

 // feedback tristate
 tranif1 n5(nn56, gnd, xb);
 rtranif1 n6(x, nn56, phb);
 tranif0 p5(pp56, vdd, xb);
 rtranif0 p6(x, pp56, ph);
endmodule

Most synthesis tools map only onto gates, not transistors, so transistor primitives
are only for simulation.

 The tranif devices are bidirectional; i.e., the source and drain are symmetric.
Verilog also supports unidirectional nmos and pmos primitives that only allow a signal
to flow from the input terminal to the output terminal. Real transistors are inherently
bidirectional, so unidirectional models can result in simulation not catching bugs that
would exist in real hardware. Therefore, tranif primitives are preferred for simulation.

A.12 Example: MIPS Processor
To illustrate a nontrivial HDL design, this section lists the code and testbench for the
MIPS processor subset discussed in Chapter 1. The example handles only the LB, SB,
ADD, SUB, AND, OR, SLT, BEQ, and J instructions. It uses an 8-bit datapath and only
eight registers. Because the instruction is 32-bits wide, it is loaded in four successive
fetch cycles across an 8-bit path to external memory.

N1

N2

P2

P1

N5

N6

P6

P5

D
X

Q

X

φ

φ

φ

φ

N4

P4

N3

P3

trireg

weak
weak

FIGURE A.45 latch

Appendix A Hardware Description Languages756

A.12.1 Testbench
The testbench initializes a 256-byte memory with instructions and data from a text file.
The code exercises each of the instructions. The mipstest.asm assembly language file
and memfile.dat text file are shown below. The testbench runs until it observes a mem-
ory write. If the value 7 is written to address 76, the code probably executed correctly. If all
goes well, the testbench should take 100 cycles (1000 ns) to run.

mipstest.asm
9/16/03 David Harris David_Harris@hmc.edu
#
Test MIPS instructions. Assumes little-endian memory was
initialized as:
word 16: 3
word 17: 5
word 18: 12

main: #Assembly Code effect Machine Code
lb $2, 68($0) # initialize $2 = 5 80020044
lb $7, 64($0) # initialize $7 = 3 80070040
lb $3, 69($7) # initialize $3 = 12 80e30045
or $4, $7, $2 # $4 <= 3 or 5 = 7 00e22025
and $5, $3, $4 # $5 <= 12 and 7 = 4 00642824
add $5, $5, $4 # $5 <= 4 + 7 = 11 00a42820
beq $5, $7, end # shouldn’t be taken 10a70008
slt $6, $3, $4 # $6 <= 12 < 7 = 0 0064302a
beq $6, $0, around # should be taken 10c00001
lb $5, 0($0) # shouldn’t happen 80050000

around: slt $6, $7, $2 # $6 <= 3 < 5 = 1 00e2302a
add $7, $6, $5 # $7 <= 1 + 11 = 12 00c53820
sub $7, $7, $2 # $7 <= 12 - 5 = 7 00e23822
j end # should be taken 0800000f
lb $7, 0($0) # shouldn’t happen 80070000

end: sb $7, 71($2) # write adr 76 <= 7 a0470047
.dw 3 00000003
.dw 5 00000005
.dw 12 0000000c

memfile.dat
80020044
80070040
80e30045
00e22025
00642824
00a42820
10a70008
0064302a
10c00001
80050000
00e2302a
00c53820
00e23822
0800000f
80070000
a0470047
00000003
00000005
0000000c

A.12 Example: MIPS Processor 757

A.12.2 SystemVerilog
//---
// mips.sv
// Max Yi (byyi@hmc.edu) and
// David_Harris@hmc.edu 12/9/03
// Changes 7/3/07 DMH
// Updated to SystemVerilog
// fixed memory endian bug
//
// Model of subset of MIPS processor from Ch 1
// note that no sign extension is done because
// width is only 8 bits
//---------------------

// states and instructions

 typedef enum logic [3:0]
 {FETCH1 = 4'b0000, FETCH2, FETCH3, FETCH4,
 DECODE, MEMADR, LBRD, LBWR, SBWR,
 RTYPEEX, RTYPEWR, BEQEX, JEX} statetype;
 typedef enum logic [5:0] {LB = 6'b100000,
 SB = 6'b101000,
 RTYPE = 6'b000000,
 BEQ = 6'b000100,
 J = 6'b000010} opcode;
 typedef enum logic [5:0] {ADD = 6'b100000,
 SUB = 6'b100010,
 AND = 6'b100100,
 OR = 6'b100101,
 SLT = 6'b101010} functcode;

// testbench
module testbench #(parameter WIDTH = 8, REGBITS = 3)();

 logic clk;
 logic reset;
 logic memread, memwrite;
 logic [WIDTH-1:0] adr, writedata;
 logic [WIDTH-1:0] memdata;

 // instantiate devices to be tested
 mips #(WIDTH,REGBITS) dut(clk, reset, memdata, memread,
 memwrite, adr, writedata);

 // external memory for code and data
 exmemory #(WIDTH) exmem(clk, memwrite, adr, writedata, memdata);

 // initialize test
 initial
 begin
 reset <= 1; # 22; reset <= 0;
 end

 // generate clock to sequence tests
 always
 begin
 clk <= 1; # 5; clk <= 0; # 5;
 end

Appendix A Hardware Description Languages758

 always @(negedge clk)
 begin
 if(memwrite)
 assert(adr == 76 & writedata == 7)
 $display("Simulation completely successful");
 else $error("Simulation failed");
 end
endmodule

// external memory accessed by MIPS
module exmemory #(parameter WIDTH = 8)
 (input logic clk,
 input logic memwrite,
 input logic [WIDTH-1:0] adr, writedata,
 output logic [WIDTH-1:0] memdata);

 logic [31:0] mem [2**(WIDTH-2)-1:0];
 logic [31:0] word;
 logic [1:0] bytesel;
 logic [WIDTH-2:0] wordadr;

 initial
 $readmemh("memfile.dat", mem);

 assign bytesel = adr[1:0];
 assign wordadr = adr[WIDTH-1:2];

 // read and write bytes from 32-bit word
 always @(posedge clk)
 if(memwrite)
 case (bytesel)
 2'b00: mem[wordadr][7:0] <= writedata;
 2'b01: mem[wordadr][15:8] <= writedata;
 2'b10: mem[wordadr][23:16] <= writedata;
 2'b11: mem[wordadr][31:24] <= writedata;
 endcase

 assign word = mem[wordadr];
 always_comb
 case (bytesel)
 2'b00: memdata = word[7:0];
 2'b01: memdata = word[15:8];
 2'b10: memdata = word[23:16];
 2'b11: memdata = word[31:24];
 endcase
endmodule

