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Hardware Description
Languages

 

APPENDIX

 

A.1   

 

Introduction

 

This appendix gives a quick introduction to the SystemVerilog and VHDL Hardware
Description Languages (HDLs). Many books treat HDLs as programming languages, but
HDLs are better understood as a shorthand for describing digital hardware. It is best to
begin your design process by planning, on paper or in your mind, the hardware you want.
(For example, the MIPS processor consists of an FSM controller and a datapath built
from registers, adders, multiplexers, etc.) Then, write the HDL code that implies that
hardware to a synthesis tool. A common error among beginners is to write a program
without thinking about the hardware that is implied. If you don’t know what hardware you
are implying, you are almost certain to get something that you don’t want. Sometimes, this
means extra latches appearing in your circuit in places you didn’t expect. Other times, it
means that the circuit is much slower than required or it takes far more gates than it would
if it were more carefully described. 

The treatment in this appendix is unusual in that both SystemVerilog and VHDL are
covered together. Discussion of the languages is divided into two columns for literal side-
by-side comparison with SystemVerilog on the left and VHDL on the right. When you
read the appendix for the first time, focus on one language or the other. Once you know
one, you’ll quickly master the other if you need it. Religious wars have raged over which
HDL is superior. According to a large 2007 user survey [Cooley07], 73% of respondents
primarily used Verilog/SystemVerilog and 20% primarily used VHDL, but 41% needed to
use both on their project because of legacy code, intellectual property blocks, or because
Verilog is better suited to netlists. Thus, many designers need to be bilingual and most
CAD tools handle both.

In our experience, the best way to learn an HDL is by example. HDLs have specific
ways of describing various classes of logic; these ways are called 

 

idioms

 

. This appendix will
teach you how to write the proper HDL idiom for each type of block and put the blocks
together to produce a working system. We focus on a 

 

synthesizable subset

 

 of HDL suffi-
cient to describe any hardware function. When you need to describe a particular kind of
hardware, look for a similar example and adapt it to your purpose. The languages contain
many other capabilities that are mostly beneficial for writing test fixtures and that are
beyond the scope of this book. We do not attempt to define all the syntax of the HDLs
rigorously because that is deathly boring and because it tends to encourage thinking of
HDLs as programming languages, not shorthand for hardware. Be careful when experi-
menting with other features in code that is intended to be synthesized. There are many
ways to write HDL code whose behavior in simulation and synthesis differ, resulting in
improper chip operation or the need to fix bugs after synthesis is complete. The subset of
the language covered here has been carefully selected to minimize such discrepancies.
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A.1.1  Modules

 

A block of hardware with inputs and outputs is called a 

 

module

 

. An AND gate, a multiplexer,
and a priority circuit are all examples of hardware modules. The two general styles for
describing module functionality are 

 

behavioral

 

 and 

 

structural

 

. Behavioral models describe
what a module does. Structural models describe how a module is built from simpler pieces; it
is an application of hierarchy. The SystemVerilog and VHDL code in Example A.1 illustrate
behavioral descriptions of a module computing a random Boolean function, 

 

Y

 

 

 

=

 

 

 

ABC

 

 

 

+

 

 

 

ABC

 

+

 

 

 

ABC

 

. Each module has three inputs, 

 

A

 

, 

 

B

 

, and 

 

C

 

, and one output, 

 

Y

 

. 

Verilog and SystemVerilog 
Verilog was developed by Gateway Design Automation as a propri-
etary language for logic simulation in 1984. Gateway was acquired
by Cadence in 1989 and Verilog was made an open standard in
1990 under the control of Open Verilog International. The language
became an IEEE standard in 1995 and was updated in 2001
[IEEE1364-01]. In 2005, it was updated again with minor clarifica-
tions; more importantly, SystemVerilog [IEEE 1800-2009] was intro-
duced, which streamlines many of the annoyances of Verilog and
adds high-level programming language features that have proven
useful in verification. This appendix uses some of SystemVerilog’s
features.

There are many texts on Verilog, but the IEEE standard itself is
readable as well as authoritative. 

VHDL
VHDL is an acronym for the VHSIC Hardware Description Language.
In turn, VHSIC is an acronym for the Very High Speed Integrated
Circuits project. VHDL was originally developed in 1981 by the
Department of Defense to describe the structure and function of
hardware. Its roots draw from the Ada programming language. The
IEEE standardized VHDL in 1987 and updated the standard several
times since [IEEE1076-08]. The language was first envisioned
for documentation, but quickly was adopted for simulation and
synthesis.

VHDL is heavily used by U.S. military contractors and Euro-
pean companies. By some quirk of fate, it also has a majority of uni-
versity users.

[Pedroni10] offers comprehensive coverage of the language. 

SystemVerilog 
module sillyfunction(input  logic a, b, c,
                     output logic y);

  assign y = ~a & ~b & ~c |
              a & ~b & ~c |
              a & ~b &  c;
endmodule

A module begins with a listing of the inputs and outputs. The
assign statement describes combinational logic. ~ indicates NOT,
& indicates AND, and | indicates OR.

logic signals such as the inputs and outputs are Boolean
variables (0 or 1). They may also have floating and undefined values
that will be discussed in Section A.2.8.

The logic type was introduced in SystemVerilog.  It super-
sedes the reg type, which was a perennial source of confusion in
Verilog.  logic should be used everywhere except on nets with
multiple drivers, as will be explained in Section A.7.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sillyfunction is
  port(a, b, c: in  STD_LOGIC;
       y:       out STD_LOGIC);
end;

architecture synth of sillyfunction is
begin
  y <= ((not a) and (not b) and (not c)) or
       (a and (not b) and (not c)) or
       (a and (not b) and c);
end;

VHDL code has three parts: the library use clause, the entity
declaration, and the architecture body. The library use
clause is required and will be discussed in Section A.7. The entity
declaration lists the module’s inputs and outputs. The architec-
ture body defines what the module does.

VHDL signals such as inputs and outputs must have a type dec-
laration. Digital signals should be declared to be STD_LOGIC type.
STD_LOGIC signals can have a value of ‘0’ or ‘1,’ as well as floating
and undefined values that will be described in Section A.2.8. The
STD_LOGIC type is defined in the IEEE.STD_LOGIC_1164
library, which is why the library must be used.

VHDL lacks a good default order of operations, so Boolean
equations should be parenthesized.

 

Example A.1

 

  Combinational Logic

 



 

A.1      Introduction

 

701

 

The true power of HDLs comes from the higher level of abstraction that they offer as
compared to schematics. For example, a 32-bit adder schematic is a complicated structure.
The designer must choose what type of adder architecture to use. A carry ripple adder has
32 full adder cells, each of which in turn contains half a dozen gates or a bucketful of tran-
sistors. In contrast, the adder can be specified with one line of behavioral HDL code, as
shown in Example A.2.

 

Example A.2

 

  32-Bit Adder

 

A.1.2  Simulation and Synthesis

 

The two major purposes of HDLs are logic 

 

simulation

 

 and 

 

synthesis

 

. Dur-
ing simulation, inputs are applied to a module and the outputs are checked
to verify that the module operates correctly. During synthesis, the textual
description of a module is transformed into logic gates.

 

A.1.2.1 Simulation.  

 

Figure A.1 shows waveforms from a ModelSim
simulation of the previous 

 

sillyfunction

 

 module demonstrating that
the module works correctly. 

 

Y

 

 is true when 

 

A

 

, 

 

B

 

, and 

 

C

 

 are 000, 100, or
101, as specified by the Boolean equation.

 

A.1.2.2 Synthesis.  

 

Logic synthesis transforms HDL code into a 

 

netlist

 

describing the hardware; e.g., logic gates and the wires connecting
them. The logic synthesizer may perform optimizations to reduce the
amount of hardware required. The netlist may be a text file, or it may be
displayed as a schematic to help visualize the circuit. Figure A.2 shows
the results of synthesizing the 

 

sillyfunction

 

 module with Synplify
Pro. Notice how the three 3-input AND gates are optimized down to a
pair of 2-input ANDs. Similarly, Figure A.3 shows a schematic for the
adder module. Each subsequent code example in this appendix is fol-
lowed by the schematic that it implies.

SystemVerilog 
module adder(input  logic [31:0] a, 
             input  logic [31:0] b, 
             output logic [31:0] y);
   
  assign y = a + b;
endmodule

Note  that the inputs and outputs are 32-bit busses.

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity adder is
  port(a, b: in  STD_LOGIC_VECTOR(31 downto 0);
       y:    out STD_LOGIC_VECTOR(31 downto 0));
end;

architecture synth of adder is
begin
  y <= a + b;
end;

Observe that the inputs and outputs are 32-bit vectors.  They must
be declared as STD_LOGIC_VECTOR.

un5_y

un8_y

y

yc
b

a

FIGURE A.2  Synthesized silly_function circuit

FIGURE A.1  Simulation waveforms

y_1[31:0]

+ y[31:0]
b[31:0]

a[31:0]

FIGURE A.3  Synthesized adder
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A.2   

 

Combinational Logic 

 

The outputs of combinational logic depend only on the current inputs; combinational
logic has no memory. This section describes how to write behavioral models of combina-
tional logic with HDLs.

 

A.2.1 Bitwise Operators

 

Bitwise

 

 operators act on single-bit signals or on multibit busses. For example, the 

 

inv

 

module in Example A.3 describes four inverters connected to 4-bit busses.

The 

 

gates

 

 module in HDL Example A.4 demonstrates bitwise operations acting on
4-bit busses for other basic logic functions.

SystemVerilog 

module inv(input  logic [3:0] a,
           output logic [3:0] y);

  assign y = ~a;
endmodule

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
  port(a: in  STD_LOGIC_VECTOR(3 downto 0);
       y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of inv is
begin
  y <= not a;
end;

y[3:0]

y[3:0]a[3:0]

FIGURE A.4 inv

 

Example A.3

 

  Inverters

 

Example A.4

 

  Logic Gates

 

SystemVerilog

 

 

 

module gates(input  logic [3:0] a, b,
             output logic [3:0] y1, y2, 
                                y3, y4, y5);

   /* Five different two-input logic 
      gates acting on 4 bit busses */
   assign y1 = a & b;    // AND
   assign y2 = a | b;    // OR
   assign y3 = a ^ b;    // XOR
   assign y4 = ~(a & b); // NAND
   assign y5 = ~(a | b); // NOR
endmodule

~

 

, 

 

^

 

, and | are examples of SystemVerilog operators, while a, b, and
y1 are operands. A combination of operators and operands, such as
a & b, or ~(a | b) are called expressions. A complete command
such as assign y4 = ~(a & b); is called a statement. 

VHDL
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity gates is
  port(a, b:   in  STD_LOGIC_VECTOR(3 downto 0);
       y1, y2, y3, y4,
       y5: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of gates is
begin
  -- Five different two-input logic gates 
  -- acting on 4 bit busses
  y1 <= a and b;   
  y2 <= a or b;   
  y3 <= a xor b;   
  y4 <= a nand b; 
  y5 <= a nor b; 
end; 
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A.2.2 Comments and White Space
Example A.4 showed how to format comments. SystemVerilog and VHDL are not picky
about the use of white space; i.e., spaces, tabs, and line breaks. Nevertheless, proper
indenting and use of blank lines is essential to make nontrivial designs readable. Be consis-
tent in your use of capitalization and underscores in signal and module names.

SystemVerilog (continued)
assign out = in1 op in2; is called a continuous assignment
statement. Continuous assignment statements end with a semico-
lon. Any time the inputs on the right side of the = in a continuous
assignment statement change, the output on the left side is recom-
puted. Thus, continuous assignment statements describe combina-
tional logic.

VHDL (continued)
not, xor, and or are examples of VHDL operators, while a, b, and
y1 are operands. A combination of operators and operands, such as
a and b, or a nor b are called expressions. A complete com-
mand such as y4 <= a nand b; is called a statement.

out <= in1 op in2; is called a concurrent signal assign-
ment statement. VHDL assignment statements end with a semico-
lon. Any time the inputs on the right side of the <= in a concurrent
signal assignment statement change, the output on the left side is
recomputed. Thus, concurrent signal assignment statements
describe combinational logic.

y1[3:0]

y2[3:0]

y3[3:0]

y4[3:0]

y5[3:0]

y5[3:0]

y4[3:0]

y3[3:0]

y2[3:0]

y1[3:0]

b[3:0]
a[3:0]

FIGURE A.5  Gates

SystemVerilog 

SystemVerilog comments are just like those in C or Java. Comments
beginning with /* continue, possibly across multiple lines, to the
next */. Comments beginning with // continue to the end of the
line.

SystemVerilog is case-sensitive. y1 and Y1 are different sig-
nals in SystemVerilog.  However, using separate signals that only dif-
fer in their capitalization is a confusing and dangerous practice.

VHDL
VHDL comments begin with -- and continue to the end of the line.
Comments spanning multiple lines must  use -- at the beginning of
each line.

VHDL is not case-sensitive. y1 and Y1 are the same signal in
VHDL. However, other tools that may read your file might be case-
sensitive, leading to nasty bugs if you blithely mix uppercase and
lowercase.

A.2.3 Reduction Operators
Reduction operators imply a multiple-input gate acting on a single bus. For example,
Example A.5 describes an 8-input AND gate with inputs a0, a1, ..., a7.
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A.2.4 Conditional Assignment
Conditional assignments select the output from among alternatives based on an input called
the condition. Example A.6 illustrates a 2:1 multiplexer using conditional assignment.

y

y

a[7:0]

[0]

[1]

[2]

[3]

[4]

[5]

[6]

[7][7:0]

FIGURE A.6  and8

SystemVerilog 

module and8(input  logic [7:0] a, 
            output logic       y);

   assign y = &a;

   // &a is much easier to write than
   // assign y = a[7] & a[6] & a[5] & a[4] &
   //            a[3] & a[2] & a[1] & a[0];
endmodule

As one would expect, |, ^, ~&, and ~| reduction operators are
available for OR, XOR, NAND, and NOR as well. Recall that a multi-
input XOR performs parity, returning TRUE if an odd number of
inputs are TRUE.

VHDL 

VHDL does not have reduction operators. Instead, it provides the
generate command (see Section A.8). Alternately, the operation
can be written explicitly:

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and8 is
  port(a: in  STD_LOGIC_VECTOR(7 downto 0);
       y: out STD_LOGIC);
end;

architecture synth of and8 is
begin
  y <= a(7) and a(6) and a(5) and a(4) and
       a(3) and a(2) and a(1) and a(0);
end;

Example A.5  8-Input AND

SystemVerilog 

The conditional operator ?: chooses, based on a first expression,
between a second and third expression. The first expression is
called the condition. If the condition is 1, the operator chooses the
second expression. If the condition is 0, the operator chooses the
third expression. 

?: is especially useful for describing a multiplexer because,
based on a first input, it selects between two others. The following
code demonstrates the idiom for a 2:1 multiplexer with 4-bit inputs
and outputs using the conditional operator.

module mux2(input  logic [3:0] d0, d1, 
            input  logic       s,
            output logic [3:0] y);

   assign y = s ? d1 : d0; 
endmodule

If s = 1, then y = d1. If s = 0, then y = d0. 

VHDL
Conditional signal assignments perform different operations
depending on some condition. They are especially useful for
describing a multiplexer. For example, a 2:1 multiplexer can use
conditional signal assignment to select one of two 4-bit inputs.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
  port(d0, d1:in  STD_LOGIC_VECTOR(3 downto 0);

s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture synth of mux2 is
begin
  y <= d0 when s = '0' else d1;
end;

Example A.6  2:1 Multiplexer
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Example A.7 shows a 4:1 multiplexer based on the same principle.

y[3:0]

0

1
y[3:0]

s

d1[3:0]

d0[3:0]

FIGURE A.7  mux2

SystemVerilog 

A 4:1 multiplexer can select one of four inputs using nested condi-
tional operators.

module mux4(input  logic [3:0] d0, d1, d2, d3,
            input  logic [1:0] s,
            output logic [3:0] y);

   assign y = s[1] ? (s[0] ? d3 : d2) 
                   : (s[0] ? d1 : d0); 
endmodule

If s[1] = 1, then the multiplexer chooses the first expression,
(s[0] ? d3 : d2). This expression in turn chooses either d3 or
d2 based on s[0] (y = d3 if s[0] = 1 and d2 if s[0] = 0). If
s[1] = 0, then the multiplexer similarly chooses the second expres-
sion, which gives either d1 or d0 based on s[0].

VHDL 

A 4:1 multiplexer can select one of four inputs using multiple else
clauses in the conditional signal assignment. 