// simplified MIPS processor
module mips #(parameter WIDTH = 8, REGBITS = 3)
 (input logic clk, reset,
 input logic [WIDTH-1:0] memdata,
 output logic memread, memwrite,
 output logic [WIDTH-1:0] adr, writedata);

 logic [31:0] instr;
 logic zero, alusrca, memtoreg, iord, pcen,
 regwrite, regdst;
 logic [1:0] pcsrc, alusrcb;
 logic [3:0] irwrite;

A.12 Example: MIPS Processor 759

 logic [2:0] alucontrol;
 logic [5:0] op, funct;

 assign op = instr[31:26];
 assign funct = instr[5:0];

 controller cont(clk, reset, op, funct, zero, memread, memwrite,
 alusrca, memtoreg, iord, pcen, regwrite, regdst,
 pcsrc, alusrcb, alucontrol, irwrite);
 datapath #(WIDTH, REGBITS)
 dp(clk, reset, memdata, alusrca, memtoreg, iord, pcen,
 regwrite, regdst, pcsrc, alusrcb, irwrite, alucontrol,
 zero, instr, adr, writedata);
endmodule

module controller(input logic clk, reset,
 input logic [5:0] op, funct,
 input logic zero,
 output logic memread, memwrite, alusrca,
 output logic memtoreg, iord, pcen,
 output logic regwrite, regdst,
 output logic [1:0] pcsrc, alusrcb,
 output logic [2:0] alucontrol,
 output logic [3:0] irwrite);

 statetype state;
 logic pcwrite, branch;
 logic [1:0] aluop;

 // control FSM
 statelogic statelog(clk, reset, op, state);
 outputlogic outputlog(state, memread, memwrite, alusrca,
 memtoreg, iord,
 regwrite, regdst, pcsrc, alusrcb, irwrite,
 pcwrite, branch, aluop);

 // other control decoding
 aludec ac(aluop, funct, alucontrol

 // program counter enable
 assign pcen = pcwrite | (branch & zero);
endmodule

module statelogic(input logic clk, reset,
 input logic [5:0] op,
 output statetype state);

 statetype nextstate;

 always_ff @(posedge clk)
 if (reset) state <= FETCH1;
 else state <= nextstate;

 always_comb
 begin
 case (state)
 FETCH1: nextstate = FETCH2;
 FETCH2: nextstate = FETCH3;
 FETCH3: nextstate = FETCH4;

Appendix A Hardware Description Languages760

 FETCH4: nextstate = DECODE;
 DECODE: case(op)
 LB: nextstate = MEMADR;
 SB: nextstate = MEMADR;
 RTYPE: nextstate = RTYPEEX;
 BEQ: nextstate = BEQEX;
 J: nextstate = JEX;
 default: nextstate = FETCH1;
 // should never happen
 endcase
 MEMADR: case(op)
 LB: nextstate = LBRD;
 SB: nextstate = SBWR;
 default: nextstate = FETCH1;
 // should never happen
 endcase
 LBRD: nextstate = LBWR;
 LBWR: nextstate = FETCH1;
 SBWR: nextstate = FETCH1;
 RTYPEEX: nextstate = RTYPEWR;
 RTYPEWR: nextstate = FETCH1;
 BEQEX: nextstate = FETCH1;
 JEX: nextstate = FETCH1;
 default: nextstate = FETCH1;
 // should never happen
 endcase
 end
endmodule

module outputlogic(input statetype state,
 output logic memread, memwrite, alusrca,
 output logic memtoreg, iord,
 output logic regwrite, regdst,
 output logic [1:0] pcsrc, alusrcb,
 output logic [3:0] irwrite,
 output logic pcwrite, branch,
 output logic [1:0] aluop);

 always_comb
 begin
 // set all outputs to zero, then
 // conditionally assert just the appropriate ones
 irwrite = 4'b0000;
 pcwrite = 0; branch = 0;
 regwrite = 0; regdst = 0;
 memread = 0; memwrite = 0;
 alusrca = 0; alusrcb = 2'b00; aluop = 2'b00;
 pcsrc = 2'b00;
 iord = 0; memtoreg = 0;

 case (state)
 FETCH1:
 begin
 memread = 1;
 irwrite = 4'b0001;
 alusrcb = 2'b01;
 pcwrite = 1;
 end

A.12 Example: MIPS Processor 761

 FETCH2:
 begin
 memread = 1;
 irwrite = 4'b0010;
 alusrcb = 2'b01;
 pcwrite = 1;
 end
 FETCH3:
 begin
 memread = 1;
 irwrite = 4'b0100;
 alusrcb = 2'b01;
 pcwrite = 1;
 end
 FETCH4:
 begin
 memread = 1;
 irwrite = 4'b1000;
 alusrcb = 2'b01;
 pcwrite = 1;
 end
 DECODE: alusrcb = 2'b11;
 MEMADR:
 begin
 alusrca = 1;
 alusrcb = 2'b10;
 end
 LBRD:
 begin
 memread = 1;
 iord = 1;
 end
 LBWR:
 begin
 regwrite = 1;
 memtoreg = 1;
 end
 SBWR:
 begin
 memwrite = 1;
 iord = 1;
 end
 RTYPEEX:
 begin
 alusrca = 1;
 aluop = 2'b10;
 end
 RTYPEWR:
 begin
 regdst = 1;
 regwrite = 1;
 end
 BEQEX:
 begin
 alusrca = 1;
 aluop = 2'b01;
 branch = 1;
 pcsrc = 2'b01;
 end

Appendix A Hardware Description Languages762

 JEX:
 begin
 pcwrite = 1;
 pcsrc = 2'b10;
 end
 endcase
 end
endmodule

module aludec(input logic [1:0] aluop,
 input logic [5:0] funct,
 output logic [2:0] alucontrol);

 always_comb
 case (aluop)
 2'b00: alucontrol = 3'b010; // add for lb/sb/addi
 2'b01: alucontrol = 3'b110; // subtract (for beq)
 default: case(funct) // R-Type instructions
 ADD: alucontrol = 3'b010;
 SUB: alucontrol = 3'b110;
 AND: alucontrol = 3'b000;
 OR: alucontrol = 3'b001;
 SLT: alucontrol = 3'b111;
 default: alucontrol = 3'b101;
 // should never happen
 endcase
 endcase
endmodule

module datapath #(parameter WIDTH = 8, REGBITS = 3)
 (input logic clk, reset,
 input logic [WIDTH-1:0] memdata,
 input logic alusrca, memtoreg, iord,
 input logic pcen, regwrite, regdst,
 input logic [1:0] pcsrc, alusrcb,
 input logic [3:0] irwrite,
 input logic [2:0] alucontrol,
 output logic zero,
 output logic [31:0] instr,
 output logic [WIDTH-1:0] adr, writedata);

 logic [REGBITS-1:0] ra1, ra2, wa;
 logic [WIDTH-1:0] pc, nextpc, data, rd1, rd2, wd, a, srca,
 srcb, aluresult, aluout, immx4;

 logic [WIDTH-1:0] CONST_ZERO = 0;
 logic [WIDTH-1:0] CONST_ONE = 1;

 // shift left immediate field by 2
 assign immx4 = {instr[WIDTH-3:0],2'b00};

 // register file address fields
 assign ra1 = instr[REGBITS+20:21];
 assign ra2 = instr[REGBITS+15:16];
 mux2 #(REGBITS) regmux(instr[REGBITS+15:16],
 instr[REGBITS+10:11], regdst, wa);

 // independent of bit width,
 // load instruction into four 8-bit registers over four cycles

A.12 Example: MIPS Processor 763

 flopen #(8) ir0(clk, irwrite[0], memdata[7:0], instr[7:0]);
 flopen #(8) ir1(clk, irwrite[1], memdata[7:0], instr[15:8]);
 flopen #(8) ir2(clk, irwrite[2], memdata[7:0], instr[23:16]);
 flopen #(8) ir3(clk, irwrite[3], memdata[7:0], instr[31:24]);

 // datapath
 flopenr #(WIDTH) pcreg(clk, reset, pcen, nextpc, pc);
 flop #(WIDTH) datareg(clk, memdata, data);
 flop #(WIDTH) areg(clk, rd1, a);
 flop #(WIDTH) wrdreg(clk, rd2, writedata);
 flop #(WIDTH) resreg(clk, aluresult, aluout);
 mux2 #(WIDTH) adrmux(pc, aluout, iord, adr);
 mux2 #(WIDTH) src1mux(pc, a, alusrca, srca);
 mux4 #(WIDTH) src2mux(writedata, CONST_ONE, instr[WIDTH-1:0],
 immx4, alusrcb, srcb);
 mux3 #(WIDTH) pcmux(aluresult, aluout, immx4,
 pcsrc, nextpc);
 mux2 #(WIDTH) wdmux(aluout, data, memtoreg, wd);
 regfile #(WIDTH,REGBITS) rf(clk, regwrite, ra1, ra2,
 wa, wd, rd1, rd2);
 alu #(WIDTH) alunit(srca, srcb, alucontrol, aluresult, zero);
endmodule

module alu #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 input logic [2:0] alucontrol,
 output logic [WIDTH-1:0] result,
 output logic zero);

 logic [WIDTH-1:0] b2, andresult, orresult,
 sumresult, sltresult;

 andN andblock(a, b, andresult);
 orN orblock(a, b, orresult);
 condinv binv(b, alucontrol[2], b2);
 adder addblock(a, b2, alucontrol[2], sumresult);
 // slt should be 1 if most significant bit of sum is 1
 assign sltresult = sumresult[WIDTH-1];

 mux4 resultmux(andresult, orresult, sumresult,
 sltresult, alucontrol[1:0], result);
 zerodetect #(WIDTH) zd(result, zero);
endmodule

module regfile #(parameter WIDTH = 8, REGBITS = 3)
 (input logic clk,
 input logic regwrite,
 input logic [REGBITS-1:0] ra1, ra2, wa,
 input logic [WIDTH-1:0] wd,
 output logic [WIDTH-1:0] rd1, rd2);

 logic [WIDTH-1:0] RAM [2**REGBITS-1:0];

 // three ported register file
 // read two ports combinationally
 // write third port on rising edge of clock
 // register 0 hardwired to 0
 always @(posedge clk)
 if (regwrite) RAM[wa] <= wd;

Appendix A Hardware Description Languages764

 assign rd1 = ra1 ? RAM[ra1] : 0;
 assign rd2 = ra2 ? RAM[ra2] : 0;
endmodule

module zerodetect #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a,
 output logic y);

 assign y = (a==0);
endmodule

module flop #(parameter WIDTH = 8)
 (input logic clk,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk)
 q <= d;
endmodule

module flopen #(parameter WIDTH = 8)
 (input logic clk, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk)
 if (en) q <= d;
endmodule

module flopenr #(parameter WIDTH = 8)
 (input logic clk, reset, en,
 input logic [WIDTH-1:0] d,
 output logic [WIDTH-1:0] q);

 always_ff @(posedge clk)
 if (reset) q <= 0;
 else if (en) q <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1,
 input logic s,
 output logic [WIDTH-1:0] y);

 assign y = s ? d1 : d0;
endmodule

module mux3 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1, d2,
 input logic [1:0] s,
 output logic [WIDTH-1:0] y);

 always_comb
 casez (s)
 2'b00: y = d0;
 2'b01: y = d1;
 2'b1?: y = d2;
 endcase
endmodule

A.12 Example: MIPS Processor 765

module mux4 #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] d0, d1, d2, d3,
 input logic [1:0] s,
 output logic [WIDTH-1:0] y);

 always_comb
 case (s)
 2'b00: y = d0;
 2'b01: y = d1;
 2'b10: y = d2;
 2'b11: y = d3;
 endcase
endmodule

module andN #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 output logic [WIDTH-1:0] y);

 assign y = a & b;
endmodule

module orN #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 output logic [WIDTH-1:0] y);

 assign y = a | b;
endmodule

module inv #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a,
 output logic [WIDTH-1:0] y);

 assign y = ~a;
endmodule

module condinv #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a,
 input logic invert,
 output logic [WIDTH-1:0] y);

 logic [WIDTH-1:0] ab;

 inv inverter(a, ab);
 mux2 invmux(a, ab, invert, y);
endmodule

module adder #(parameter WIDTH = 8)
 (input logic [WIDTH-1:0] a, b,
 input logic cin,
 output logic [WIDTH-1:0] y);

 assign y = a + b + cin;
endmodule

Appendix A Hardware Description Languages766

A.12.3 VHDL

-- mips.vhd
-- David_Harris@hmc.edu 9/9/03
-- Model of subset of MIPS processor described in Ch 1

-- Entity Declarations

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity top is -- top-level design for testing
 generic(width: integer := 8; -- default 8-bit datapath
 regbits: integer := 3); -- and 3 bit register addresses (8 regs)
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;
entity memory is -- external memory accessed by MIPS
 generic(width: integer);
 port(clk, memwrite: in STD_LOGIC;
 adr, writedata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memdata: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mips is -- simplified MIPS processor
 generic(width: integer := 8; -- default 8-bit datapath
 regbits: integer := 3); -- and 3 bit register addresses (8 regs)
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memread, memwrite: out STD_LOGIC;
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity controller is -- control FSM
 port(clk, reset: in STD_LOGIC;
 op: in STD_LOGIC_VECTOR(5 downto 0);
 zero: in STD_LOGIC;
 memread, memwrite, alusrca, memtoreg,
 iord, pcen, regwrite, regdst: out STD_LOGIC;
 pcsrc, alusrcb, aluop: out STD_LOGIC_VECTOR(1 downto 0);
 irwrite: out STD_LOGIC_VECTOR(3 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity alucontrol is -- ALU control decoder
 port(aluop: in STD_LOGIC_VECTOR(1 downto 0);
 funct: in STD_LOGIC_VECTOR(5 downto 0);
 alucont: out STD_LOGIC_VECTOR(2 downto 0));
end;