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is
  port(d0, d1, 

d2, d3: in  STD_LOGIC_VECTOR(3 downto 0);
 s: in  STD_LOGIC_VECTOR(1 downto 0);

y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth1 of mux4 is
begin
  y <= d0 when s = "00" else 
       d1 when s = "01" else
       d2 when s = "10" else
       d3;
end;

VHDL also supports selected signal assignment statements to pro-
vide a shorthand when selecting from one of several possibilities.
They are analogous to using a case statement in place of multiple
if/else statements in most programming languages. The 4:1
multiplexer can be rewritten with selected signal assignment as

architecture synth2 of mux4 is
begin
  with s select y <= 
    d0 when "00",
    d1 when "01",
    d2 when "10",
    d3 when others;
end;

Example A.7  4:1 Multiplexer

SystemVerilog (continued)
?: is also called a ternary operator because it takes three

inputs. It is used for the same purpose in the C and Java program-
ming languages.

VHDL (continued)
The conditional signal assignment sets y to d0 if s is 0. Otherwise it
sets y to d1.
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Figure A.8 shows the schematic for the 4:1 multiplexer produced by Synplify Pro.
The software uses a different multiplexer symbol than this text has shown so far. The mul-
tiplexer has multiple data (d) and one-hot enable (e) inputs. When one of the enables is
asserted, the associated data is passed to the output. For example, when s[1] = s[0] = 0,
the bottom AND gate un1_s_5 produces a 1, enabling the bottom input of the multiplexer
and causing it to select d0[3:0].

A.2.5  Internal Variables
Often, it is convenient to break a complex function into intermediate steps. For example, a
full adder, described in Section 11.2.1, is a circuit with three inputs and two outputs
defined by the equations

(A.1)

If we define intermediate signals P and G

(A.2)

S A B C

C AB AC BC

= ⊕ ⊕
= + +

in

out in in

P A B

G AB

= ⊕
=

un1_s_2

un1_s_3

un1_s_4

un1_s_5

y[3:0]

e
d

e
d

e
d

e
d

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]
d1[3:0]

d0[3:0]

[0]

[1]

[1]

[0]

[0]

[1]

[0]

[1]

FIGURE A.8  mux4
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we can rewrite the full adder as

(A.3)

P and G are called internal variables because they are neither inputs nor outputs but are
only used internal to the module. They are similar to local variables in programming lan-
guages. Example A.8 shows how they are used in HDLs.

S P C

C G PC

= ⊕
= +

in

out in

SystemVerilog  

In SystemVerilog, internal signals are usually declared as logic.

module fulladder(input  logic a, b, cin, 
                 output logic s, cout);

  logic p, g;

  assign p = a ^ b;
  assign g = a & b;
  
  assign s = p ^ cin;
  assign cout = g | (p & cin);
endmodule

VHDL 

In VHDL, signals are used to represent internal variables whose val-
ues are defined by concurrent signal assignment statements such
as p <= a xor b.   

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
  port(a, b, cin: in  STD_LOGIC;
       s, cout:   out STD_LOGIC);
end;

architecture synth of fulladder is
  signal p, g: STD_LOGIC;
begin
  p <= a xor b;
  g <= a and b;

  s <= p xor cin;
  cout <= g or (p and cin);
end;

Example A.8  Full Adder

p

g s

un1_cout
cout

cout

s

cin

b
a

FIGURE A.9  fulladder

HDL assignment statements (assign in SystemVerilog and <= in VHDL) take place
concurrently. This is different from conventional programming languages like C or Java in
which statements are evaluated in the order they are written. In a conventional language, it
is important that comes after because the statements are exe-
cuted sequentially. In an HDL, the order does not matter. Like hardware, HDL assign-
ment statements are evaluated any time the signals on the right-hand side change their
value, regardless of the order in which they appear in a module.

S P C= ⊕ in P A B= ⊕
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A.2.6  Precedence and Other Operators
Notice that we parenthesized the cout computation to define the order of operations as
Cout = G + (P · C in), rather than Cout = (G + P ) · C in. If we had not used parentheses, the
default operation order is defined by the language. Example A.9 specifies this operator
precedence from highest to lowest for each language.

SystemVerilog  

The operator precedence for SystemVerilog is much like you would
expect in other programming languages. In particular, as shown in
Table A.1, AND has precedence over OR. We could take advantage
of this precedence to eliminate the parentheses.

assign cout = g | p & cin;

VHDL  

As shown in Table A.2, multiplication has precedence over addition
in VHDL, as you would expect. However, all of the logical operations
(and, or, etc.) have equal precedence, unlike what one might
expect in Boolean algebra. Thus, parentheses are necessary; other-
wise cout <= g or p and cin would be interpreted from left
to right as cout <= (g or p) and cin.

TABLE A.1  SystemVerilog operator precedence

Op Meaning

H
i
g
h
e
s
t

L
o
w
e
s
t

~ NOT

*, /, % MUL, DIV, MOD

+, - PLUS, MINUS

<<, >> Logical Left / Right Shift

<<<, >>> Arithmetic Left / Right Shift

<, <=, >, >= Relative Comparison

==, != Equality Comparison

&, ~& AND, NAND

^, ~^ XOR, XNOR

|, ~| OR, NOR

?: Conditional

TABLE A.2  VHDL operator precedence

Op Meaning

H
i
g
h
e
s
t

L
o
w
e
s
t

not NOT

*, /, 
mod, rem

MUL, DIV, 
MOD, REM

+, -, 
&

PLUS, MINUS, 
CONCATENATE

rol, ror,
srl, sll, 
sra, sla

Rotate,
Shift logical,
Shift arithmetic

=, /=, 
<, <=, 
>, >=

Comparison

and, or, 
nand, nor, 

xor

Logical 
Operations

Example A.9  Operator Precedence

Note that the precedence tables include other arithmetic, shift, and comparison oper-
ators. See Chapter 11 for hardware implementations of these functions. Subtraction
involves a two’s complement and addition. Multipliers and shifters use substantially more
area (unless they involve easy constants). Division and modulus in hardware is so costly
that it may not be synthesizable. Equality comparisons imply N 2-input XORs to deter-
mine equality of each bit and an N-input AND to combine all of the bits. Relative com-
parison involves a subtraction.

A.2.7  Numbers
Numbers can be specified in a variety of bases. Underscores in numbers are ignored and
can be helpful to break long numbers into more readable chunks. Example A.10 explains
how numbers are written in each language. 
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A.2.8  Zs and Xs
HDLs use z to indicate a floating value. z is particularly useful for describing a tristate
buffer, whose output floats when the enable is 0. A bus can be driven by several tristate
buffers, exactly one of which should be enabled. Example A.11 shows the idiom for a
tristate buffer. If the buffer is enabled, the output is the same as the input. If the buffer is
disabled, the output is assigned a floating value (z).

SystemVerilog 

As shown in Table A.3, SystemVerilog numbers can specify their
base and size (the number of bits used to represent them). The for-
mat for declaring constants is N'Bvalue, where N is the size in bits,
B is the base, and value gives the value. For example 9'h25 indi-
cates a 9-bit number with a value of 2516 = 3710 = 0001001012.
SystemVerilog supports 'b for binary (base 2), 'o for octal (base 8),
'd for decimal (base 10), and 'h for hexadecimal (base 16). If the
base is omitted, the base defaults to decimal.

If the size is not given, the number is assumed to have as
many bits as the expression in which it is being used. Zeros are
automatically padded on the front of the number to bring it up to full
size. For example, if w is a 6-bit bus, assign w = 'b11 gives w
the value 000011. It is better practice to explicitly give the size. An
exception is that '0 and '1 are SystemVerilog shorthands for filling
a bus with all 0s and all 1s. 

VHDL 

In VHDL, STD_LOGIC numbers are written in binary and enclosed in
single quotes. '0' and '1' indicate logic 0 and 1.

STD_LOGIC_VECTOR numbers are written in binary or hexa-
decimal and enclosed in double quotes. The base is binary by
default and can be explicitly defined with the prefix X for hexadeci-
mal or B for binary, as shown in Table A.4. 

TABLE A.3  SystemVerilog numbers

Numbers Bits Base Val Stored
3'b101 3 2 5 101

'b11 ? 2 3 000...0011

8'b11 8 2 3 00000011

8'b1010_1011 8 2 171 10101011

3'd6 3 10 6 110

6'o42 6 8 34 100010

8'hAB 8 16 171 10101011

42 ? 10 42 00...0101010

'1 ? n/a 11...111

TABLE A.4  VHDL numbers

Numbers Bits Base Val Stored
"101" 3 2 5 101

B"101" 3 2 5 101

X"AB" 8 16 161 10101011

Example A.10  Numbers

SystemVerilog 

module tristate(input  logic [3:0] a, 
                input  logic       en, 
                output tri   [3:0] y);

  assign y = en ? a : 4'bz;
endmodule

Notice that y is declared as tri rather than logic. logic signals
can only have a single driver. Tristate busses can have multiple
drivers, so they should be declared as a net. Two types of nets in Sys-
temVerilog are called tri and trireg. Typically, exactly one driver
on a net is active at a time, and the net takes on that value. If no driver
is active, a tri floats (z), while a trireg retains the previous value.
If no type is specified for an input or output, tri is assumed.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity tristate is
  port(a:  in  STD_LOGIC_VECTOR(3 downto 0);
       en: in  STD_LOGIC;
       y:  out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of tristate is
begin
  y <= "ZZZZ" when en = '0' else a;
end;

Example A.11  Tristate Buffer



Appendix A     Hardware Description Languages710

Similarly, HDLs use x to indicate an invalid logic level. If a bus is simultaneously
driven to 0 and 1 by two enabled tristate buffers (or other gates), the result is x, indicating
contention. If all the tristate buffers driving a bus are simultaneously OFF, the bus will
float, indicated by z.

At the start of simulation, state nodes such as flip-flop outputs are initialized to an
unknown state (x in SystemVerilog and u in VHDL). This is helpful to track errors caused
by forgetting to reset a flip-flop before its output is used. 

If a gate receives a floating input, it may produce an x output when it can’t determine
the correct output value. Similarly, if it receives an illegal or uninitialized input, it may
produce an x output. Example A.12 shows how SystemVerilog and VHDL combine these
different signal values in logic gates.

y_1[3:0]

y[3:0]

en

a[3:0]

FIGURE A.10  tristate

SystemVerilog 

SystemVerilog signal values are 0, 1, z, and x. Constants starting
with z or x are padded with leading zs or xs (instead of 0s) to reach
their full length when necessary.

Table A.5 shows a truth table for an AND gate using all four
possible signal values. Note that the gate can sometimes determine
the output despite some inputs being unknown. For example 0 & z
returns 0 because the output of an AND gate is always 0 if either
input is 0. Otherwise, floating or invalid inputs cause invalid outputs,
displayed as x. 

VHDL 

VHDL STD_LOGIC signals are '0', '1', 'z', 'x', and 'u'. 
Table A.6 shows a truth table for an AND gate using all five

possible signal values. Notice that the gate can sometimes deter-
mine the output despite some inputs being unknown. For example,
'0' and 'z' returns '0' because the output of an AND gate is
always '0' if either input is '0'. Otherwise, floating or invalid
inputs cause invalid outputs, displayed as 'x' in VHDL. Uninitial-
ized inputs cause uninitialized outputs, displayed as 'u' in VHDL.

TABLE A.5  SystemVerilog AND 
gate truth table with z and x

& A

0 1 z x

0 0 0 0 0

1 0 1 x x

B z 0 x x x

x 0 x x x

TABLE A.6  VHDL AND gate truth 
table with z, x, and u

AND A

0 1 z x u

0 0 0 0 0 0

1 0 1 x x u

B z 0 x x x u

x 0 x x x u

u 0 u u u u

Example A.12  Truth Tables with Undefined and Floating Inputs

Seeing x or u values in simulation is almost always an indication of a bug or bad cod-
ing practice. In the synthesized circuit, this corresponds to a floating gate input or unini-
tialized state. The x or u may randomly be interpreted by the circuit as 0 or 1, leading to
unpredictable behavior.



A.2      Combinational Logic 711

A.2.9  Bit Swizzling
Often, it is necessary to operate on a subset of a bus or to concatenate, i.e., join together,
signals to form busses. These operations are collectively known as bit swizzling. In Exam-
ple A.13, y is given the 9-bit value c2c1d0d0d0c0101 using bit swizzling operations.

SystemVerilog 

assign y = {c[2:1], {3{d[0]}}, c[0], 3'b101};

The {} operator is used to concatenate busses.
{3{d[0]}} indicates three copies of d[0].
Don’t confuse the 3-bit binary constant 3'b101 with bus b.

Note that it was critical to specify the length of 3 bits in the constant;
otherwise, it would have had an unknown number of leading zeros
that might appear in the middle of y. 

If y were wider than 9 bits, zeros would be placed in the most
significant bits.

VHDL 

y <= c(2 downto 1) & d(0) & d(0) & d(0) &
     c(0) & "101";

The & operator is used to concatenate (join together) busses. y
must be a 9-bit STD_LOGIC_VECTOR. Do not confuse & with the
and operator in VHDL.

Example A.13  Bit Swizzling

Example A.14 shows how to split an output into two pieces using bit swizzling and
Example A.15 shows how to sign extend a 16-bit number to 32 bits by copying the most
significant bit into the upper 16 positions.

SystemVerilog 

module mul(input  logic [7:0] a, b, 
           output logic [7:0] upper, lower);

  assign {upper, lower} = a*b;
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all; 

entity mul is 
  port(a, b: in  STD_LOGIC_VECTOR(7 downto 0);
       upper, lower:
             out STD_LOGIC_VECTOR(7 downto 0));
end;
architecture behave of mul is
  signal prod: STD_LOGIC_VECTOR(15 downto 0);
begin
  prod <=  a * b;
  upper <= prod(15 downto 8);
  lower <= prod(7 downto 0);
end;

Example A.14  Output Splitting

lower_1[15:0]

*

lower[7:0]
[7:0]

upper[7:0]
[15:8]

b[7:0]

a[7:0] [15:0]

FIGURE A.11  Multipliers
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A.2.10  Delays
HDL statements may be associated with delays specified in arbitrary units. They are help-
ful during simulation to predict how fast a circuit will work (if you specify meaningful
delays) and also for debugging purposes to understand cause and effect (deducing the
source of a bad output is tricky if all signals change simultaneously in the simulation
results). These delays are ignored during synthesis; the delay of a gate produced by the
synthesizer depends on its tpd and tcd specifications, not on numbers in HDL code. 

Example A.16 adds delays to the original function from Example A.1: Y = ABC + ABC
+ ABC. It assumes inverters have a delay of 1 ns, 3-input AND gates have a delay of 2 ns,
and 3-input OR gates have a delay of 4 ns. Figure A.13 shows the simulation waveforms,
with y lagging 7 ns of time after the inputs. Note that y is initially unknown at the begin-
ning of the simulation.

SystemVerilog 

module signextend(input  logic [15:0] a, 
                  output logic [31:0] y);

   assign y = {{16{a[15]}}, a[15:0]};
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity signext is -- sign extender
  port(a: in  STD_LOGIC_VECTOR (15 downto 0);
       y: out STD_LOGIC_VECTOR (31 downto 0));
end;
architecture behave of signext is
begin
  y <=  X"0000" & a when a (15) = '0' else X"ffff" & a;
end;

Example A.15  Sign Extension

y[31:0]

a[15:0]
[15:0]

[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15]
[15:0]

FIGURE A.12  Sign extension
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A.3   Structural Modeling
The previous section discussed behavioral modeling, describing a module in terms of the
relationships between inputs and outputs. This section examines structural modeling,
describing a module in terms of how it is composed of simpler modules. 

Example A.17 shows how to assemble a 4:1 multiplexer from three 2:1 multiplexers.
Each copy of the 2:1 multiplexer is called an instance. Multiple instances of the same mod-
ule are distinguished by distinct names. This is an example of regularity, in which the 2:1
multiplexer is reused three times.

SystemVerilog 

`timescale 1ns/1ps

module example(input  logic a, b, c,
               output logic y);

  logic ab, bb, cb, n1, n2, n3;

  assign #1 {ab, bb, cb} = ~{a, b, c};
  assign #2 n1 = ab & bb & cb;
  assign #2 n2 = a & bb & cb;
  assign #2 n3 = a & bb & c;
  assign #4 y = n1 | n2 | n3;
endmodule

SystemVerilog files can include a timescale directive that indicates
the value of each time unit. The statement is of the form `time-
scale unit/step. In this file, each unit is 1ns, and the simula-
tion has 1 ps resolution. If no timescale directive is given in the file,
a default unit and step (usually 1 ns for both) is used. In System-
Verilog, a # symbol is used to indicate the number of units of delay.
It can be placed in assign statements, as well as nonblocking (<=)
and blocking (=) assignments that will be discussed in Section
A.5.4. 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity example is
  port(a, b, c: in  STD_LOGIC;
       y:       out STD_LOGIC);
end;

architecture synth of example is
  signal ab, bb, cb, n1, n2, n3: STD_LOGIC;
begin  
  ab <= not a after 1 ns;
  bb <= not b after 1 ns;
  cb <= not c after 1 ns;
  n1 <= ab and bb and cb after 2 ns;
  n2 <= a and bb and cb after 2 ns;
  n3 <= a and bb and c after 2 ns;
  y  <= n1 or n2 or n3 after 4 ns;
end;

In VHDL, the after clause is used to indicate delay. The units, in
this case, are specified as nanoseconds.