A.12 Example: MIPS Processor 767

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity datapath is -- MIPS datapath
 generic(width, regbits: integer);
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 alusrca, memtoreg, iord, pcen,
 regwrite, regdst: in STD_LOGIC;
 pcsrc, alusrcb: in STD_LOGIC_VECTOR(1 downto 0);
 irwrite: in STD_LOGIC_VECTOR(3 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 zero: out STD_LOGIC;
 instr: out STD_LOGIC_VECTOR(31 downto 0);
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_ARITH.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity alu is -- Arithmetic/Logic unit with add/sub, AND, OR, set less than
 generic(width: integer);
 port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 result: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;
entity regfile is -- three-port register file of 2**regbits words x width bits
 generic(width, regbits: integer);
 port(clk: in STD_LOGIC;
 write: in STD_LOGIC;
 ra1, ra2, wa: in STD_LOGIC_VECTOR(regbits-1 downto 0);
 wd: in STD_LOGIC_VECTOR(width-1 downto 0);
 rd1, rd2: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity zerodetect is -- true if all input bits are zero
 generic(width: integer);
 port(a: in STD_LOGIC_VECTOR(width-1 downto 0);
 y: out STD_LOGIC);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flop is -- flip-flop
 generic(width: integer);
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopen is -- flip-flop with enable
 generic(width: integer);
 port(clk, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

Appendix A Hardware Description Languages768

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity flopenr is -- flip-flop with enable and synchronous reset
 generic(width: integer);
 port(clk, reset, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is -- two-input multiplexer
 generic(width: integer);
 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is -- four-input multiplexer
 generic(width: integer);
 port(d0, d1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
end;

-- Architecture Definitions

architecture test of top is
 component mips generic(width: integer := 8; -- default 8-bit datapath
 regbits: integer := 3); -- and 3 bit register addresses (8 regs)
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memread, memwrite: out STD_LOGIC;
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component memory generic(width: integer);
 port(clk, memwrite: in STD_LOGIC;
 adr, writedata: in STD_LOGIC_VECTOR(width-1 downto 0);
 memdata: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 signal clk, reset, memread, memwrite: STD_LOGIC;
 signal memdata, adr, writedata: STD_LOGIC_VECTOR(width-1 downto 0);
begin
 -- mips being tested
 dut: mips generic map(width, regbits)
 port map(clk, reset, memdata, memread, memwrite, adr, writedata);
 -- external memory for code and data
 exmem: memory generic map(width)
 port map(clk, memwrite, adr, writedata, memdata);

 -- Generate clock with 10 ns period
 process begin
 clk <= '1';
 wait for 5 ns;
 clk <= '0';
 wait for 5 ns;
 end process;

A.12 Example: MIPS Processor 769

 -- Generate reset for first two clock cycles
 process begin
 reset <= '1';
 wait for 22 ns;
 reset <= '0';
 wait;
 end process;

 -- check that 7 gets written to address 76 at end of program
 process (clk) begin
 if (clk'event and clk = '0' and memwrite = '1') then
 if (conv_integer(adr) = 76 and conv_integer(writedata) = 7) then
 report "Simulation completed successfully";
 else report "Simulation failed.";
 end if;
 end if;
 end process;
end;

architecture synth of memory is
begin
 process is
 file mem_file: text open read_mode is "memfile.dat";
 variable L: line;
 variable ch: character;
 variable index, result: integer;
 type ramtype is array (255 downto 0) of STD_LOGIC_VECTOR(7 downto 0);
 variable mem: ramtype;
 begin

-- initialize memory from file
-- memory in little-endian format
-- 80020044 means mem[3] = 80 and mem[0] = 44

 for i in 0 to 255 loop -- set all contents low
 mem(conv_integer(i)) := "00000000";
 end loop;
 index := 0;
 while not endfile(mem_file) loop
 readline(mem_file, L);
 for j in 0 to 3 loop
 result := 0;
 for i in 1 to 2 loop
 read(L, ch);
 if '0' <= ch and ch <= '9' then
 result := result*16 + character'pos(ch)-character'pos('0');
 elsif 'a' <= ch and ch <= 'f' then
 result := result*16 + character'pos(ch)-character'pos('a')+10;
 else report "Format error on line " & integer'image(index)
 severity error;
 end if;
 end loop;
 mem(index*4+3-j) := conv_std_logic_vector(result, width);
 end loop;
 index := index + 1;
 end loop;
 -- read or write memory
 loop
 if clk'event and clk = '1' then
 if (memwrite = '1') then mem(conv_integer(adr)) := writedata;
 end if;

Appendix A Hardware Description Languages770

 end if;
 memdata <= mem(conv_integer(adr));
 wait on clk, adr;
 end loop;
 end process;
end;

architecture struct of mips is
 component controller
 port(clk, reset: in STD_LOGIC;
 op: in STD_LOGIC_VECTOR(5 downto 0);
 zero: in STD_LOGIC;
 memread, memwrite, alusrca, memtoreg,
 iord, pcen, regwrite, regdst: out STD_LOGIC;
 pcsrc, alusrcb, aluop: out STD_LOGIC_VECTOR(1 downto 0);
 irwrite: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
 component alucontrol
 port(aluop: in STD_LOGIC_VECTOR(1 downto 0);
 funct: in STD_LOGIC_VECTOR(5 downto 0);
 alucont: out STD_LOGIC_VECTOR(2 downto 0));
 end component;
 component datapath generic(width, regbits: integer);
 port(clk, reset: in STD_LOGIC;
 memdata: in STD_LOGIC_VECTOR(width-1 downto 0);
 alusrca, memtoreg, iord, pcen,
 regwrite, regdst: in STD_LOGIC;
 pcsrc, alusrcb: in STD_LOGIC_VECTOR(1 downto 0);
 irwrite: in STD_LOGIC_VECTOR(3 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 zero: out STD_LOGIC;
 instr: out STD_LOGIC_VECTOR(31 downto 0);
 adr, writedata: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 signal instr: STD_LOGIC_VECTOR(31 downto 0);
 signal zero, alusrca, memtoreg, iord, pcen, regwrite, regdst: STD_LOGIC;
 signal aluop, pcsrc, alusrcb: STD_LOGIC_VECTOR(1 downto 0);
 signal irwrite: STD_LOGIC_VECTOR(3 downto 0);
 signal alucont: STD_LOGIC_VECTOR(2 downto 0);
begin
 cont: controller port map(clk, reset, instr(31 downto 26), zero,
 memread, memwrite, alusrca, memtoreg,
 iord, pcen, regwrite, regdst,
 pcsrc, alusrcb, aluop, irwrite);
 ac: alucontrol port map(aluop, instr(5 downto 0), alucont);
 dp: datapath generic map(width, regbits)
 port map(clk, reset, memdata, alusrca, memtoreg,
 iord, pcen, regwrite, regdst,
 pcsrc, alusrcb, irwrite,
 alucont, zero, instr, adr, writedata);
end;

architecture synth of controller is
 type statetype is (FETCH1, FETCH2, FETCH3, FETCH4, DECODE, MEMADR,
 LBRD, LBWR, SBWR, RTYPEEX, RTYPEWR, BEQEX, JEX);
 constant LB: STD_LOGIC_VECTOR(5 downto 0) := "100000";
 constant SB: STD_LOGIC_VECTOR(5 downto 0) := "101000";
 constant RTYPE: STD_LOGIC_VECTOR(5 downto 0) := "000000";

A.12 Example: MIPS Processor 771

 constant BEQ: STD_LOGIC_VECTOR(5 downto 0) := "000100";
 constant J: STD_LOGIC_VECTOR(5 downto 0) := "000010";
 signal state, nextstate: statetype;
 signal pcwrite, pcwritecond: STD_LOGIC;
begin
 process (clk) begin -- state register
 if clk'event and clk = '1' then
 if reset = '1' then state <= FETCH1;
 else state <= nextstate;
 end if;
 end if;
 end process;

 process (state, op) begin -- next state logic
 case state is
 when FETCH1 => nextstate <= FETCH2;
 when FETCH2 => nextstate <= FETCH3;
 when FETCH3 => nextstate <= FETCH4;
 when FETCH4 => nextstate <= DECODE;
 when DECODE => case op is
 when LB | SB => nextstate <= MEMADR;
 when RTYPE => nextstate <= RTYPEEX;
 when BEQ => nextstate <= BEQEX;
 when J => nextstate <= JEX;
 when others => nextstate <= FETCH1; -- should never happen
 end case;
 when MEMADR => case op is
 when LB => nextstate <= LBRD;
 when SB => nextstate <= SBWR;
 when others => nextstate <= FETCH1; -- should never happen
 end case;
 when LBRD => nextstate <= LBWR;
 when LBWR => nextstate <= FETCH1;
 when SBWR => nextstate <= FETCH1;
 when RTYPEEX => nextstate <= RTYPEWR;
 when RTYPEWR => nextstate <= FETCH1;
 when BEQEX => nextstate <= FETCH1;
 when JEX => nextstate <= FETCH1;
 when others => nextstate <= FETCH1; -- should never happen
 end case;
 end process;

 process (state) begin
 -- set all outputs to zero, then conditionally assert just the appropriate ones
 irwrite <= "0000";
 pcwrite <= '0'; pcwritecond <= '0';
 regwrite <= '0'; regdst <= '0';
 memread <= '0'; memwrite <= '0';
 alusrca <= '0'; alusrcb <= "00"; aluop <= "00";
 pcsrc <= "00";
 iord <= '0'; memtoreg <= '0';

 case state is
 when FETCH1 => memread <= '1';
 irwrite <= "0001";
 alusrcb <= "01";
 pcwrite <= '1';
 when FETCH2 => memread <= '1';
 irwrite <= "0010";

Appendix A Hardware Description Languages772

 alusrcb <= "01";
 pcwrite <= '1';
 when FETCH3 => memread <= '1';
 irwrite <= "0100";
 alusrcb <= "01";
 pcwrite <= '1';
 when FETCH4 => memread <= '1';
 irwrite <= "1000";
 alusrcb <= "01";
 pcwrite <= '1';
 when DECODE => alusrcb <= "11";
 when MEMADR => alusrca <= '1';
 alusrcb <= "10";
 when LBRD => memread <= '1';
 iord <= '1';
 when LBWR => regwrite <= '1';
 memtoreg <= '1';
 when SBWR => memwrite <= '1';
 iord <= '1';
 when RTYPEEX => alusrca <= '1';
 aluop <= "10";
 when RTYPEWR => regdst <= '1';
 regwrite <= '1';
 when BEQEX => alusrca <= '1';
 aluop <= "01";
 pcwritecond <= '1';
 pcsrc <= "01";
 when JEX => pcwrite <= '1';
 pcsrc <= "10";
 end case;
 end process;

 pcen <= pcwrite or (pcwritecond and zero); -- program counter enable
end;

architecture synth of alucontrol is
begin
 process(aluop, funct) begin
 case aluop is
 when "00" => alucont <= "010"; -- add (for lb/sb/addi)
 when "01" => alucont <= "110"; -- sub (for beq)
 when others => case funct is -- R-type instructions
 when "100000" => alucont <= "010"; -- add (for add)
 when "100010" => alucont <= "110"; -- subtract (for sub)
 when "100100" => alucont <= "000"; -- logical and (for and)
 when "100101" => alucont <= "001"; -- logical or (for or)
 when "101010" => alucont <= "111"; -- set on less (for slt)
 when others => alucont <= "---"; -- should never happen
 end case;
 end case;
 end process;
end;

architecture struct of datapath is
 component alu generic(width: integer);
 port(a, b: in STD_LOGIC_VECTOR(width-1 downto 0);
 alucont: in STD_LOGIC_VECTOR(2 downto 0);
 result: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;

A.12 Example: MIPS Processor 773

 component regfile generic(width, regbits: integer);
 port(clk: in STD_LOGIC;
 write: in STD_LOGIC;
 ra1, ra2, wa: in STD_LOGIC_VECTOR(regbits-1 downto 0);
 wd: in STD_LOGIC_VECTOR(width-1 downto 0);
 rd1, rd2: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component zerodetect generic(width: integer);
 port(a: in STD_LOGIC_VECTOR(width-1 downto 0);
 y: out STD_LOGIC);
 end component;
 component flop generic(width: integer);
 port(clk: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component flopen generic(width: integer);
 port(clk, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component flopenr generic(width: integer);
 port(clk, reset, en: in STD_LOGIC;
 d: in STD_LOGIC_VECTOR(width-1 downto 0);
 q: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component mux2 generic(width: integer);
 port(d0, d1: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 component mux4 generic(width: integer);
 port(d0, d1, d2, d3: in STD_LOGIC_VECTOR(width-1 downto 0);
 s: in STD_LOGIC_VECTOR(1 downto 0);
 y: out STD_LOGIC_VECTOR(width-1 downto 0));
 end component;
 constant CONST_ONE: STD_LOGIC_VECTOR(width-1 downto 0) := conv_std_logic_vector(1, width);
 constant CONST_ZERO: STD_LOGIC_VECTOR(width-1 downto 0) := conv_std_logic_vector(0, width);
 signal ra1, ra2, wa: STD_LOGIC_VECTOR(regbits-1 downto 0);
 signal pc, nextpc, md, rd1, rd2, wd, a,
 src1, src2, aluresult, aluout, dp_writedata, constx4: STD_LOGIC_VECTOR(width-1 downto 0);
 signal dp_instr: STD_LOGIC_VECTOR(31 downto 0);

begin
 -- shift left constant field by 2
 constx4 <= dp_instr(width-3 downto 0) & "00";