Example A.16  Logic Gates with Delays

FIGURE A.13  Example simulation waveforms with delays
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SystemVerilog 

module mux4(input  logic [3:0] d0, d1, d2, d3, 
            input  logic [1:0] s, 
            output logic [3:0] y);

  logic [3:0] low, high;

  mux2 lowmux(d0, d1, s[0], low);
  mux2 highmux(d2, d3, s[0], high);
  mux2 finalmux(low, high, s[1], y);
endmodule

The three mux2 instances are called lowmux, highmux, and
finalmux. The mux2 module must be defined elsewhere in the
SystemVerilog code.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4 is
  port(d0, d1, 

d2, d3: in  STD_LOGIC_VECTOR(3 downto 0);
s: in  STD_LOGIC_VECTOR(1 downto 0);
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture struct of mux4 is
  component mux2 
     port(d0, 

d1: in  STD_LOGIC_VECTOR(3 downto 0);
s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end component;
signal low, high: STD_LOGIC_VECTOR(3 downto 0);

begin
lowmux: mux2 port map(d0, d1, s(0), low);
highmux: mux2 port map(d2, d3, s(0), high);
finalmux: mux2 port map(low, high, s(1), y);

end;

The architecture must first declare the mux2 ports using the compo-
nent declaration statement. This allows VHDL tools to check that the
component you wish to use has the same ports as the component that
was declared somewhere else in another entity statement, preventing
errors caused by changing the entity but not the instance. However,
component declaration makes VHDL code rather cumbersome.

Note that this architecture of mux4 was named struct, while
architectures of modules with behavioral descriptions from Section
A.2 were named synth. VHDL allows multiple architectures (imple-
mentations) for the same entity; the architectures are distinguished
by name. The names themselves have no significance to the CAD
tools, but struct and synth are common. However, synthesizable
VHDL code generally contains only one architecture for each entity,
so we will not discuss the VHDL syntax to configure which architec-
ture is used when multiple architectures are defined.

Example A.17  Structural Model of 4:1 Multiplexer

mux2

lowmux

mux2

highmux

mux2

finalmux

y[3:0]

s[1:0]
[1:0]

d3[3:0]

d2[3:0]

d1[3:0]

d0[3:0]

[0]
s

d0[3:0]

d1[3:0]

y[3:0]

[0]
s

d0[3:0]

d1[3:0]

y[3:0]

[1]
s

d0[3:0]
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FIGURE A.14  mux4
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Example A.19 shows how modules can access part of a bus. An 8-bit wide 2:1 multi-
plexer is built using two of the 4-bit 2:1 multiplexers already defined, operating on the low
and high nibbles of the byte.

SystemVerilog 

module mux2(input  logic [3:0] d0, d1,
            input  logic       s,
            output tri   [3:0] y);

  tristate t0(d0, ~s, y);
  tristate t1(d1, s, y);
endmodule

In SystemVerilog, expressions such as ~s are permitted in the port
list for an instance. Arbitrarily complicated expressions are legal, but
discouraged because they make the code difficult to read.

Note that y is declared as tri rather than logic because it
has two drivers.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
  port(d0, d1: in STD_LOGIC_VECTOR(3 downto 0);

s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

end;

architecture struct of mux2 is
  component tristate 
    port(a:  in  STD_LOGIC_VECTOR(3 downto 0);
         en: in  STD_LOGIC;
         y:  out STD_LOGIC_VECTOR(3 downto 0));
  end component;
  signal sbar: STD_LOGIC;
begin
  sbar <= not s;
  t0: tristate port map(d0, sbar, y);
  t1: tristate port map(d1, s, y); 
end;

In VHDL, expressions such as not s are not permitted in the port map
for an instance. Thus, sbar must be defined as a separate signal.

Example A.18  Structural Model of 2:1 Multiplexer

Similarly, Example A.18 constructs a 2:1 multiplexer from a pair of tristate buffers.
Building logic out of tristates is not recommended, however.

tristate
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en

a[3:0]
y[3:0]

en

a[3:0]
y[3:0]

FIGURE A.15  mux2
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In general, complex systems are designed hierarchically. The overall system is described
structurally by instantiating its major components. Each of these components is described
structurally from its building blocks, and so forth recursively until the pieces are simple
enough to describe behaviorally. It is good style to avoid (or at least minimize) mixing
structural and behavioral descriptions within a single module.

SystemVerilog 

module mux2_8(input  logic [7:0] d0, d1,
              input  logic       s,
              output logic [7:0] y);

  mux2 lsbmux(d0[3:0], d1[3:0], s, y[3:0]);
  mux2 msbmux(d0[7:4], d1[7:4], s, y[7:4]);
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2_8 is
  port(d0, d1:in  STD_LOGIC_VECTOR(7 downto 0);

s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR(7 downto 0));

end;

architecture struct of mux2_8 is
  component mux2 
    port(d0, d1: in  STD_LOGIC_VECTOR(3 
                                downto 0);

s: in  STD_LOGIC;
y: out STD_LOGIC_VECTOR(3 downto 0));

  end component;
begin

  lsbmux:  mux2 
    port map(d0(3 downto 0), d1(3 downto 0), 

s, y(3 downto 0));
  msbhmux: mux2 
    port map(d0(7 downto 4), d1(7 downto 4), 

s, y(7 downto 4));
end;

Example A.19  Accessing Parts of Busses
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FIGURE A.16  mux2_8
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A.4   Sequential Logic
HDL synthesizers recognize certain idioms and turn them into specific sequential circuits.
Other coding styles may simulate correctly, but synthesize into circuits with blatant or
subtle errors. This section presents the proper idioms to describe registers and latches.

A.4.1  Registers
The vast majority of modern commercial systems are built with registers using positive
edge-triggered D flip-flops. Example A.20 shows the idiom for such flip-flops.

SystemVerilog 

module flop(input  logic       clk, 
            input  logic [3:0] d, 
            output logic [3:0] q);

  always_ff @(posedge clk)
    q <= d;
endmodule

A Verilog always statement is written in the form
  
always @(sensitivity list)
  statement;

The statement is executed only when the event specified in the sensi-
tivity list occurs. In this example, the statement is q <= d (pro-
nounced “q gets d”). Hence, the flip-flop copies d to q on the positive
edge of the clock and otherwise remembers the old state of q. 

<= is called a nonblocking assignment. Think of it as a regular
= sign for now; we’ll return to the more subtle points in Section
A.5.4. Note that <= is used instead of assign inside an always
statement.

As will be seen in subsequent sections, always statements
can be used to imply flip-flops, latches, or combinational logic,
depending on the sensitivity list and statement. Because of this flex-
ibility, it is easy to produce the wrong hardware inadvertently. Sys-
temVerilog introduces always_ff , always_latch , and
always_comb to reduce the risk of common errors. always_ff
behaves like always, but is used exclusively to imply flip-flops and
allows tools to produce a warning if anything else is implied.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flop is
  port(clk: in  STD_LOGIC;
       d:   in  STD_LOGIC_VECTOR(3 downto 0);
       q:   out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of flop is
begin
  process(clk) begin
    if clk'event and clk = '1' then 
      q <= d;
    end if;
  end process;
end;

A VHDL process is written in the form
  
process(sensitivity list) begin
  statement;
end process;

The statement is executed when any of the variables in the sensitiv-
ity list change. In this example, the if statement is executed when
clk changes, indicated by clk'event. If the change is a rising
edge (clk = '1' after the event), then q <= d. Hence, the flip-
flop copies d to q on the positive edge of the clock and otherwise
remembers the old state of q.

An alternative VHDL idiom for a flip-flop is
    
process(clk) begin
  if RISING_EDGE(clk) then
    q <= d;
  end if;
end process;

RISING_EDGE(clk) is synonymous with clk'event and clk
= '1'.

Example A.20  Register
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In SystemVerilog always statements and VHDL process statements, signals keep
their old value until an event takes place that explicitly causes them to change. Hence,
such code, with appropriate sensitivity lists, can be used to describe sequential circuits with
memory. For example, the flip-flop only includes clk in the sensitivity list. It remembers
its old value of q until the next rising edge of the clk, even if d changes in the interim.

In contrast, SystemVerilog continuous assignment statements and VHDL concurrent
assignment statements are reevaluated any time any of the inputs on the right-hand side
changes. Therefore, such code necessarily describes combinational logic.

A.4.2  Resettable Registers
When simulation begins or power is first applied to a circuit, the output of the flop is
unknown. This is indicated with x in SystemVerilog and 'u' in VHDL. Generally, it is
good practice to use resettable registers so that on power up you can put your system in a
known state. The reset may be either synchronous or asynchronous. Recall that synchro-
nous reset occurs on the rising edge of the clock, while asynchronous reset occurs immedi-
ately. Example A.21 demonstrates the idioms for flip-flops with synchronous and
asynchronous resets. Note that distinguishing synchronous and asynchronous reset in a
schematic can be difficult. The schematic produced by Synplify Pro places synchronous
reset on the left side of a flip-flop and synchronous reset at the bottom.

Synchronous reset takes fewer transistors and reduces the risk of timing problems on
the trailing edge of reset. However, if clock gating is used, care must be taken that all flip-
flops reset properly at startup.

q[3:0]d[3:0]
clk

Q[3:0]D[3:0]

FIGURE A.17  flop

SystemVerilog 

module flopr(input  logic       clk,
             input  logic       reset, 
             input  logic [3:0] d, 
             output logic [3:0] q);

  // synchronous reset
  always_ff @(posedge clk)
     if (reset) q <= 4'b0;
     else       q <= d;
endmodule

module flopr(input  logic       clk,
             input  logic       reset, 
             input  logic [3:0] d, 
             output logic [3:0] q);
   
  // asynchronous reset
  always_ff @(posedge clk, posedge reset)
    if (reset) q <= 4'b0;
    else       q <= d;
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopr is
  port(clk, 
       reset: in  STD_LOGIC;
       d: in  STD_LOGIC_VECTOR(3 downto 0);
       q: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopr is
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if reset = '1' then
        q <= "0000";
      else q <= d;
      end if;
    end if;
  end process;
end;

Example A.21  Resettable Register
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A.4.3  Enabled Registers
Enabled registers only respond to the clock when the enable is asserted. Example A.22
shows a synchronously resettable enabled register that retains its old value if both reset
and en are FALSE.

SystemVerilog (continued) 
Multiple signals in an always statement sensitivity list are sepa-
rated with a comma or the word or. Notice that posedge reset
is in the sensitivity list on the asynchronously resettable flop, but not
on the synchronously resettable flop. Thus, the asynchronously
resettable flop immediately responds to a rising edge on reset, but
the synchronously resettable flop only responds to reset on the
rising edge of the clock.

Because the modules above have the same name, flopr, you
must only include one or the other in your design.

VHDL (continued) 
architecture asynchronous of flopr is
begin
  process(clk, reset) begin
    if reset = '1' then
      q <= "0000";
    elsif clk'event and clk = '1' then
      q <= d;
    end if;
  end process;
end;

Multiple signals in a process sensitivity list are separated with a
comma. Notice that reset is in the sensitivity list on the asynchro-
nously resettable flop, but not on the synchronously resettable flop.
Thus, the asynchronously resettable flop immediately responds to a
rising edge on reset, but the synchronously resettable flop only
responds to reset on the rising edge of the clock.

Recall that the state of a flop is initialized to ‘u’ at startup dur-
ing VHDL simulation.

As mentioned earlier, the name of the architecture (asynchro-
nous or synchronous, in this example) is ignored by the VHDL tools
but may be helpful to someone reading the code. Because both
architectures describe the entity flopr, you should only include
one or the other in your design. 

FIGURE A.18  flopr (a) synchronous reset, (b) asynchronous reset
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A.4.4  Multiple Registers
A single always / process statement can be used to describe multiple pieces of hard-
ware. For example, consider describing a synchronizer made of two back-to-back flip-
flops, as shown in Figure A.20. Example A.23 describes the synchronizer. On the rising
edge of clk, d is copied to n1. At the same time, n1 is copied to q.

SystemVerilog 

module flopenr(input  logic       clk,
               input  logic       reset, 
               input  logic       en, 
               input  logic [3:0] d, 
               output logic [3:0] q);

  // synchronous reset 
  always_ff @(posedge clk)
    if      (reset) q <= 4'b0;
    else if (en)    q <= d;
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity flopenr is
  port(clk, 
       reset, 
       en: in  STD_LOGIC;
       d:  in  STD_LOGIC_VECTOR(3 downto 0);
       q:  out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synchronous of flopenr is 
-- synchronous reset
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if reset = '1' then
        q <= "0000";
      elsif en = '1' then 
        q <= d;
      end if;
    end if;
  end process;
end;

Example A.22  Resettable Enabled Register
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FIGURE A.19  flopenr
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Synchronizer circuit



A.4      Sequential Logic 721

A.4.5  Latches
Recall that a D latch is transparent when the clock is HIGH, allowing data to flow from
input to output. The latch becomes opaque when the clock is LOW, retaining its old state.
Example A.24 shows the idiom for a D latch.

SystemVerilog 

module sync(input  logic clk, 
            input  logic d, 
            output logic q);

  logic n1;

  always_ff @(posedge clk)
    begin
      n1 <= d;
      q <= n1;
    end
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity sync is
  port(clk: in  STD_LOGIC;
       d:   in  STD_LOGIC;
       q:   out STD_LOGIC);
end;

architecture synth of sync is
  signal n1: STD_LOGIC;
begin
  process(clk) begin
    if clk'event and clk = '1' then 
      n1 <= d;
      q <= n1;
    end if;
  end process;
end;

Example A.23  Synchronizer

SystemVerilog 

module latch(input  logic       clk, 
             input  logic [3:0] d, 
             output logic [3:0] q);

  always_latch
    if (clk) q <= d;
endmodule

always_latch is equivalent to always @(clk, d) and is the
preferred way of describing a latch in SystemVerilog. It evaluates any
time clk or d changes. If clk is HIGH, d flows through to q, so this
code describes a positive level sensitive latch. Otherwise, q keeps its
o ld va lue.  SystemVer i log can generate  a  warn ing i f  the
always_latch block doesn’t imply a latch. 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity latch is
  port(clk: in  STD_LOGIC;
       d:   in  STD_LOGIC_VECTOR(3 downto 0);
       q:   out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of latch is
begin
  process(clk, d) begin
    if clk = '1' then q <= d;
    end if;
  end process;
end;

The sensitivity list contains both clk and d, so the process evalu-
ates any time clk or d changes. If clk is HIGH, d flows through to q.

Example A.24  D Latch

n1 q

qd
clk

QD QD

FIGURE A.21  sync
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Not all synthesis tools support latches well. Unless you know that your tool supports
latches and you have a good reason to use them, avoid them and use edge-triggered flip-
flops instead. Furthermore, take care that your HDL does not imply any unintended
latches, something that is easy to do if you aren't attentive. Many synthesis tools warn you
if a latch is created; if you didn’t expect one, track down the bug in your HDL. And if you
don’t know whether you intended to have a latch or not, you are probably approaching
HDLs like programming languages and have bigger problems lurking.

A.4.6  Counters
Consider two ways of describing a 4-bit counter with synchronous reset. The first scheme
(behavioral) implies a sequential circuit containing both the 4-bit register and an adder.
The second scheme (structural) explicitly declares modules for the register and adder.
Either scheme is good for a simple circuit such as a counter. As you develop more complex
finite state machines, it is a good idea to separate the next state logic from the registers in
your HDL code. Examples A.25 and A.26 demonstrate these styles.

lat

q[3:0]

q[3:0]
d[3:0]

clk
D[3:0]

Q[3:0]
C

FIGURE A.22  latch

SystemVerilog 

module counter(input  logic       clk, 
               input  logic       reset, 
               output logic [3:0] q);

  always_ff @(posedge clk)
    if (reset) q <= 4'b0;
    else       q <= q+1;
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;

entity counter is
  port(clk:   in  STD_LOGIC;
       reset: in  STD_LOGIC;
       q:     out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of counter is
  signal q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if reset = '1' then q_int <= "0000";
      else q_int <= q_int + "0001";
      end if;
    end if;
  end process;
  q <= q_int;
end;

In VHDL, an output cannot also be used on the right-hand side in an
expression; q <= q + 1 would be illegal. Thus, an internal stat sig-
nal q_int is defined, and the output q is a copy of q_int. This is
discussed further in Section A.7.