 -- register file address fields
 ra1 <= dp_instr(regbits+20 downto 21);
 ra2 <= dp_instr(regbits+15 downto 16);
 regmux: mux2 generic map(regbits) port map(dp_instr(regbits+15 downto 16),
 dp_instr(regbits+10 downto 11), regdst, wa);

 -- independent of bit width, load dp_instruction into four 8-bit registers over four cycles
ir0: flopen generic map(8) port map(clk, irwrite(0), memdata(7 downto 0), dp_instr(7 downto 0));
ir1: flopen generic map(8) port map(clk, irwrite(1), memdata(7 downto 0), dp_instr(15 downto 8));
ir2: flopen generic map(8) port map(clk, irwrite(2), memdata(7 downto 0), dp_instr(23 downto 16));
ir3: flopen generic map(8) port map(clk, irwrite(3), memdata(7 downto 0), dp_instr(31 downto 24));

Appendix A Hardware Description Languages774

 -- datapath
 pcreg: flopenr generic map(width) port map(clk, reset, pcen, nextpc, pc);
 mdr: flop generic map(width) port map(clk, memdata, md);
 areg: flop generic map(width) port map(clk, rd1, a);
 wrd: flop generic map(width) port map(clk, rd2, dp_writedata);
 res: flop generic map(width) port map(clk, aluresult, aluout);
 adrmux: mux2 generic map(width) port map(pc, aluout, iord, adr);
 src1mux: mux2 generic map(width) port map(pc, a, alusrca, src1);
 src2mux: mux4 generic map(width) port map(dp_writedata, CONST_ONE,
 dp_instr(width-1 downto 0), constx4, alusrcb, src2);
 pcmux: mux4 generic map(width) port map(aluresult, aluout, constx4, CONST_ZERO, pcsrc, nextpc);
 wdmux: mux2 generic map(width) port map(aluout, md, memtoreg, wd);
 rf: regfile generic map(width, regbits) port map(clk, regwrite, ra1, ra2, wa, wd, rd1, rd2);
 alunit: alu generic map(width) port map(src1, src2, alucont, aluresult);
 zd: zerodetect generic map(width) port map(aluresult, zero);

 -- drive outputs
 instr <= dp_instr; writedata <= dp_writedata;
end;

architecture synth of alu is
 signal b2, sum, slt: STD_LOGIC_VECTOR(width-1 downto 0);
begin
 b2 <= not b when alucont(2) = '1' else b;
 sum <= a + b2 + alucont(2);
 -- slt should be 1 if most significant bit of sum is 1
 slt <= conv_std_logic_vector(1, width) when sum(width-1) = '1'
 else conv_std_logic_vector(0, width);
 with alucont(1 downto 0) select result <=
 a and b when "00",
 a or b when "01",
 sum when "10",
 slt when others;
end;

architecture synth of regfile is
 type ramtype is array (2**regbits-1 downto 0) of STD_LOGIC_VECTOR(width-1 downto 0);
 signal mem: ramtype;
begin
 -- three-ported register file
 -- read two ports combinationally
 -- write third port on rising edge of clock
 process(clk) begin
 if clk'event and clk = '1' then
 if write = '1' then mem(conv_integer(wa)) <= wd;
 end if;
 end if;
 end process;
 process(ra1, ra2) begin

if (conv_integer(ra1) = 0) then rd1 <= conv_std_logic_vector(0, width); -- register 0 holds 0
else rd1 <= mem(conv_integer(ra1));
end if;
if (conv_integer(ra2) = 0) then rd2 <= conv_std_logic_vector(0, width);
else rd2 <= mem(conv_integer(ra2));
end if;

 end process;
end;

A.12 Example: MIPS Processor 775

architecture synth of zerodetect is
 signal i: integer;
 signal x: STD_LOGIC_VECTOR(width-1 downto 1);
begin -- N-bit AND of inverted inputs
 AllBits: for i in width-1 downto 1 generate
 LowBit: if i = 1 generate
 A1: x(1) <= not a(0) and not a(1);
 end generate;
 OtherBits: if i /= 1 generate
 Ai: x(i) <= not a(i) and x(i-1);
 end generate;
 end generate;
 y <= x(width-1);
end;

architecture synth of flop is
begin
 process(clk) begin
 if clk'event and clk = '1' then -- or use "if RISING_EDGE(clk) then"
 q <= d;
 end if;
 end process;
end;

architecture synth of flopen is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if en = '1' then q <= d;
 end if;
 end if;
 end process;
end;

architecture synchronous of flopenr is
begin
 process(clk) begin
 if clk'event and clk = '1' then
 if reset = '1' then
 q <= CONV_STD_LOGIC_VECTOR(0, width); -- produce a vector of all zeros
 elsif en = '1' then q <= d;
 end if;
 end if;
 end process;
end;

architecture synth of mux2 is
begin
 y <= d0 when s = '0' else d1;
end;

architecture synth of mux4 is
begin
 y <= d0 when s = "00" else
 d1 when s = "01" else
 d2 when s = "10" else
 d3;
end;

Appendix A Hardware Description Languages776

Exercises
The following exercises can be done in your favorite HDL. If you have a simulator avail-
able, test your design. Print the waveforms and explain how they prove that the code
works. If you have a synthesizer available, synthesize your code. Print the generated circuit
diagram and explain why it matches your expectations.

A.1 Sketch a schematic of the circuit described by the following HDL code. Simplify
to a minimum number of gates.

A.2 Sketch a schematic of the circuit described by the following HDL code. Simplify
to a minimum number of gates.

A.3 Write an HDL module that computes a 4-input XOR function. The input is A3:0
and the output is Y.

A.4 Write a self-checking testbench for Exercise A.3. Create a test vector file contain-
ing all 16 test cases. Simulate the circuit and show that it works. Introduce an error
in the test vector file and show that it reports a mismatch.

SystemVerilog

module exercise1(input logic a, b, c,
 output logic y, z);

assign y = a & b & c | a & b & ~c | a & ~b & c;
assign z = a & b | ~a & ~b;

endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise1 is
 port(a, b, c: in STD_LOGIC;
 y, z: out STD_LOGIC);
end;

architecture synth of exercise1 is
begin
 y <= (a and b and c) or (a and b and (not c)) or
 (a and (not b) and c);
 z <= (a and b) or ((not a) and (not b));
end;

SystemVerilog

module exercise2(input logic [3:0] a,
 output logic [1:0] y);

 always_comb
 if (a[0]) y = 2'b11;
 else if (a[1]) y = 2'b10;
 else if (a[2]) y = 2'b01;
 else if (a[3]) y = 2'b00;
 else y = a[1:0];
endmodule

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise2 is
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 y: out STD_LOGIC_VECTOR(1 downto 0));
end;

architecture synth of exercise2 is
begin
 process(a) begin
 if a(0) = '1' then y <= "11";
 elsif a(1) = '1' then y <= "10";
 elsif a(2) = '1' then y <= "01";
 elsif a(3) = '1' then y <= "00";
 else y <= a(1 downto 0);
 end if;
 end process;
end;

 Exercises 777

 A.5 Write an HDL module called minority. It receives three inputs, A, B, and C. It
produces one output Y that is TRUE if at least two of the inputs are FALSE.

 A.6 Write an HDL module for a hexadecimal 7-segment display decoder. The decoder
should handle the digits A, B, C, D, E, and F as well as 0–9.

 A.7 Write a self-checking testbench for Exercise A.6. Create a test vector file contain-
ing all 16 test cases. Simulate the circuit and show that it works. Introduce an error
in the test vector file and show that it reports a mismatch.

 A.8 Write an 8:1 multiplexer module called mux8 with inputs S2:0, D0, D1, D2, D3, D4,
D5, D6, D7, and output Y.

 A.9 Write a structural module to compute Y = AB + BC + ABC using multiplexer logic.
Use the 8:1 multiplexer from Exercise A.8.

A.10 Repeat Exercise A.9 using a 4:1 multiplexer and as many NOT gates as you need.

A.11 Section A.5.4 pointed out that a synchronizer could be correctly described with
blocking assignments if the assignments were given in the proper order. Think of
another simple sequential circuit that cannot be correctly described with blocking
assignments regardless of order.

A.12 Write an HDL module for an 8-input priority circuit.

A.13 Write an HDL module for a 2:4 decoder.

A.14 Write an HDL module for a 6:64 decoder using three of the 2:4 decoders from
Exercise A.13 along with 64 3-input AND gates.

A.15 Sketch the state transition diagram for the FSM described by the following HDL
code.

SystemVerilog

module fsm2(input logic clk, reset,
 input logic a, b,
 output logic y);

 typedef enum logic [1:0]
 {S0, S1, S2, S3} statetype;

 statetype state, nextstate;

 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 always_comb
 case (state)
 S0: if (a ^ b) nextstate = S1;
 else nextstate = S0;
 S1: if (a & b) nextstate = S2;
 else nextstate = S0;
 S2: if (a | b) nextstate = S3;
 else nextstate = S0;
 S3: if (a | b) nextstate = S3;
 else nextstate = S0;
 endcase

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm2 is
 port(clk, reset: in STD_LOGIC;
 a, b: in STD_LOGIC;
 y: out STD_LOGIC);
end;

architecture synth of fsm2 is
 type statetype is (S0, S1, S2, S3);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin
 if reset = '1' then state <= S0;
 elsif clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;

process (state, a, b) begin
 case state is
 when S0 => if (a xor b) = '1' then
 nextstate <= S1;
 else nextstate <= S0;
 end if; (continues)

Appendix A Hardware Description Languages778

A.16 Sketch the state transition diagram for the FSM described by the following HDL
code. An FSM of this nature is used in a branch predictor on some microprocessors.

SystemVerilog (continued)
assign y = (state == S1) || (state == S2);
endmodule

VHDL (continued)
 when S1 => if (a and b) = '1' then
 nextstate <= S2;
 else nextstate <= S0;
 end if;
 when S2 => if (a or b) = '1' then
 nextstate <= S3;
 else nextstate <= S0;
 end if;
 when S3 => if (a or b) = '1' then
 nextstate <= S3;
 else nextstate <= S0;
 end if;
 end case;
 end process;

 y <= '1' when ((state = S1) or (state = S2))
 else '0';
end;

SystemVerilog

module fsm1(input logic clk, reset,
 input logic taken, back,
 output logic predicttaken);

 typedef enum logic [4:0]
 {S0 = 5'b00001,
 S1 = 5'b00010,
 S2 = 5'b00100,
 S3 = 5'b001000,
 S4 = 5'b10000} statetype;

 statetype state, nextstate;

 always_ff @(posedge clk)
 if (reset) state <= S2;
 else state <= nextstate;

 always_comb
 case (state)
 S0: if (taken) nextstate = S1;
 else nextstate = S0;
 S1: if (taken) nextstate = S2;
 else nextstate = S0;
 S2: if (taken) nextstate = S3;
 else nextstate = S1;
 S3: if (taken) nextstate = S4;
 else nextstate = S2;
 S4: if (taken) nextstate = S4;
 else nextstate = S3;
 default: nextstate = S2;
 endcase

VHDL

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm1 is
 port(clk, reset: in STD_LOGIC;
 taken, back: in STD_LOGIC;
 predicttaken: out STD_LOGIC);
end;

architecture synth of fsm1 is
 type statetype is (S0, S1, S2, S3, S4);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin
 if reset = '1' then state <= S2;
 elsif clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;

 process (state, taken) begin
 case state is
 when S0 => if taken = '1' then
 nextstate <= S1;
 else nextstate <= S0;
 end if;
 when S1 => if taken = '1' then
 nextstate <= S2;
 else nextstate <= S0;
 end if;

(continues)

 Exercises 779

A.17 Write an HDL module for an SR latch.

A.18 Write an HDL module for a JK flip-flop. The flip-flop has inputs clk, J, and K, and
output Q. On the rising edge of the clock, Q keeps its old value if J = K = 0. It sets
Q to 1 if J = 1, resets Q to 0 if K = 1, and inverts Q if J = K = 1.

A.19 Write a line of HDL code that gates a 32-bit bus called data with another signal
called sel to produce a 32-bit result. If sel is TRUE, result = data. Oth-
erwise, result should be all 0s.

SystemVerilog Exercises
The following exercises are specific to SystemVerilog.

A.20 Explain the difference between blocking and nonblocking assignments in
SystemVerilog. Give examples.