Example A.25  Counter (Behavioral Style)
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un3_q[3:0]

+ q[3:0]

reset

clk

1 Q[3:0]D[3:0]
R

FIGURE A.23  Counter (behavioral)

Example A.26  Counter (Structural Style)

SystemVerilog 

module counter(input  logic       clk, 
               input  logic       reset, 
               output logic [3:0] q);

   logic [3:0] nextq;

   flopr qflop(clk, reset, nextq, q);
   adder inc(q, 4'b0001, nextq); 
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity counter is
  port(clk:   in  STD_LOGIC;
       reset: in  STD_LOGIC;
       q:     out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture struct of counter is
  component flopr 
    port(clk:   in  STD_LOGIC;
         reset: in  STD_LOGIC;
         d:     in  STD_LOGIC_VECTOR(3 downto 0);
         q:     out STD_LOGIC_VECTOR(3 downto 0));
  end component;
  component adder 
    port(a, b: in  STD_LOGIC_VECTOR(3 downto 0);
         y:    out STD_LOGIC_VECTOR(3 downto 0));
  end component;
  signal nextq, q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
  qflop: flopr port map(clk, reset, nextq, q_int);
  inc:   adder port map(q_int, "0001", nextq);
  q <= q_int;
end;

flopr

qflop

adder

inc

q[3:0]

reset
clk

clk
reset

d[3:0]

q[3:0]
a[3:0]

0001
b[3:0]

y[3:0]

FIGURE A.24  Counter (structural)
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A.4.7  Shift Registers
Example A.27 describes a shift register with a parallel load input.

SystemVerilog 

module shiftreg(input  logic       clk,
                input  logic       reset, load,
                input  logic       sin,
                input  logic [3:0] d,
                output logic [3:0] q,
                output logic       sout);

  always_ff @(posedge clk)
    if (reset)     q <= 0;
    else if (load) q <= d;
    else           q <= {q[2:0], sin};

  assign sout = q[3];
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shiftreg is
  port(clk, reset, 
       load: in  STD_LOGIC;
       sin:  in  STD_LOGIC;
       d:    in  STD_LOGIC_VECTOR(3 downto 0);
       q:    out STD_LOGIC_VECTOR(3 downto 0);
       sout: out STD_LOGIC);
end;

architecture synth of shiftreg is
  signal q_int: STD_LOGIC_VECTOR(3 downto 0);
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if reset = '1' then q_int <= "0000";
      elsif load = '1' then q_int <= d;
      else q_int <= q_int(2 downto 0) & sin;
      end if;
    end if;
  end process;

  q    <= q_int;
  sout <= q_int(3);
end;

Example A.27  Shift Register with Parallel Load

0

1 R

sout

q[3:0]

d[3:0]

sin

load

reset
clk

[2:0]

[3:0]
Q[3:0]D[3:0]

[3]

FIGURE A.25  Synthesized shiftreg

A.5   Combinational Logic 
with Always / Process Statements
In Section A.2, we used assignment statements to describe combinational logic behavior-
ally. SystemVerilog always statements and VHDL process statements are used to
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describe sequential circuits because they remember the old state when no new state is pre-
scribed. However, always / process statements can also be used to describe combina-
tional logic behaviorally if the sensitivity list is written to respond to changes in all of the
inputs and the body prescribes the output value for every possible input combination. For
example, Example A.28 uses always / process statements to describe a bank of four
inverters (see Figure A.4 for the schematic).

SystemVerilog 

module inv(input  logic [3:0] a, 
           output logic [3:0] y);

  always_comb
    y = ~a;
endmodule

always_comb is equivalent to always @(*) and is the preferred
way of  descr ibing combinat ional  logic in SystemVeri log.
always_comb reevaluates the statements inside the always
statement any time any of the signals on the right-hand side of <=
or = inside the always statement change. Thus, always_comb is
a safe way to model combinational logic. In this particular example,
always @(a) would also have sufficed.

The = in the always statement is called a blocking assign-
ment, in contrast to the <= nonblocking assignment. In SystemVer-
i log,  i t  is  good pract ice to use blocking assignments for
combinational logic and nonblocking assignments for sequential
logic. This will be discussed further in Section A.5.4.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity inv is
  port(a: in  STD_LOGIC_VECTOR(3 downto 0);
       y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture proc of inv is
begin
  process(a) begin
      y <= not a;
  end process;
end;

The begin and end process statements are required in VHDL
even though the process only contains one assignment.

Example A.28  Inverter (Using always / process)

HDLs support blocking and nonblocking assignments in an always / process state-
ment. A group of blocking assignments are evaluated in the order they appear in the code,
just as one would expect in a standard programming language. A group of nonblocking
assignments is evaluated concurrently; all of the expressions on the right-hand sides are
evaluated before any of the left-hand sides are updated. For reasons that will be discussed
in Section A.5.4, it is most efficient to use blocking assignments for combinational logic
and safest to use nonblocking assignments for sequential logic.   

SystemVerilog 

In an always statement, = indicates a blocking assignment and <=
indicates a nonblocking assignment.

Do not confuse either type with continuous assignment using
the assign statement. assign statements are normally used out-
side always statements and are also evaluated concurrently.

VHDL 

In a VHDL process statement, := indicates a blocking assignment
and <= indicates a nonblocking assignment (also called a concur-
rent assignment). This is the first section where := is introduced. 

Nonblocking assignments are made to outputs and to signals.
Blocking assignments are made to variables, which are declared in
process statements (see the next example).

<= can also appear outside process statements, where it is
also evaluated concurrently.

Example A.29 defines a full adder using intermediate signals p and g to compute s
and cout. It produces the same circuit from Figure A.9, but uses always / process
statements in place of assignment statements.
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These two examples are poor applications of always / process statements for
modeling combinational logic because they require more lines than the equivalent
approach with assign statements from Section A.2.1. Moreover, they pose the risk of
inadvertently implying sequential logic if the sensitivity list leaves out inputs. However,
case and if statements are convenient for modeling more complicated combinational
logic. case and if statements can only appear within always / process statements.

A.5.1  Case Statements
A better application of using the always / process statement for combinational logic is
a 7-segment display decoder that takes advantage of the case statement, which must
appear inside an always / process statement.

The design process for describing large blocks of combinational logic with Boolean
equations is tedious and prone to error. HDLs offer a great improvement, allowing you to
specify the function at a higher level of abstraction, then automatically synthesize the
function into gates. Example A.30 uses case statements to describe a 7-segment display
decoder based on its truth table. A 7-segment display is shown in Figure A.26. The

SystemVerilog 

module fulladder(input  logic a, b, cin, 
                 output logic s, cout);

  logic p, g;

  always_comb 
    begin
      p = a ^ b;  // blocking
      g = a & b;  // blocking

      s = p ^ cin;
      cout = g | (p & cin);
    end
endmodule

In this case, always @(a, b, cin) or always @(*) would
have been equivalent to always_comb. All three reevaluate the
contents of the always block any time a, b, or cin change. How-
ever, always_comb is preferred because it is succinct and allows
SystemVerilog tools to generate a warning if the block inadvertently
describes sequential logic.

Notice that the begin / end construct is necessary
because multiple statements appear in the always statement. This
is analogous to { } in C or Java. The begin / end was not
needed in the flopr example because if / else counts as a
single statement.

This example uses blocking assignments, first computing p,
then g, then s, and finally cout.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
  port(a, b, cin:  in  STD_LOGIC;
       s, cout:    out STD_LOGIC);
end;

architecture synth of fulladder is
begin
  process (a, b, cin)
    variable p, g: STD_LOGIC;
  begin  
    p := a xor b; -- blocking
    g := a and b; -- blocking

    s <= p xor cin;
    cout <= g or (p and cin);
  end process;
end;

The process sensitivity list must include a, b, and cin because
combinational logic should respond to changes of any input. If any
of these inputs were omitted, the code might synthesize to sequen-
tial logic or might behave differently in simulation and synthesis.

This example uses blocking assignments for p and g so that
they get their new values before being used to compute s and
cout that depend on them.

Because p and g appear on the left-hand side of a blocking
assignment (:=) in a process statement, they must be declared to
be variable rather than signal. The variable declaration
appears before the begin in the process where the variable is
used.

Example A.29  Full Adder (Using always / process)

a

b

c

d

e

f

g

FIGURE A.26  
7-segment display
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decoder takes a 4-bit number and displays its decimal value on the segments. For example,
the number 0111 = 7 should turn on segments a, b, and c.

The case statement performs different actions depending on the value of its input. A
case statement implies combinational logic if all possible input combinations are consid-
ered; otherwise it implies sequential logic because the output will keep its old value in the
undefined cases. 

SystemVerilog 

module sevenseg(input  logic [3:0] data, 
                output logic [6:0] segments);

  always_comb
    case (data)
      //               abc_defg     
      0: segments = 7'b111_1110;
      1: segments = 7'b011_0000;
      2: segments = 7'b110_1101;
      3: segments = 7'b111_1001;
      4: segments = 7'b011_0011;
      5: segments = 7'b101_1011;
      6: segments = 7'b101_1111;
      7: segments = 7'b111_0000;
      8: segments = 7'b111_1111;
      9: segments = 7'b111_1011;
      default: segments = 7'b000_0000;
    endcase
endmodule

The default clause is a convenient way to define the output for all
cases not explicitly listed, guaranteeing combinational logic.

In SystemVerilog, case statements must appear inside
always statements.  

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity seven_seg_decoder is
  port(data:  in  STD_LOGIC_VECTOR(3 downto 0);
      segments: out STD_LOGIC_VECTOR(6 downto 0));
end;

architecture synth of seven_seg_decoder is
begin
  process(data) begin
    case data is
--                              abcdefg
      when X"0" => segments <= "1111110";
      when X"1" => segments <= "0110000";
      when X"2" => segments <= "1101101";
      when X"3" => segments <= "1111001";
      when X"4" => segments <= "0110011";
      when X"5" => segments <= "1011011";
      when X"6" => segments <= "1011111";
      when X"7" => segments <= "1110000";
      when X"8" => segments <= "1111111";
      when X"9" => segments <= "1111011";
      when others => segments <= "0000000";
    end case;
  end process;
end;

The case statement checks the value of data. When data is 0,
the statement performs the action after the =>, setting segments
to 1111110. The case statement similarly checks other data
values up to 9 (note the use of X for hexadecimal numbers). The
others clause is a convenient way to define the output for all cases
not explicitly listed, guaranteeing combinational logic.

Unlike Verilog, VHDL supports selected signal assignment
statements (see Section A.2.4), which are much like case state-
ments but can appear outside processes. Thus, there is less reason
to use processes to describe combinational logic.

Example A.30  Seven-Segment Display Decoder

Synplify Pro synthesizes the 7-segment display decoder into a read-only memory
(ROM) containing the seven outputs for each of the 16 possible inputs. Other tools might
generate a rat’s nest of gates. 
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If the default or others clause were left out of the case statement, the decoder
would have remembered its previous output whenever data were in the range of 10–15.
This is strange behavior for hardware, and is not combinational logic. 

Ordinary decoders are also commonly written with case statements. Example A.31
describes a 3:8 decoder.

rom

segments_1[6:0]

segments[6:0]data[3:0] DOUT[6:0]A[3:0]

FIGURE A.27  sevenseg

SystemVerilog 

module decoder3_8(input  logic [2:0] a,
                  output logic [7:0] y);
  
  always_comb
    case (a)
      3'b000: y = 8'b00000001;
      3'b001: y = 8'b00000010;
      3'b010: y = 8'b00000100;
      3'b011: y = 8'b00001000;
      3'b100: y = 8'b00010000;
      3'b101: y = 8'b00100000;
      3'b110: y = 8'b01000000;
      3'b111: y = 8'b10000000;
    endcase
endmodule

No default statement is needed because all cases are covered.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity decoder3_8 is
  port(a: in  STD_LOGIC_VECTOR(2 downto 0);
       y: out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture synth of decoder3_8 is
begin
  process(a) begin
    case a is
      when "000"  => y <= "00000001";
      when "001"  => y <= "00000010";
      when "010"  => y <= "00000100";
      when "011"  => y <= "00001000";
      when "100"  => y <= "00010000";
      when "101"  => y <= "00100000";
      when "110"  => y <= "01000000";
      when "111"  => y <= "10000000";
      when others => y <= (OTHERS => 'X');
    end case;
  end process;
end;

Some VHDL tools require an others clause because combinations
such as "1zx" are not covered. y <= (OTHERS => 'X') sets all
the bits of y to X; this is an unrelated use of the keyword OTHERS.

Example A.31  3:8 Decoder
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A.5.2  If Statements
always / process statements can also contain if statements. The if may be followed
by an else statement. When all possible input combinations are handled, the statement
implies combinational logic; otherwise it produces sequential logic (like the latch in Sec-
tion A.4.5).

Example A.32 uses if statements to describe a 4-bit priority circuit that sets one out-
put TRUE corresponding to the most significant input that is TRUE.
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FIGURE A.28  3:8 decoder



Appendix A     Hardware Description Languages730

SystemVerilog 

module priorityckt(input  logic [3:0] a, 
                   output logic [3:0] y);

  always_comb
    if      (a[3]) y = 4'b1000;
    else if (a[2]) y = 4'b0100;
    else if (a[1]) y = 4'b0010;
    else if (a[0]) y = 4'b0001;
    else           y = 4'b0000;
endmodule

In SystemVerilog, if statements must appear inside always
statements.   

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity priorityckt is
  port(a: in  STD_LOGIC_VECTOR(3 downto 0);
       y: out STD_LOGIC_VECTOR(3 downto 0));
end;

architecture synth of priorityckt is
begin
  process(a) begin
    if    a(3) = '1' then y <= "1000";
    elsif a(2) = '1' then y <= "0100";
    elsif a(1) = '1' then y <= "0010";
    elsif a(0) = '1' then y <= "0001";
    else                  y <= "0000";
    end if;
  end process;
end;

Unlike Verilog, VHDL supports conditional signal assignment state-
ments (see Section A.2.4), which are much like if statements but
can appear outside processes. Thus, there is less reason to use pro-
cesses to describe combinational logic.

Example A.32  Priority Circuit
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FIGURE A.29  Priority circuit
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A.5.3  SystemVerilog Casez
(This section may be skipped by VHDL users.) SystemVerilog also provides the casez
statement to describe truth tables with don’t cares (indicated with ? in the casez state-
ment). Example A.33 shows how to describe a priority circuit with casez.

SystemVerilog 

module priority_casez(input  logic [3:0] a, 
                      output logic [3:0] y);

  always_comb
    casez(a)
      4'b1???: y = 4'b1000;
      4'b01??: y = 4'b0100;
      4'b001?: y = 4'b0010;
      4'b0001: y = 4'b0001;
      default: y = 4'b0000;
   endcase
endmodule

Synplify Pro synthesizes a slightly different circuit for this mod-
ule, shown in Figure A.30, than it did for the priority circuit in Figure
A.29. However, the circuits are logically equivalent.

Example A.33  Priority Circuit Using casez
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FIGURE A.30  priority_casez

A.5.4  Blocking and Nonblocking Assignments
The following guidelines explain when and how to use each type of assignment. If these
guidelines are not followed, it is possible to write code that appears to work in simulation,
but synthesizes to incorrect hardware. The optional remainder of this section explains the
principles behind the guidelines.

VHDL 

1. Use process(clk) and nonblocking assignments to model 
synchronous sequential logic.

     process(clk) begin
       if clk'event and clk = '1' then 
         n1 <= d; -- nonblocking
         q <= n1; -- nonblocking
       end if;
     end process;

2. Use concurrent assignments outside process statements to 
model simple combinational logic.

     y <= d0 when s = '0' else d1;

SystemVerilog 

1. Use always_ff @(posedge clk) and nonblocking 
assignments to model synchronous sequential logic.

     always_ff @(posedge clk)
       begin
         n1 <= d; // nonblocking
         q <= n1; // nonblocking
       end

2. Use continuous assignments to model simple combinational 
logic.

      assign y = s ? d1 : d0; 
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A.5.4.1  Combinational Logic
The full adder from Example A.29 is correctly modeled using blocking assignments. This
section explores how it operates and how it would differ if nonblocking assignments had
been used.

 Imagine that a, b, and cin are all initially 0. p, g, s, and cout are thus 0 as well. At
some time, a changes to 1, triggering the always / process statement. The four block-
ing assignments evaluate in the order shown below. Note that p and g get their new value
before s and cout are computed because of the blocking assignments. This is important
because we want to compute s and cout using the new values of p and g. 

Example A.34 illustrates the use of nonblocking assignments (not recommended).