A.21 What does the following SystemVerilog statement do?
result = |(data[15:0] & 16'hC820);

A.22 Rewrite the syncbad module from Section A.5.4. Use nonblocking assignments,
but change the code to produce a correct synchronizer with two flip-flops.

A.23 Consider the following two pieces of SystemVerilog code. Do they have the same
function? Sketch the hardware each one implies.
module code1(input logic clk, a, b, c,
 output logic y);
 logic x;

 always_ff @(posedge clk) begin
 x <= a & b;
 y <= x | c;
 end
endmodule

SystemVerilog (continued)
 assign predicttaken = (state == S4) ||
 (state == S3) ||
 (state == S2 && back);
endmodule

VHDL (continued)
 when S2 => if taken = '1' then
 nextstate <= S3;
 else nextstate <= S1;
 end if;
 when S3 => if taken = '1' then
 nextstate <= S4;
 else nextstate <= S2;
 end if;
 when S4 => if taken = '1' then
 nextstate <= S4;
 else nextstate <= S3;
 end if;
 when others => nextstate <= S2;
 end case;
 end process;

 -- output logic
 predicttaken <= '1' when
 ((state = S4) or (state = S3) or
 (state = S2 and back = '1'))
 else '0';
end;

Appendix A Hardware Description Languages780

module code2(input logic a, b, c, clk,
 output logic y);
 logic x;

 always_ff @(posedge clk) begin
 y <= x | c;
 x <= a & b;
 end
endmodule

A.24 Repeat Exercise A.23 if the <= is replaced by = everywhere in the code.

A.25 The following SystemVerilog modules show errors that the authors have seen stu-
dents make in the lab. Explain the error in each module and how to fix it.

module latch(input logic clk,
 input logic [3:0] d,
 output logic [3:0] q);

 always @(clk)
 if (clk) q <= d;
endmodule

module gates(input logic [3:0] a, b,
 output logic [3:0] y1, y2, y3, y4, y5);

 always @(a)
 begin
 y1 = a & b;
 y2 = a | b;
 y3 = a ^ b;
 y4 = ~(a & b);
 y5 = ~(a | b);
 end
endmodule

module mux2(input logic [3:0] d0, d1,
 input logic s,
 output logic [3:0] y);

 always @(posedge s)
 if (s) y <= d1;
 else y <= d0;

endmodule

module twoflops(input logic clk,
 input logic d0, d1,
 output logic q0, q1);

 always @(posedge clk)
 q1 = d1;
 q0 = d0;
endmodule

module FSM(input logic clk,
 input logic a,
 output logic out1, out2);

 logic state;

 Exercises 781

 // next state logic and register (sequential)
 always_ff @(posedge clk)
 if (state == 0) begin
 if (a) state <= 1;
 end else begin
 if (~a) state <= 0;
 end

 always_comb // output logic (combinational)
 if (state == 0) out1 = 1;
 else out2 = 1;
endmodule

module priority(input logic [3:0] a,
 output logic [3:0] y);

 always_comb
 if (a[3]) y = 4'b1000;
 else if (a[2]) y = 4'b0100;
 else if (a[1]) y = 4'b0010;
 else if (a[0]) y = 4'b0001;
endmodule

module divideby3FSM(input logic clk,
 input logic reset,
 output logic out);

 typedef enum logic [1:0] {S0, S1, S2} statetype;

 statetype state, nextstate;

 // State Register
 always_ff @(posedge clk)
 if (reset) state <= S0;
 else state <= nextstate;

 // Next State Logic
 always_comb
 case (state)
 S0: nextstate = S1;
 S1: nextstate = S2;
 S2: nextstate = S0;
 endcase

 // Output Logic
 assign out = (state == S2);
endmodule

module mux2tri(input logic [3:0] d0, d1,
 input logic s,
 output tri [3:0] y);

 tristate t0(d0, s, y);
 tristate t1(d1, s, y);
endmodule

module floprsen(input logic clk,
 input logic reset,
 input logic set,

Appendix A Hardware Description Languages782

 input logic [3:0] d,
 output logic [3:0] q);

 always_ff @(posedge clk)
 if (reset) q <= 0;
 else q <= d;

 always @(set)
 if (set) q <= 1;
endmodule

module and3(input logic a, b, c,
 output logic y);

 logic tmp;

 always @(a, b, c)
 begin
 tmp <= a & b;
 y <= tmp & c;
 end
endmodule

VHDL Exercises
The following exercises are specific to VHDL.

A.26 In VHDL, why is it necessary to write

q <= '1' when state = S0 else '0';

rather than simply

q <= (state = S0); ?

A.27 Each of the following VHDL modules contains an error. For brevity, only the
architecture is shown; assume the library use clause and entity declaration are cor-
rect. Explain the error and how to fix it.

architecture synth of latch is
begin
 process(clk) begin
 if clk = '1' then q <= d;
 end if;
 end process;
end;

architecture proc of gates is
begin
 process(a) begin
 y1 <= a and b;
 y2 <= a or b;
 y3 <= a xor b;
 y4 <= a nand b;
 y5 <= a nor b;
 end process;
end;

architecture synth of flop is

 Exercises 783

begin
 process(clk)
 if clk'event and clk = '1' then
 q <= d;
end;

architecture synth of priority is
begin
 process(a) begin
 if a(3) = '1' then y <= "1000";
 elsif a(2) = '1' then y <= "0100";
 elsif a(1) = '1' then y <= "0010";
 elsif a(0) = '1' then y <= "0001";
 end if;
 end process;
end;

architecture synth of divideby3FSM is
 type statetype is (S0, S1, S2);
 signal state, nextstate: statetype;
begin
 process(clk, reset) begin
 if reset = '1' then state <= S0;
 elsif clk'event and clk = '1' then
 state <= nextstate;
 end if;
 end process;

 process(state) begin
 case state is
 when S0 => nextstate <= S1;
 when S1 => nextstate <= S2;
 when S2 => nextstate <= S0;
 end case;
 end process;

 q <= '1' when state = S0 else '0';
end;

architecture struct of mux2 is
 component tristate
 port(a: in STD_LOGIC_VECTOR(3 downto 0);
 en: in STD_LOGIC;
 y: out STD_LOGIC_VECTOR(3 downto 0));
 end component;
begin
 t0: tristate port map(d0, s, y);
 t1: tristate port map(d1, s, y);
end;

architecture asynchronous of flopr is
begin
 process(clk, reset) begin
 if reset = '1' then
 q <= '0';
 elsif clk'event and clk = '1' then
 q <= d;
 end if;
 end process;

Appendix A Hardware Description Languages784

 process(set) begin
 if set = '1' then
 q <= '1';
 end if;
 end process;
end;

architecture synth of mux3 is
begin
 y <= d2 when s(1) else
 d1 when s(0) else d0;
end;

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