1 1 0 1
2 1 0 0
3 1 0 1
4 0 1 0 0

.
. ·
.
. ·

p

g

s

cout

← ⊕ =
← =
← ⊕ =

← + =

SystemVerilog (continued) 
3. Use always_comb and blocking assignments to model more

complicated combinational logic where the always statement is
helpful.

     always_comb 
       begin
         p = a ^ b;  // blocking
         g = a & b;  // blocking
         s = p ^ cin;
         cout = g | (p & cin);
       end

4. Do not make assignments to the same signal in more than one
always statement or continuous assignment statement. Excep-
tion: tristate busses.

VHDL (continued) 
3. Use process(in1, in2, ...) to model more compli-

cated combinational logic where the process is helpful.
Use blocking assignments to internal variables.

     process(a, b, cin)
       variable p, g: STD_LOGIC;
     begin  
       p := a xor b; -- blocking
       g := a and b; -- blocking
       s <= p xor cin;
       cout <= g or (p and cin);
     end process;

4. Do not make assignments to the same variable in more
than one process or concurrent assignment statement.
Exception: tristate busses.

Example A.34  Full Adder Using Nonblocking Assignments

SystemVerilog 

// nonblocking assignments (not recommended)
module fulladder(input  logic a, b, cin, 
                 output logic s, cout);

  logic p, g;

  always_comb
    begin
      p <= a ^ b; // nonblocking
      g <= a & b; // nonblocking

      s <= p ^ cin;
      cout <= g | (p & cin);
    end
endmodule

VHDL 

-- nonblocking assignments (not recommended)
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fulladder is
  port(a, b, cin:  in  STD_LOGIC;
       s, cout:    out STD_LOGIC);
end;

architecture nonblocking of fulladder is
  signal p, g: STD_LOGIC;
begin
  process (a, b, cin, p, g) begin  
    p <= a xor b; -- nonblocking
    g <= a and b; -- nonblocking
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 Consider the same case of a rising from 0 to 1 while b and cin are 0. The four non-
blocking assignments evaluate concurrently as follows:

Observe that s is computed concurrently with p and hence uses the old value of p, not
the new value. Hence, s remains 0 rather than becoming 1. However, p does change from
0 to 1. This change triggers the always / process statement to evaluate a second time as
follows:

This time, p was already 1, so s correctly changes to 1. The nonblocking assignments
eventually reached the right answer, but the always / process statement had to evalu-
ate twice. This makes simulation more time consuming, although it synthesizes to the
same hardware.

Another drawback of nonblocking assignments in modeling combinational logic is
that the HDL will produce the wrong result if you forget to include the intermediate vari-
ables in the sensitivity list, as shown below.

p g s cout← ⊕ = ← = ← ⊕ = ← + =1 0 1 1 0 0 0 0 0 0 0 0 0· ·

p g s cout← ⊕ = ← = ← ⊕ = ← + =1 0 1 1 0 0 0 0 0 01 1 1· ·

  VHDL (continued)
    s <= p xor cin;
    cout <= g or (p and cin);
  end process;
end;

Because p and g appear on the left-hand side of a nonblocking
assignment in a process statement, they must be declared to be
signal rather than variable. The signal declaration appears
before the begin in the architecture, not the process.

SystemVerilog 

If the sensitivity list of the always statement were written as
always @(a, b, cin) rather than always_comb or always
@(*), then the statement would not reevaluate when p or g
change. In the previous example, s would be incorrectly left at 0,
not 1.

VHDL 

If the sensitivity list of the process were written as process (a,
b, cin) rather than always process (a, b, cin, p, g),
then the statement would not reevaluate when p or g change. In the
previous example, s would be incorrectly left at 0, not 1.

Worse yet, some synthesis tools will synthesize the correct hardware even when a
faulty sensitivity list causes incorrect simulation. This leads to a mismatch between the
simulation results and what the hardware actually does. 

A.5.4.2  Sequential Logic
The synchronizer from Example A.23 is correctly modeled using nonblocking assign-
ments. On the rising edge of the clock, d is copied to n1 at the same time that n1 is copied
to q, so the code properly describes two registers. For example, suppose initially that d = 0,
n1 = 1, and q = 0. On the rising edge of the clock, the following two assignments occur
concurrently, so that after the clock edge, n1 = 0 and q = 1.

n d q n1 0 1 1← = ← =
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Example A.35 incorrectly tries to describe the same module using blocking assign-
ments. On the rising edge of clk, d is copied to n1. This new value of n1 is then copied to
q, resulting in d improperly appearing at both n1 and q. If d = 0 and n1 = 1, then after the
clock edge, n1 = q = 0.

Because n1 is invisible to the outside world and does not influence the behavior of q,
the synthesizer optimizes it away entirely, as shown in Figure A.31.

1 1 0
2 1 0
.
.
n d

q n

← =
← =

Example A.35  Bad Synchronizer with Blocking Assignment

SystemVerilog 

// Bad implementation using blocking assignments

module syncbad(input  logic clk, 
               input  logic d, 
               output logic q);

  logic n1;

  always_ff @(posedge clk)
    begin
      n1 = d; // blocking
      q = n1; // blocking
    end
endmodule

VHDL 

-- Bad implementation using blocking assignment

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity syncbad is
  port(clk: in  STD_LOGIC;
       d:   in  STD_LOGIC;
       q:   out STD_LOGIC);
end;

architecture bad of syncbad is
begin
  process(clk) 
    variable n1: STD_LOGIC;
  begin
    if clk'event and clk = '1' then 
      n1 := d;  -- blocking
      q <= n1; 
    end if;
  end process;
end;

q

qd
clk

QD

FIGURE A.31  syncbad

The moral of this illustration is to use nonblocking assignment in always statements
exclusively when modeling sequential logic. With sufficient cleverness, such as reversing
the orders of the assignments, you could make blocking assignments work correctly, but
blocking assignments offer no advantages and only introduce the risk of unintended
behavior. Certain sequential circuits will not work with blocking assignments no matter
what the order.
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A.6   Finite State Machines
There are two styles of finite state machines. In Mealy machines (Figure A.32(a)), the out-
put is a function of the current state and inputs. In Moore machines (Figure A.32(b)), the
output is a function of the current state only. In both types, the FSM can be partitioned
into a state register, next state logic, and output logic. HDL descriptions of state machines
are correspondingly divided into these same three parts. 

clk

Next State
Logic

next
state

inputs
Output
Logic

outputs

(a)

(b)

clk

Next State
Logic

next
state

inputs
Output
Logic

outputs

FIGURE A.32  Mealy and Moore machines

A.6.1  FSM Example
Example A.36 describes the divide-by-3 FSM from Figure A.33. It provides a syn-
chronous reset to initialize the FSM. The state register uses the ordinary idiom for
flip-flops. The next state and output logic blocks are combinational. This is an example
of a Moore machine; indeed, the FSM has no inputs, only a clock and reset.

S0

out = 0

S1

out = 0

S2

out = 1

reset

FIGURE A.33  Divide-by-3 
counter state transition diagram

Example A.36  Divide-by-3 Finite State Machine

SystemVerilog 

module divideby3FSM(input  logic clk, 
                    input  logic reset, 
                    output logic y);

  logic [1:0] state, nextstate;

  // State Register
  always_ff @(posedge clk)
    if (reset) state <= 2'b00;
    else       state <= nextstate;

  // Next State Logic
  always_comb
    case (state)
      2'b00: nextstate = 2'b01;
      2'b01: nextstate = 2'b10;
      2'b10: nextstate = 2'b00;
      default: nextstate = 2'b00;
    endcase

VHDL 
library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
  port(clk, reset: in  STD_LOGIC;
       y:          out STD_LOGIC);
end;

architecture synth of divideby3FSM is
  signal state, nextstate: 
    STD_LOGIC_VECTOR(1 downto 0);
begin
  -- state register
  process(clk) begin
    if clk'event and clk = '1' then 
      if reset = '1' then state <= "00";
      else state <= nextstate;
      end if;
    end if;
  end process;

(continues)
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Synplify Pro just produces a block diagram and state transition diagram for state
machines; it does not show the logic gates or the inputs and outputs on the arcs and states.
Therefore, be careful that you have correctly specified the FSM in your HDL code.
Design Compiler and other synthesis tools show the gate-level implementation. Figure
A.34 shows a state transition diagram; the double circle indicates that S0 is the reset state.

 SystemVerilog (continued)
// Output Logic
  assign y = (state == 2'b00);
endmodule

Notice how a case statement is used to define the state transition
table. Because the next state logic should be combinational, a
default is necessary even though the state 11 should never arise.

The output y is 1 when the state is 00. The equality compari-
son a == b evaluates to 1 if a equals b and 0 otherwise. The
inequality comparison a != b does the inverse, evaluating to 1 if a
does not equal b. 

VHDL (continued) 
 -- next state logic
  nextstate <= "01" when state = "00" else
               "10" when state = "01" else
               "00";

  -- output logic
  y <= '1' when state = "00" else '0';
end;

The output y is 1 when the state is 00. The equality comparison
a = b evaluates to true if a equals b and false otherwise. The
inequality comparison a /= b does the inverse, evaluating to true
if a does not equal b. 

statemachine

state[2:0]

y
reset
clk C

Q[2:0]
R

S0

S1

S2

[2]

FIGURE A.34  divideby3fsm

Note that each always / process statement implies a separate block of logic.
Therefore, a given signal can be assigned in only one always / process. Otherwise, two
pieces of hardware with shorted outputs will be implied.

A.6.2  State Enumeration
SystemVerilog and VHDL supports enumeration types as an abstract way of representing
information without assigning specific binary encodings. For example, the divide-by-3
finite state machine described in Example A.36 uses three states. We can give the states
names using the enumeration type rather than referring to them by binary values. This
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makes the code more readable and easier to change. Example A.37 rewrites the divide-by-
3 FSM using enumerated states; the hardware is not changed.

Example A.37  State Enumeration

SystemVerilog 

module divideby3FSM(input  logic clk, 
                    input  logic reset, 
                    output logic y);

  typedef enum logic [1:0] {S0, S1, S2} statetype;
  statetype state, nextstate;

  // State Register
  always_ff @(posedge clk)
    if (reset) state <= S0;
    else       state <= nextstate;

  // Next State Logic
  always_comb
    case (state)
      S0: nextstate = S1;
      S1: nextstate = S2;
      S2: nextstate = S0;
      default: nextstate = S0;
    endcase

  // Output Logic
  assign y = (state == S0);
endmodule

The typedef statement defines statetype to be a two-bit
logic value with one of three possibilities: S0, S1, or S2. state
and nextstate are statetype signals. 

The enumerated encodings default to numerical order: S0 =
00, S1 = 01, and S2 = 10. The encodings can be explicitly set by
the user. The following snippet encodes the states as 3-bit one-hot
values:

typedef enum logic [2:0] {S0 = 3'b001,
S1 = 3'b010,
S2 = 3'b100} statetype;

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity divideby3FSM is
  port(clk, reset: in  STD_LOGIC;
       y:          out STD_LOGIC);
end;

architecture synth of divideby3FSM is
  type statetype is (S0, S1, S2);
  signal state, nextstate: statetype;
begin
  -- state register
  process(clk) begin
    if clk'event and clk = '1' then 
      if reset = '1' then state <= S0;
      else state <= nextstate;
      end if;
    end if;
  end process;

  -- next state logic
  nextstate <= S1 when state = S0 else
               S2 when state = S1 else
               S0;

  -- output logic
  y <= '1' when state = S0 else '0';
end;

This example defines a new enumeration data type, statetype,
with three possibilities: S0, S1, and S2. state and nextstate
are statetype signals.

The synthesis tool may choose the encoding of enumeration
types. A good tool may choose an encoding that simplifies the hard-
ware implementation.

If, for some reason, we had wanted the output to be HIGH in states S0 and S1, the
output logic would be modified as follows:

SystemVerilog 

  // Output Logic
  assign y = (state == S0 | state == S1);

VHDL 

  -- output logic
  y <= '1' when (state = S0 or state = S1) else '0';
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A.6.3  FSM with Inputs
The divide-by-3 FSM had one output and no inputs. Example
A.38 describes a finite state machine with an input a and two
outputs, as shown in Figure A.35. Output x is true when the
input is the same now as it was last cycle. Output y is true
when the input is the same now as it was for the past two
cycles. The state transition diagram indicates a Mealy machine
because the output depends on the current inputs as well as the
state. The outputs are labeled on each transition after the
input.

S0

S3S1

reset

S4S2

a / x = 0, y = 0

a / x = 1, y = 0
a /

x = 0,
y = 0

a / x = 0, y = 0

a / x = 0, y = 0

a / x = 1, y = 0
a /

x = 0,
y = 0

a / x = 1, y = 1 a / x = 1, y = 1

a / x = 0, y = 0

FIGURE A.35  History FSM state transition diagram

Example A.38  History FSM

SystemVerilog 

module historyFSM(input  logic clk, 
                  input  logic reset, 
                  input  logic a, 
                  output logic x, y);

  typedef enum logic [2:0] 
    {S0, S1, S2, S3, S4} statetype;
  statetype state, nextstate;

  // State Register
  always_ff @(posedge clk)
    if (reset) state <= S0;
    else       state <= nextstate;

  // Next State Logic
  always_comb
    case (state)
      S0: if (a) nextstate = S3;
          else   nextstate = S1;
      S1: if (a) nextstate = S3;
          else   nextstate = S2;
      S2: if (a) nextstate = S3;
          else   nextstate = S2;
      S3: if (a) nextstate = S4;
          else   nextstate = S1;
      S4: if (a) nextstate = S4;
          else   nextstate = S1;
      default:   nextstate = S0;
    endcase

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity historyFSM is
  port(clk, reset: in  STD_LOGIC;
       a:          in  STD_LOGIC;
       x, y:       out STD_LOGIC);
end;

architecture synth of historyFSM is
  type statetype is (S0, S1, S2, S3, S4);
  signal state, nextstate: statetype;
begin
  -- state register
  process(clk) begin
    if clk'event and clk = '1' then 
      if reset = '1' then state <= S0;
      else state <= nextstate;
      end if;
    end if;
  end process;

  -- next state logic
  process(state, a) begin
    case state is
      when S0 =>if a = '1' then nextstate <= S3;
            else            nextstate <= S1;
           end if;
      when S1 => if a = '1' then nextstate <= S3;
            else            nextstate <= S2;
          end if;
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SystemVerilog (continued) 
// Output Logic
assign x = ((state == S1 | state == S2) & ~a) |
           ((state == S3 | state == S4) & a);
assign y = (state == S2 & ~a) | (state == S4 & a);
endmodule

VHDL (continued) 
      when S2 => if a = '1' then nextstate <= S3;

else            nextstate <= S2;
end if;

      when S3 => if a = '1' then nextstate <= S4;
else            nextstate <= S1;
end if;

      when S4 => if a = '1' then nextstate <= S4;
else            nextstate <= S1;
end if;

      when others =>             nextstate <= S0;
    end case;
  end process;

  -- output logic
  x <= '1' when 

((state = S1 or state = S2) and a = '0') or
((state = S3 or state = S4) and a = '1')

    else '0';
    y <= '1' when 
      (state = S2 and a = '0') or 
      (state = S4 and a = '1')
    else '0';
end;
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A.7    Type Idiosyncracies
This section explains some subtleties about SystemVerilog and VHDL types in more
depth.

SystemVerilog 

Standard Verilog primarily uses two types: reg and wire. Despite
its name, a reg signal might or might not be associated with a regis-
ter. This was a great source of confusion for those learning the lan-
guage. SystemVerilog introduced the logic type and relaxed some
requirements to eliminate the confusion; hence, the examples in
this appendix use logic. This section explains the reg and wire
types in more detail for those who need to read legacy Verilog code.

In Verilog, if a signal appears on the left-hand side of <= or = in
an always block, it must be declared as reg. Otherwise, it should
be declared as wire. Hence, a reg signal might be the output of a
flip-flop, a latch, or combinational logic, depending on the sensitivity
list and statement of an always block.

Input and output ports default to the wire type unless their
type is explicitly specified as reg. The following example shows how
a flip-flop is described in conventional Verilog. Notice that clk and
d default to wire, while q is explicitly defined as reg because it
appears on the left-hand side of <= in the always block.

module flop(input            clk, 
            input      [3:0] d, 
            output reg [3:0] q);

  always @(posedge clk)
    q <= d;
endmodule

SystemVerilog introduces the logic type. logic is a syn-
onym for reg and avoids misleading users about whether it is actu-
ally a flip-flop. Moreover, SystemVerilog relaxes the rules on assign
statements and hierarchical port instantiations so logic can be
used outside always blocks where a wire traditionally would be
required. Thus, nearly all SystemVerilog signals can be logic. The
exception is that signals with multiple drivers (e.g., a tristate bus)
must be declared as a net, as described in Example A.11. This rule
allows SystemVerilog to generate an error message rather than an x
value when a logic signal is accidentally connected to multiple
drivers. 

The most common type of net is called a wire or tri. These
two types are synonymous, but wire is conventionally used when a
single driver is present and tri is used when multiple drivers are
present. Thus, wire is obsolete in SystemVerilog because logic is
preferred for signals with a single driver. 

When a tri net is driven to a single value by one or more
drivers, it takes on that value. When it is undriven, it floats (z). When
it is driven to different values (0, 1, or x) by multiple drivers, it is in
contention (x).

There are other net types that resolve differently when
undriven or driven by multiple sources. The other types are rarely

VHDL 

Unlike SystemVerilog, VHDL enforces a strict data typing system
that can protect the user from some errors but that is also clumsy at
times.

Despite its fundamental importance, the STD_LOGIC type is 
not built into VHDL. Instead, it is part of the                      
IEEE.STD_LOGIC_1164 library. Thus, every file must contain the 
library statements we have seen in the previous examples. 

Moreover, IEEE.STD_LOGIC_1164 lacks basic operations
such as addition, comparison, shifts, and conversion to integers for
STD_LOGIC_VECTOR data. Most CAD vendors have adopted yet
more libraries containing these functions:

IEEE.STD_LOGIC_UNSIGNED and
IEEE.STD_LOGIC_SIGNED.

VHDL also has a BOOLEAN type with two values: true and
false. BOOLEAN values are returned by comparisons (like s =
'0') and used in conditional statements such as when. Despite the
temptation to believe a BOOLEAN true value should be equivalent
to a STD_LOGIC '1' and BOOLEAN false should mean
STD_LOGIC '0', these types are not interchangeable. Thus, the
following code is illegal:

  y <= d1 when s else d0;
  q <= (state = S2);

Instead, we must write 

  y <= d1 when s = '1' else d0;
  q <= '1' when state = S2 else '0';

While we will not declare any signals to be BOOLEAN, they are auto-
matically implied by comparisons and used by conditional state-
ments.

Similarly, VHDL has an INTEGER type representing both posi-
tive and negative integers. Signals of type INTEGER span at least
the values –231 … 231-1. Integer values are used as indices of bus-
ses. For example, in the statement

  y <= a(3) and a(2) and a(1) and a(0);

0, 1, 2, and 3 are integers serving as an index to choose bits of the a
signal. We cannot directly index a bus with a STD_LOGIC or
STD_LOGIC_VECTOR signal. Instead, we must convert the signal
to an INTEGER. This is demonstrated in Example A.39 for an 8:1
multiplexer that selects one bit from a vector using a 3-bit index.
The  CONV_INTEGER  func t i on  i s  defined  in  the
STD_LOGIC_UNSIGNED library and performs the conversion from
STD_LOGIC_VECTOR to integer for positive (unsigned) values.
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SystemVerilog (continued)
used, but can be substituted anywhere a tri net would normally
appear (e.g., for signals with multiple drivers). Each is described in
Table A.7:

Most operations such as addition, subtraction, and Boolean
logic are identical whether a number is signed or unsigned. How-
ever, magnitude comparison, multiplication and arithmetic right
shifts are performed differently for signed numbers.

In Verilog, nets are considered unsigned by default. Adding the
signed modifier (e.g., logic signed a [31:0]) causes the net
to be treated as signed. 

TABLE A.7  net resolution

Net Type No Driver Conflicting Drivers
tri z x

triand z 0 if any are 0

trior z 1 if any are 1

trireg previous value x

tri0 0 x

tri1 1 x

Example A.39  8:1 Multiplexer with Type Conversion

VHDL 

library IEEE; 
use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_UNSIGNED.all;

entity mux8 is
  port(d: in  STD_LOGIC_VECTOR(7 downto 0);
       s: in  STD_LOGIC_VECTOR(2 downto 0);
       y: out STD_LOGIC);
end;

architecture synth of mux8 is
begin
  y <= d(CONV_INTEGER(s));
end;

VHDL is also strict about out ports being exclusively for output. For
example, the following code for 2- and 3-input AND gates is illegal
VHDL because v is used to compute w as well as to be an output. 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
  port(a, b, c: in  STD_LOGIC;
       v, w:    out STD_LOGIC);
end;

architecture synth of and23 isun1_s_3
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A.8    Parameterized Modules
So far, all of our modules have had fixed-width inputs and outputs. For example, we had
to define separate modules for 4- and 8-bit wide 2:1 multiplexers. HDLs permit variable
bit widths using parameterized modules. Example A.40 declares a parameterized 2:1 mul-
tiplexer with a default width of 8, and then uses it to create 8- and 12-bit 4:1 multiplexers.

Example A.39  8:1 Multiplexer with Type Conversion (continued)

begin
  v <= a and b;
  w <= v and c;
end;

VHDL defines a special port type called buffer to solve this
problem. A signal connected to a buffer port behaves as an out-
put but may also be used within the module. Unfortunately, buffer
ports are a hassle for hierarchical design because higher level out-
puts of the hierarchy may also have to be converted to buffers. A
better alternative is to declare an internal signal, and then drive the
output based on this signal, as follows:

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity and23 is
  port(a, b, c: in  STD_LOGIC;
       v, w:    out STD_LOGIC);
end;

architecture synth of and23 is
  signal v_int: STD_LOGIC;
begin
  v_int <= a and b;
  v <= v_int;
  w <= v_int and c;
end;

Example A.40  Parameterized N-bit Multiplexers

SystemVerilog 

module mux2
  #(parameter width = 8)
   (input  logic [width-1:0] d0, d1, 
    input  logic             s,
    output logic [width-1:0] y);

   assign y = s ? d1 : d0; 
endmodule

SystemVerilog allows a #(parameter ...) statement before the
inputs and outputs to define parameters. The parameter state-
ment includes a default value (8) of the parameter, width. The
number of bits in the inputs and outputs can depend on this param-
eter.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux2 is
  generic(width: integer := 8);
  port(d0, 

d1: in  STD_LOGIC_VECTOR(width-1 downto 0);
s:  in  STD_LOGIC;
y:  out STD_LOGIC_VECTOR(width-1 downto 0));

end;

architecture synth of mux2 is
begin
  y <= d0 when s = '0' else d1;
end;
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FIGURE A.38  and23



A.8      Parameterized Modules 743

SystemVerilog (continued) 
module mux4_8(input  logic [7:0] d0, d1, d2, d3,
              input  logic [1:0] s,
              output logic [7:0] y);

  logic [7:0] low, hi;

  mux2 lowmux(d0, d1, s[0], low);
  mux2 himux(d2, d3, s[0], hi);
  mux2 outmux(low, hi, s[1], y);
endmodule

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers using
their default widths.

In contrast, a 12-bit 4:1 multiplexer mux4_12 would need to
override the default width using #() before the instance name as
shown below.

module mux4_12(input logic [11:0] d0, d1, d2, d3,
               input logic [1:0]  s,
               output logic [11:0] y);

  logic [11:0] low, hi;

  mux2 #(12) lowmux(d0, d1, s[0], low);
  mux2 #(12) himux(d2, d3, s[0], hi);
  mux2 #(12) outmux(low, hi, s[1], y);
endmodule

Do not confuse the use of the # sign indicating delays with the use
of #(...) in defining and overriding parameters.

VHDL (continued) 
The generic statement includes a default value (8) of width.
The value is an integer.

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity mux4_8 is
  port(d0, d1, d2,
       d3: in  STD_LOGIC_VECTOR(7 downto 0);
       s:  in  STD_LOGIC_VECTOR(1 downto 0);
       y:  out STD_LOGIC_VECTOR(7 downto 0));
end;

architecture struct of mux4_8 is
  component mux2 
    generic(width: integer := 8);
  port(d0, 

d1: in  STD_LOGIC_VECTOR(width-1 downto 0);
s:  in  STD_LOGIC;
y:  out STD_LOGIC_VECTOR(width-1 downto 0));

  end component;
  signal low, hi: STD_LOGIC_VECTOR(7 downto 0);
begin
  lowmux: mux2 port map(d0, d1, s(0), low);
  himux:  mux2 port map(d2, d3, s(0), hi);
  outmux: mux2 port map(low, hi, s(1), y);
end;

The 8-bit 4:1 multiplexer instantiates three 2:1 multiplexers using
their default widths.

In contrast, a 12-bit 4:1 multiplexer mux4_12 would need to
override the default width using generic map as shown below.

  lowmux: mux2 generic map(12)
               port map(d0, d1, s(0), low);
  himux:  mux2 generic map(12)
               port map(d2, d3, s(0), hi);
  outmux: mux2 generic map(12)
               port map(low, hi, s(1), y);

mux2_12

lowmux

mux2_12

himux

mux2_12

outmux

y[11:0]

s[1:0]
[1:0] [0]

[0]

d3[11:0]

d2[11:0]

d1[11:0]

d0[11:0]

s

d0[11:0]

d1[11:0]

y[11:0]
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d0[11:0]

d1[11:0]
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FIGURE A.39  mux4_12
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Example A.41 shows a decoder, which is an even better application of parameterized
modules. A large N:2N decoder is cumbersome to specify with case statements, but easy
using parameterized code that simply sets the appropriate output bit to 1. Specifically, the
decoder uses blocking assignments to set all the bits to 0, and then changes the appropri-
ate bit to 1. Figure A.28 showed a 3:8 decoder schematic.

Example A.41  Parameterized N:2N Decoder

SystemVerilog 

module decoder #(parameter N = 3)
               (input  logic [N-1:0]    a,
                output logic [2**N-1:0] y);
  
  always_comb 
    begin
      y = 0;
      y[a] = 1;
    end
endmodule

2**N indicates 2N.  

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;
use IEEE.STD_LOGIC_UNSIGNED.all;
use IEEE.STD_LOGIC_ARITH.all;

entity decoder is
  generic(N: integer := 3);
  port(a: in  STD_LOGIC_VECTOR(N-1 downto 0);
       y: out STD_LOGIC_VECTOR(2**N-1 downto 0));
end;

architecture synth of decoder is
begin
  process (a) 
    variable tmp: STD_LOGIC_VECTOR(2**N-1 downto 0);
  begin
    tmp := CONV_STD_LOGIC_VECTOR(0, 2**N); 
    tmp(CONV_INTEGER(a)) := '1';
    y <= tmp;
  end process;
end;

2**N indicates 2N.  
CONV_STD_LOGIC_VECTOR(0, 2**N)  produces a

STD_LOGIC_VECTOR of length 2N containing all 0s. It requires the
STD_LOGIC_ARITH library. The function is useful in other parame-
terized functions such as resettable flip-flops that need to be able to
produce constants with a parameterized number of bits. The bit
index in VHDL must be an integer, so the CONV_INTEGER function
is used to convert a from a STD_LOGIC_VECTOR to an integer.

HDLs also provide generate statements to produce a variable amount of hardware
depending on the value of a parameter. generate supports for loops and if statements
to determine how many of what types of hardware to produce. Example A.42 demon-
strates how to use generate statements to produce an N-input AND function from a
cascade of 2-input ANDs.
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Use generate statements with caution; it is easy to produce a large amount of hard-
ware unintentionally!

A.9    Memory
Memories such as RAMs and ROMs are straightforward to model in HDL. Unfortu-
nately, efficient circuit implementations are so specialized and process-specific that most
tools cannot synthesize memories directly. Instead, a special memory generator tool or
memory library may be used, or the memory can be custom-designed.

A.9.1  RAM
Example A.43 describes a single-ported 64-word × 32-bit synchronous RAM with sepa-
rate read and write data busses. When the write enable, we, is asserted, the selected
address in the RAM is written with din on the rising edge of the clock. In any event, the
RAM is read onto dout.

Example A.42  Parameterized N-input AND Gate

SystemVerilog 

module andN
  #(parameter width = 8)
   (input  logic [width-1:0] a,
    output logic             y);

  genvar i;
  logic [width-1:1] x;

  generate
    for (i=1; i<width; i=i+1) begin:forloop
      if (i == 1)
        assign x[1] = a[0] & a[1];
      else
        assign x[i] = a[i] & x[i-1];
    end
  endgenerate
  assign y = x[width-1];
endmodule

The for statement loops through i = 1, 2, ..., width–1 to produce
many consecutive AND gates. The begin in a generate for
loop must be followed by a : and an arbitrary label (forloop, in
this case).

Of course, writing assign y = &a would be much easier! 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity andN is
  generic(width: integer := 8);
  port(a: in  STD_LOGIC_VECTOR(width-1 downto 0);
       y: out STD_LOGIC);
end;

architecture synth of andN is
  signal x: STD_LOGIC_VECTOR(width-1 downto 1); 
begin
  AllBits: for i in 1 to width-1 generate
    LowBit: if i = 1 generate
      A1: x(1) <= a(0) and a(1);
    end generate;
    OtherBits: if i /= 1 generate
      Ai: x(i) <= a(i) and x(i-1);
    end generate;
  end generate;
  y <= x(width-1);
end;

The generate loop variable i does not need to be declared.

x[1] x[2] x[3] x[4] x[5] x[6] x[7]

[7]
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[1]
[1]

[2]
[2]

[1]

[3]
[3]

[2]

[4]
[4]

[3]

[5]
[5]

[4]

[6]
[6]

[5]

[7]
[7]

[6]

a[7:0]

y

FIGURE A.40  andN
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Example A.44 shows how to modify the RAM to have a single bidirectional data bus.
This reduces the number of wires needed, but requires that tristate drivers be added to
both ends of the bus. Usually point-to-point wiring is preferred over tristate busses in
VLSI implementations.

Example A.43  RAM

SystemVerilog 

module ram #(parameter N = 6, M = 32)
            (input  logic         clk,
             input  logic         we,
             input  logic [N-1:0] adr,
             input  logic [M-1:0] din,
             output logic [M-1:0] dout);

  logic [M-1:0] mem[2**N-1:0];

  always @(posedge clk)
    if (we) mem[adr] <= din;
  
  assign dout = mem[adr];
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram_array is
  generic(N: integer := 6; M: integer := 32);
  port(clk,

we: in  STD_LOGIC;
adr: in  STD_LOGIC_VECTOR(N-1 downto 0);
din: in  STD_LOGIC_VECTOR(M-1 downto 0);
dout: out STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram_array is
  type mem_array is array((2**N-1) downto 0) 
       of STD_LOGIC_VECTOR(M-1 downto 0);
  signal mem: mem_array;
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if we = '1' then
        mem(CONV_INTEGER(adr)) <= din;
      end if;
    end if;
  end process;
  
  dout <= mem(CONV_INTEGER(adr));
end;

ram1

mem[15:0]

dout[15:0]
din[15:0]

we
addr[5:0]

clk

RADDR[5:0]

DATA[15:0]
DOUT[15:0]WADDR[5:0]

WE
CLK

FIGURE A.41  Synthesized ram
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Example A.44  RAM with Bidirectional Data Bus

SystemVerilog 

module ram #(parameter N = 6, M = 32)
            (input  logic         clk,
             input  logic         we,
             input  logic [N-1:0] adr,
             inout  tri   [M-1:0] data);

  logic [M-1:0] mem[2**N-1:0];

  always @(posedge clk)
    if (we) mem[adr] <= data;
  
  assign data = we ? 'z : mem[adr];
endmodule

Notice that data is declared as an inout port because it can be
used both as an input and output. Also, 'z is a shorthand for filling
a bus of arbitrary length with zs.

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram_array is
  generic(N: integer := 6; M: integer := 32);
  port(clk,

we: in    STD_LOGIC;
adr: in    STD_LOGIC_VECTOR(N-1 downto 0);
data: inout STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram_array is
  type mem_array is array((2**N-1) downto 0) 
       of STD_LOGIC_VECTOR(M-1 downto 0);
  signal mem: mem_array;
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if we = '1' then
        mem(CONV_INTEGER(adr)) <= data;
      end if;
    end if;
  end process;
  
  data <= (OTHERS => 'Z') when we = '1'
          else mem(CONV_INTEGER(adr));
end;

we

ADR

DATA

N

M

FIGURE A.42  Synthesized ram 
with bidirectional data bus

A.9.2  Multiported Register Files
A multiported register file has several read and/or write ports. Example A.45 describes a
synchronous register file with three ports. Ports 1 and 2 are read ports and port 3 is a write
port.
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A.9.3  ROM
A read-only memory is usually modeled by a case statement with one entry for each
word. Example A.46 describes a 4-word by 3-bit ROM. ROMs often are synthesized into
blocks of random logic that perform the equivalent function. For small ROMs, this can be
most efficient. For larger ROMs, a ROM generator tool or library tends to be better. Fig-
ure A.27 showed a schematic of a 7-segment decoder implemented with a ROM.

Example A.45  Three-Ported Register File

SystemVerilog 

module ram3port #(parameter N = 6, M = 32)
                 (input  logic         clk,
                  input  logic         we3,
                  input  logic [N-1:0] a1, a2, a3,
                  output logic [M-1:0] d1, d2,
                  input  logic [M-1:0] d3);

  logic [M-1:0] mem[2**N-1:0];

  always @(posedge clk)
    if (we3) mem[a3] <= d3;
  
  assign d1 = mem[a1];
  assign d2 = mem[a2];
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity ram3port is
  generic(N: integer := 6; M: integer := 32);
  port(clk,

we3: in  STD_LOGIC;
a1,a2,a3: in  STD_LOGIC_VECTOR(N-1 downto 0);
d1, d2: out STD_LOGIC_VECTOR(M-1 downto 0);
d3: in  STD_LOGIC_VECTOR(M-1 downto 0));

end;

architecture synth of ram3port is
  type mem_array is array((2**N-1) downto 0) 
       of STD_LOGIC_VECTOR(M-1 downto 0);
  signal mem: mem_array;
begin
  process(clk) begin
    if clk'event and clk = '1' then
      if we3 = '1' then
        mem(CONV_INTEGER(a3)) <= d3;
      end if;
    end if;
  end process;
  
  d1 <= mem(CONV_INTEGER(a1));
  d2 <= mem(CONV_INTEGER(a2));
end;

we3
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A2

A3

D3

D1

D2

N

N
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M

M

M

FIGURE A.43  
Three-ported register file
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A.10   Testbenches
A testbench is an HDL module used to test another module, called the device under test
(DUT). The testbench contains statements to apply inputs to the DUT and, ideally, to
check that the correct outputs are produced. The input and desired output patterns are
called test vectors.

Consider testing the sillyfunction module from Section A.1.1 that computes Y =
ABC + ABC + ABC. This is a simple module, so we can perform exhaustive testing by
applying all eight possible test vectors.

Example A.47 demonstrates a simple testbench. It instantiates the DUT, and then
applies the inputs. Blocking assignments and delays are used to apply the inputs in the
appropriate order. The user must view the results of the simulation and verify by inspec-
tion that the correct outputs are produced. Testbenches are simulated just as other HDL
modules. However, they are not synthesizable.

Example A.46  ROM

SystemVerilog 

module rom(input  logic [1:0] adr,
           output logic [2:0] dout);

  always_comb
    case(adr)
      2'b00: dout = 3'b011;
      2'b01: dout = 3'b110;
      2'b10: dout = 3'b100;
      2'b11: dout = 3'b010;
    endcase
endmodule

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity rom is
  port(adr: in  STD_LOGIC_VECTOR(1 downto 0);
       dout: out STD_LOGIC_VECTOR(2 downto 0));
end;

architecture synth of rom is
begin
  process(adr) begin
    case adr is
      when "00" => dout <= "011";
      when "01" => dout <= "110";
      when "10" => dout <= "100";
      when "11" => dout <= "010";
      when others => dout <= (OTHERS => 'X');
    end case;
  end process;
end;
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Checking for correct outputs by hand is tedious and error-prone. Moreover, deter-
mining the correct outputs is much easier when the design is fresh in your mind; if you
make minor changes and need to retest weeks later, determining the correct outputs
becomes a hassle. A much better approach is to write a self-checking testbench, shown in
Example A.48.

Example A.47  Testbench

SystemVerilog 

module testbench1();
  logic a, b, c;
  logic y;

  // instantiate device under test
  sillyfunction dut(a, b, c, y);

  // apply inputs one at a time

  initial begin
    a = 0; b = 0; c = 0; #10;
    c = 1;               #10;
    b = 1; c = 0;        #10;
    c = 1;               #10;
    a = 1; b = 0; c = 0; #10;
    c = 1;               #10;
    b = 1; c = 0;        #10;
    c = 1;               #10;
  end
endmodule 

The initial statement executes the statements in its body at the
start of simulation. In this case, it first applies the input pattern 000
and waits for 10 time units. It then applies 001 and waits 10 more
units, and so forth until all eight possible inputs have been applied.
Initial statements should only be used in testbenches for simu-
lation, not in modules intended to be synthesized into actual hard-
ware. Hardware has no way of magically executing a sequence of
special steps when it is first turned on. 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench1 is -- no inputs or outputs
end;

architecture sim of testbench1 is
  component sillyfunction
    port(a, b, c: in  STD_LOGIC;
         y:       out STD_LOGIC);
  end component;
  signal a, b, c, y: STD_LOGIC;
begin
  -- instantiate device under test
  dut: sillyfunction port map(a, b, c, y);

  -- apply inputs one at a time
  process begin
    a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
    c <= '1';                     wait for 10 ns;
    b <= '1'; c <= '0';           wait for 10 ns;
    c <= '1';                     wait for 10 ns;
    a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
    c <= '1';                     wait for 10 ns;
    b <= '1'; c <= '0';           wait for 10 ns;
    c <= '1';                     wait for 10 ns;
    wait; -- wait forever
  end process;    
end;

The process statement first applies the input pattern 000 and
waits for 10 ns.  It then applies 001 and waits 10 more ns, and so
forth until all eight possible inputs have been applied.

At the end, the process waits indefinitely; otherwise, the pro-
cess would begin again, repeatedly applying the pattern of test vec-
tors. 
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Writing code for each test vector also becomes tedious, especially for modules that
require a large number of vectors. An even better approach is to place the test vectors in a
separate file. The testbench simply reads the test vectors, applies the input test vector,
waits, checks that the output values match the output vector, and repeats until it reaches
the end of the file.

Example A.49 demonstrates such a testbench. The testbench generates a clock using
an always / process statement with no stimulus list so that it is continuously reevalu-
ated. At the beginning of the simulation, it reads the test vectors from a disk file and

Example A.48  Self-Checking Testbench

SystemVerilog 

module testbench2();
  logic a, b, c;
  logic y;

  // instantiate device under test
  sillyfunction dut(a, b, c, y);

  // apply inputs one at a time
  // checking results

  initial begin
    a = 0; b = 0; c = 0; #10;
    assert (y === 1) else $error("000 failed.");
    c = 1;               #10;
    assert (y === 0) else $error("001 failed.");
    b = 1; c = 0;        #10;
    assert (y === 0) else $error("010 failed.");
    c = 1;               #10;
    assert (y === 0) else $error("011 failed.");
    a = 1; b = 0; c = 0; #10;
    assert (y === 1) else $error("100 failed.");
    c = 1;               #10;
    assert (y === 1) else $error("101 failed.");
    b = 1; c = 0;        #10;
    assert (y === 0) else $error("110 failed.");
    c = 1;               #10;
    assert (y === 0) else $error("111 failed.");
  end
endmodule

The SystemVerilog assert statement checks if a specified condi-
tion is true. If it is not, it executes the else statement. The $error
system task in the else statement prints an error message describ-
ing the assertion failure. Assert is ignored during synthesis.

In SystemVerilog, comparison using == or !=  spuriously indi-
cates equality if one of the operands is x or z. The === and !==
operators must be used instead for testbenches because they work
correctly with x and z. 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity testbench2 is -- no inputs or outputs
end;

architecture sim of testbench2 is
  component sillyfunction
    port(a, b, c: in  STD_LOGIC;
         y:       out STD_LOGIC);
  end component;
  signal a, b, c, y: STD_LOGIC;
begin
  -- instantiate device under test
  dut: sillyfunction port map(a, b, c, y);

  -- apply inputs one at a time
  -- checking results
  process begin
    a <= '0'; b <= '0'; c <= '0'; wait for 10 ns;
      assert y = '1' report "000 failed.";
    c <= '1';                     wait for 10 ns;
      assert y = '0' report "001 failed.";
    b <= '1'; c <= '0';           wait for 10 ns;
      assert y = '0' report "010 failed.";
    c <= '1';                     wait for 10 ns;
      assert y = '0' report "011 failed.";
    a <= '1'; b <= '0'; c <= '0'; wait for 10 ns;
      assert y = '1' report "100 failed.";
    c <= '1';                     wait for 10 ns;
      assert y = '1' report "101 failed.";
    b <= '1'; c <= '0';           wait for 10 ns;
      assert y = '0' report "110 failed.";
    c <= '1';                     wait for 10 ns;
      assert y = '0' report "111 failed.";
    wait; -- wait forever
  end process;    
end;

The assert statement checks a condition and prints the message
given in the report clause if the condition is not satisfied. Assert
is ignored during synthesis.
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pulses reset for two cycles. example.tv is a text file containing the inputs and expected
output written in binary:

000_1
001_0
010_0
011_0
100_1
101_1
110_0
111_0

New inputs are applied on the rising edge of the clock and the output is checked on
the falling edge of the clock. This clock (and reset) would also be provided to the DUT
if sequential logic were being tested. Errors are reported as they occur. At the end of the
simulation, the testbench prints the total number of test vectors applied and the number of
errors detected.

This testbench is overkill for such a simple circuit. However, it can easily be modified
to test more complex circuits by changing the example.tv file, instantiating the new
DUT, and changing a few lines of code to set the inputs and check the outputs.

Example A.49  Testbench with Test Vector File

SystemVerilog 

module testbench3();
  logic        clk, reset;
  logic        a, b, c, yexpected;
  logic        y;
  logic [31:0] vectornum, errors;
  logic [3:0]  testvectors[10000:0];

  // instantiate device under test
  sillyfunction dut(a, b, c, y);

  // generate clock
  always 
    begin
      clk = 1; #5; clk = 0; #5;
    end

  // at start of test, load vectors
  // and pulse reset
  initial
    begin
      $readmemb("example.tv", testvectors);
      vectornum = 0; errors = 0;
      reset = 1; #27; reset = 0;
    end

  // apply test vectors on rising edge of clk
  always @(posedge clk)
    begin
      #1; {a, b, c, yexpected} = 
            testvectors[vectornum];
    end

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;
use STD.TEXTIO.all;

entity testbench3 is -- no inputs or outputs
end;

architecture sim of testbench3 is
  component sillyfunction
    port(a, b, c: in  STD_LOGIC;
         y:       out STD_LOGIC);
  end component;
  signal a, b, c, y: STD_LOGIC;
  signal clk, reset: STD_LOGIC;
  signal yexpected: STD_LOGIC;
  constant MEMSIZE: integer := 10000;
  type tvarray is array(MEMSIZE downto 0) of
    STD_LOGIC_VECTOR(3 downto 0);
  signal testvectors: tvarray;
  shared variable vectornum, errors: integer;
begin
  -- instantiate device under test
  dut: sillyfunction port map(a, b, c, y);
  
  -- generate clock
  process begin
    clk <= '1'; wait for 5 ns;
    clk <= '0'; wait for 5 ns;
  end process;

  -- at start of test, load vectors
  -- and pulse reset
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SystemVerilog (continued) 
// check results on falling edge of clk
   always @(negedge clk)
    if (~reset) begin // skip during reset
      if (y !== yexpected) begin  

$display("Error: inputs = %b", {a, b, c});
$display("  outputs = %b (%b expected)",

                 y, yexpected);
        errors = errors + 1;
      end
      vectornum = vectornum + 1;
      if (testvectors[vectornum] === 'bx) begin 

$display("%d tests completed with %d 
         errors", vectornum, errors);

        $finish;
      end
    end
endmodule

$readmemb  reads a file of binary numbers into an array.
$readmemh is similar, but it reads a file of hexadecimal numbers.

The next block of code waits one time unit after the rising edge
of the clock (to avoid any confusion of clock and data changing
simultaneously), then sets the three inputs and the expected output
based on the 4 bits in the current test vector.

$display is a system task to print in the simulator window.
$finish terminates the simulation.

Note that even though the SystemVerilog module supports up
to 10001 test vectors, it will terminate the simulation after executing
the 8 vectors in the file.

For more information on testbenches and SystemVerilog verifi-
cation, consult [Bergeron05].

VHDL (continued) 
process is
    file tv: TEXT;
    variable i, j: integer;
    variable L: line;
    variable ch: character;
  begin
    -- read file of test vectors
    i := 0;
    FILE_OPEN(tv, "example.tv", READ_MODE);
    while not endfile(tv) loop
      readline(tv, L);
      for j in 0 to 3 loop
        read(L, ch);
        if (ch = '_') then read(L, ch);
        end if;
        if (ch = '0') then 
          testvectors(i)(j) <= '0';
        else testvectors(i)(j) <= '1';
        end if;
      end loop;
      i := i + 1;
    end loop;

    vectornum := 0; errors := 0;
    reset <= '1'; wait for 27 ns; reset <= '0';
    wait;
  end process;
  -- apply test vectors on rising edge of clk
  process (clk) begin
    if (clk'event and clk = '1') then
      
      a <= testvectors(vectornum)(0) after 1 ns;
      b <= testvectors(vectornum)(1) after 1 ns;
      c <= testvectors(vectornum)(2) after 1 ns;
      yexpected <= testvectors(vectornum)(3) 
        after 1 ns;
    end if;
  end process;

  -- check results on falling edge of clk
  process (clk) begin
    if (clk'event and clk = '0' and reset = '0') then
      assert y = yexpected
         report "Error: y = " & STD_LOGIC'image(y);
      if (y /= yexpected) then
        errors := errors + 1;
      end if;
      vectornum := vectornum + 1;
      if (is_x(testvectors(vectornum))) then
        if (errors = 0) then
          report "Just kidding -- " &
                integer'image(vectornum) &
                 " tests completed successfully."
                severity failure;

(continues)
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A.11   SystemVerilog Netlists
As mentioned in Section 1.8.4, Verilog provides transistor and gate-level primitives that
are helpful for describing netlists. Comparable features are not built into VHDL.

Gate primitives include not, and, or, xor, nand, nor, and xnor. The output is de-
clared first; multiple inputs may follow. For example, a 4-input AND gate may be specified as

  and g1(y, a, b, c, d);

Transistor primitives include tranif1, tranif0, rtranif1, and rtranif0.
tranif1 is an nMOS transistor (i.e., one that turns ON when the gate is ‘1’) while
tranif0 is a pMOS transistor. The rtranif primitives are resistive transistors; i.e., weak
transistors that can be overcome by a stronger driver. Logic 0 and 1 values (GND and VDD)
are defined with the supply0 and supply1 types. For example, a pseudo-nMOS NOR
gate of Figure A.44 with a weak pullup is modeled with three transistors. Note that y must
be declared as a tri net because it could be driven by multiple transistors.

module nor_pseudonmos(input  logic a, b, 
               output tri   y);

  supply0 gnd;
  supply1 vdd;

  tranif1  n1(y, gnd, a);
  tranif1  n2(y, gnd, b);
  rtranif0 p1(y, vdd, gnd);
endmodule

Modeling a latch in Verilog requires care because the feedback path turns ON at the
same time as the feedforward path turns OFF as the latch turns opaque. Depending on race
conditions, there is a risk that the state node could float or experience contention. To solve

Example A.49  Testbench with Test Vector File (continued)

VHDL (continued) 
        else
          report integer'image(vectornum) & 
                 " tests completed, errors = " &
                 integer'image(errors)
                 severity failure;
        end if;
      end if;
    end if;
  end process;
end;

The VHDL code is rather ungainly and uses file reading commands
beyond the scope of this appendix, but it gives the sense of what a
self-checking testbench looks like.

A B
Y

N1 N2

P1
weak

FIGURE A.44  
Pseudo-nMOS NOR gate
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this problem, the state node is modeled as a trireg (so it will not float) and the feed-
back transistors are modeled as weak (so they will not cause contention). The other
nodes are tri nets because they can be driven by multiple transistors. Figure A.45 re-
draws the latch from Figure 10.17(g) at the transistor level and highlights the weak
transistors and state node.

module latch(input  logic ph, phb, d,
             output tri   q);

  trireg  x;
  tri     xb, nn12, nn56, pp12, pp56;
  supply0 gnd;
  supply1 vdd;

  // input stage
  tranif1 n1(nn12, gnd, d);
  tranif1 n2(x, nn12, ph);
  tranif0 p1(pp12, vdd, d);
  tranif0 p2(x, pp12, phb);

  // output inverter
  tranif1 n3(q, gnd, x);
  tranif0 p3(q, vdd, x);

  // xb inverter
  tranif1 n4(xb, gnd, x);
  tranif0 p4(xb, vdd, x);

  // feedback tristate
  tranif1  n5(nn56, gnd, xb);
  rtranif1 n6(x, nn56, phb);
  tranif0  p5(pp56, vdd, xb);
  rtranif0 p6(x, pp56, ph);
endmodule

Most synthesis tools map only onto gates, not transistors, so transistor primitives
are only for simulation.

 The tranif devices are bidirectional; i.e., the source and drain are symmetric.
Verilog also supports unidirectional nmos and pmos primitives that only allow a signal
to flow from the input terminal to the output terminal. Real transistors are inherently
bidirectional, so unidirectional models can result in simulation not catching bugs that
would exist in real hardware. Therefore, tranif primitives are preferred for simulation.

A.12   Example: MIPS Processor
To illustrate a nontrivial HDL design, this section lists the code and testbench for the
MIPS processor subset discussed in Chapter 1. The example handles only the LB, SB,
ADD, SUB, AND, OR, SLT, BEQ, and J instructions. It uses an 8-bit datapath and only
eight registers. Because the instruction is 32-bits wide, it is loaded in four successive
fetch cycles across an 8-bit path to external memory.
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FIGURE A.45  latch
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A.12.1  Testbench
The testbench initializes a 256-byte memory with instructions and data from a text file.
The code exercises each of the instructions. The mipstest.asm assembly language file
and memfile.dat text file are shown below. The testbench runs until it observes a mem-
ory write. If the value 7 is written to address 76, the code probably executed correctly. If all
goes well, the testbench should take 100 cycles (1000 ns) to run.

# mipstest.asm
# 9/16/03 David Harris David_Harris@hmc.edu
#
# Test MIPS instructions.  Assumes little-endian memory was
# initialized as:
# word 16: 3
# word 17: 5
# word 18: 12

main: #Assembly Code effect Machine Code 
lb $2, 68($0) # initialize $2 = 5 80020044
lb $7, 64($0) # initialize $7 = 3 80070040
lb $3, 69($7) # initialize $3 = 12 80e30045
or $4, $7, $2 # $4 <= 3 or 5 = 7 00e22025
and $5, $3, $4 # $5 <= 12 and 7 = 4 00642824
add $5, $5, $4 # $5 <= 4 + 7 = 11 00a42820
beq $5, $7, end # shouldn’t be taken 10a70008
slt $6, $3, $4 # $6 <= 12 < 7 = 0 0064302a
beq $6, $0, around # should be taken 10c00001
lb $5, 0($0) # shouldn’t happen 80050000

around: slt $6, $7, $2 # $6 <= 3 < 5 = 1 00e2302a
add $7, $6, $5 # $7 <= 1 + 11 = 12 00c53820
sub $7, $7, $2 # $7 <= 12 - 5 = 7 00e23822
j end # should be taken 0800000f
lb $7, 0($0) # shouldn’t happen 80070000

end: sb $7, 71($2) # write adr 76 <= 7 a0470047
.dw 3 00000003
.dw 5 00000005
.dw 12 0000000c

memfile.dat
80020044
80070040
80e30045
00e22025
00642824
00a42820
10a70008
0064302a
10c00001
80050000
00e2302a
00c53820
00e23822
0800000f
80070000
a0470047
00000003
00000005
0000000c
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A.12.2  SystemVerilog
//-------------------------------------------------
// mips.sv
// Max Yi (byyi@hmc.edu) and 
//   David_Harris@hmc.edu 12/9/03
// Changes 7/3/07 DMH
//   Updated to SystemVerilog
//   fixed memory endian bug
//
// Model of subset of MIPS processor from Ch 1
//  note that no sign extension is done because 
//  width is only 8 bits
//---------------------

// states and instructions

  typedef enum logic [3:0] 
    {FETCH1 = 4'b0000, FETCH2, FETCH3, FETCH4,
     DECODE, MEMADR, LBRD, LBWR, SBWR,
     RTYPEEX, RTYPEWR, BEQEX, JEX} statetype;
  typedef enum logic [5:0] {LB    = 6'b100000,
                            SB    = 6'b101000,
                            RTYPE = 6'b000000,
                            BEQ   = 6'b000100,
                            J     = 6'b000010} opcode;
  typedef enum logic [5:0] {ADD = 6'b100000,
                            SUB = 6'b100010,
                            AND = 6'b100100,
                            OR  = 6'b100101,
                            SLT = 6'b101010} functcode;

// testbench
module testbench #(parameter WIDTH = 8, REGBITS = 3)();

  logic             clk;
  logic             reset;
  logic             memread, memwrite;
  logic [WIDTH-1:0] adr, writedata;
  logic [WIDTH-1:0] memdata;

  // instantiate devices to be tested
  mips #(WIDTH,REGBITS) dut(clk, reset, memdata, memread, 
                            memwrite, adr, writedata);

  // external memory for code and data
  exmemory #(WIDTH) exmem(clk, memwrite, adr, writedata, memdata);

  // initialize test
  initial
    begin
      reset <= 1; # 22; reset <= 0;
    end

  // generate clock to sequence tests
  always
    begin
      clk <= 1; # 5; clk <= 0; # 5;
    end
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  always @(negedge clk)
    begin
      if(memwrite)
        assert(adr == 76 & writedata == 7)
          $display("Simulation completely successful");
        else $error("Simulation failed");
    end
endmodule

// external memory accessed by MIPS
module exmemory #(parameter WIDTH = 8)
                 (input  logic             clk,
                  input  logic             memwrite,
                  input  logic [WIDTH-1:0] adr, writedata,
                  output logic [WIDTH-1:0] memdata);

  logic [31:0]      mem [2**(WIDTH-2)-1:0];
  logic [31:0]      word;
  logic [1:0]       bytesel;
  logic [WIDTH-2:0] wordadr;

  initial
    $readmemh("memfile.dat", mem);

  assign bytesel = adr[1:0];
  assign wordadr = adr[WIDTH-1:2];

  // read and write bytes from 32-bit word
  always @(posedge clk)
    if(memwrite) 
      case (bytesel)
        2'b00: mem[wordadr][7:0]   <= writedata;
        2'b01: mem[wordadr][15:8]  <= writedata;
        2'b10: mem[wordadr][23:16] <= writedata;
        2'b11: mem[wordadr][31:24] <= writedata;
      endcase

   assign word = mem[wordadr];
   always_comb
     case (bytesel)
       2'b00: memdata = word[7:0];
       2'b01: memdata = word[15:8];
       2'b10: memdata = word[23:16];
       2'b11: memdata = word[31:24];
     endcase
endmodule

// simplified MIPS processor
module mips #(parameter WIDTH = 8, REGBITS = 3)
             (input  logic             clk, reset, 
              input  logic [WIDTH-1:0] memdata, 
              output logic             memread, memwrite, 
              output logic [WIDTH-1:0] adr, writedata);

   logic [31:0] instr;
   logic        zero, alusrca, memtoreg, iord, pcen, 
                regwrite, regdst;
   logic [1:0]  pcsrc, alusrcb;
   logic [3:0]  irwrite;
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   logic [2:0]  alucontrol;
   logic [5:0]  op, funct;
 
   assign op = instr[31:26];      
   assign funct = instr[5:0];  
      
   controller cont(clk, reset, op, funct, zero, memread, memwrite, 
                   alusrca, memtoreg, iord, pcen, regwrite, regdst,
                   pcsrc, alusrcb, alucontrol, irwrite);
   datapath    #(WIDTH, REGBITS) 
     dp(clk, reset, memdata, alusrca, memtoreg, iord, pcen,
        regwrite, regdst, pcsrc, alusrcb, irwrite, alucontrol,
        zero, instr, adr, writedata);
endmodule

module controller(input logic clk, reset, 
                  input  logic [5:0] op, funct,
                  input  logic       zero, 
                  output logic       memread, memwrite, alusrca,  
                  output logic       memtoreg, iord, pcen, 
                  output logic       regwrite, regdst, 
                  output logic [1:0] pcsrc, alusrcb,
                  output logic [2:0] alucontrol,
                  output logic [3:0] irwrite);

  statetype       state;
  logic           pcwrite, branch;
  logic     [1:0] aluop;

  // control FSM
  statelogic statelog(clk, reset, op, state);
  outputlogic outputlog(state, memread, memwrite, alusrca,
                        memtoreg, iord, 
                        regwrite, regdst, pcsrc, alusrcb, irwrite, 
                        pcwrite, branch, aluop);

  // other control decoding
  aludec  ac(aluop, funct, alucontrol

  // program counter enable
  assign pcen = pcwrite | (branch & zero); 
endmodule

module statelogic(input  logic       clk, reset,
                  input  logic [5:0] op,
                  output statetype   state);

  statetype nextstate;
  
  always_ff @(posedge clk)
    if (reset) state <= FETCH1;
    else       state <= nextstate;
    
  always_comb
    begin
      case (state)
        FETCH1:  nextstate = FETCH2;
        FETCH2:  nextstate = FETCH3;
        FETCH3:  nextstate = FETCH4;
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        FETCH4:  nextstate = DECODE;
        DECODE:  case(op)
                   LB:      nextstate = MEMADR;
                   SB:      nextstate = MEMADR;
                   RTYPE:   nextstate = RTYPEEX;
                   BEQ:     nextstate = BEQEX;
                   J:       nextstate = JEX;
                   default: nextstate = FETCH1; 
                            // should never happen
                 endcase
        MEMADR:  case(op)
                   LB:      nextstate = LBRD;
                   SB:      nextstate = SBWR;
                   default: nextstate = FETCH1; 
                            // should never happen
                 endcase
        LBRD:    nextstate = LBWR;
        LBWR:    nextstate = FETCH1;
        SBWR:    nextstate = FETCH1;
        RTYPEEX: nextstate = RTYPEWR;
        RTYPEWR: nextstate = FETCH1;
        BEQEX:   nextstate = FETCH1;
        JEX:     nextstate = FETCH1;
        default: nextstate = FETCH1; 
                 // should never happen
      endcase
    end
endmodule

module outputlogic(input statetype state,
                   output logic       memread, memwrite, alusrca,  
                   output logic       memtoreg, iord, 
                   output logic       regwrite, regdst, 
                   output logic [1:0] pcsrc, alusrcb,
                   output logic [3:0] irwrite,
                   output logic       pcwrite, branch,
                   output logic [1:0] aluop);

  always_comb
    begin
      // set all outputs to zero, then 
      // conditionally assert just the appropriate ones
      irwrite = 4'b0000;
      pcwrite = 0; branch = 0;
      regwrite = 0; regdst = 0;
      memread = 0; memwrite = 0;
      alusrca = 0; alusrcb = 2'b00; aluop = 2'b00;
      pcsrc = 2'b00;
      iord = 0; memtoreg = 0;

      case (state)
        FETCH1: 
          begin
            memread = 1; 
            irwrite = 4'b0001; 
            alusrcb = 2'b01; 
            pcwrite = 1;
          end
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        FETCH2: 
          begin
            memread = 1;
            irwrite = 4'b0010;
            alusrcb = 2'b01;
            pcwrite = 1;
          end
        FETCH3:
          begin
            memread = 1;
            irwrite = 4'b0100;
            alusrcb = 2'b01;
            pcwrite = 1;
          end
        FETCH4:
          begin
            memread = 1;
            irwrite = 4'b1000;
            alusrcb = 2'b01;
            pcwrite = 1;
          end
        DECODE: alusrcb = 2'b11;
        MEMADR:
          begin
            alusrca = 1;
            alusrcb = 2'b10;
          end
        LBRD:
          begin
            memread = 1;
            iord    = 1;
          end
        LBWR:
          begin
            regwrite = 1;
            memtoreg = 1;
          end
        SBWR:
          begin
            memwrite = 1;
            iord     = 1;
          end
        RTYPEEX: 
          begin
            alusrca = 1;
            aluop   = 2'b10;
          end
        RTYPEWR:
          begin
            regdst   = 1;
            regwrite = 1;
          end
        BEQEX:
          begin
            alusrca = 1;
            aluop   = 2'b01;
            branch  = 1;
            pcsrc   = 2'b01;
          end
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        JEX:
          begin
            pcwrite  = 1;
            pcsrc    = 2'b10;
          end
      endcase
    end
endmodule

module aludec(input  logic [1:0] aluop, 
              input  logic [5:0] funct, 
              output logic [2:0] alucontrol);

  always_comb
    case (aluop)
      2'b00: alucontrol = 3'b010;  // add for lb/sb/addi
      2'b01: alucontrol = 3'b110;  // subtract (for beq)
      default: case(funct)      // R-Type instructions
                 ADD: alucontrol = 3'b010;
                 SUB: alucontrol = 3'b110;
                 AND: alucontrol = 3'b000;
                 OR:  alucontrol = 3'b001;
                 SLT: alucontrol = 3'b111;
                 default:   alucontrol = 3'b101; 
                            // should never happen
               endcase
    endcase
endmodule

module datapath #(parameter WIDTH = 8, REGBITS = 3)
                 (input  logic             clk, reset, 
                  input  logic [WIDTH-1:0] memdata, 
                  input  logic             alusrca, memtoreg, iord, 
                  input  logic             pcen, regwrite, regdst,
                  input  logic [1:0]       pcsrc, alusrcb, 
                  input  logic [3:0]       irwrite, 
                  input  logic [2:0]       alucontrol, 
                  output logic             zero, 
                  output logic [31:0]      instr, 
                  output logic [WIDTH-1:0] adr, writedata);

  logic [REGBITS-1:0] ra1, ra2, wa;
  logic [WIDTH-1:0]   pc, nextpc, data, rd1, rd2, wd, a, srca, 
                      srcb, aluresult, aluout, immx4;

  logic [WIDTH-1:0] CONST_ZERO = 0;
  logic [WIDTH-1:0] CONST_ONE =  1;

  // shift left immediate field by 2
  assign immx4 = {instr[WIDTH-3:0],2'b00};

  // register file address fields
  assign ra1 = instr[REGBITS+20:21];
  assign ra2 = instr[REGBITS+15:16];
  mux2       #(REGBITS) regmux(instr[REGBITS+15:16], 
                               instr[REGBITS+10:11], regdst, wa);

  // independent of bit width, 
  // load instruction into four 8-bit registers over four cycles
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  flopen     #(8)      ir0(clk, irwrite[0], memdata[7:0], instr[7:0]);
  flopen     #(8)      ir1(clk, irwrite[1], memdata[7:0], instr[15:8]);
  flopen     #(8)      ir2(clk, irwrite[2], memdata[7:0], instr[23:16]);
  flopen     #(8)      ir3(clk, irwrite[3], memdata[7:0], instr[31:24]);

  // datapath
  flopenr    #(WIDTH)  pcreg(clk, reset, pcen, nextpc, pc);
  flop       #(WIDTH)  datareg(clk, memdata, data);
  flop       #(WIDTH)  areg(clk, rd1, a);
  flop       #(WIDTH)  wrdreg(clk, rd2, writedata);
  flop       #(WIDTH)  resreg(clk, aluresult, aluout);
  mux2       #(WIDTH)  adrmux(pc, aluout, iord, adr);
  mux2       #(WIDTH)  src1mux(pc, a, alusrca, srca);
  mux4       #(WIDTH)  src2mux(writedata, CONST_ONE, instr[WIDTH-1:0], 
                               immx4, alusrcb, srcb);
  mux3       #(WIDTH)  pcmux(aluresult, aluout, immx4, 
                             pcsrc, nextpc);
  mux2       #(WIDTH)  wdmux(aluout, data, memtoreg, wd);
  regfile    #(WIDTH,REGBITS) rf(clk, regwrite, ra1, ra2, 
                                 wa, wd, rd1, rd2);
  alu        #(WIDTH)  alunit(srca, srcb, alucontrol, aluresult, zero);
endmodule

module alu #(parameter WIDTH = 8)
            (input  logic [WIDTH-1:0] a, b, 
             input  logic [2:0]       alucontrol, 
             output logic [WIDTH-1:0] result,
             output logic             zero);

  logic [WIDTH-1:0] b2, andresult, orresult, 
                    sumresult, sltresult;

  andN    andblock(a, b, andresult);
  orN     orblock(a, b, orresult);
  condinv binv(b, alucontrol[2], b2);
  adder   addblock(a, b2, alucontrol[2], sumresult);
  // slt should be 1 if most significant bit of sum is 1
  assign sltresult = sumresult[WIDTH-1];

  mux4 resultmux(andresult, orresult, sumresult, 
                 sltresult, alucontrol[1:0], result);
  zerodetect #(WIDTH) zd(result, zero);
endmodule

module regfile #(parameter WIDTH = 8, REGBITS = 3)
                (input  logic               clk, 
                 input  logic               regwrite, 
                 input  logic [REGBITS-1:0] ra1, ra2, wa, 
                 input  logic [WIDTH-1:0]   wd, 
                 output logic [WIDTH-1:0]   rd1, rd2);

   logic [WIDTH-1:0] RAM [2**REGBITS-1:0];

  // three ported register file
  // read two ports combinationally
  // write third port on rising edge of clock
  // register 0 hardwired to 0
  always @(posedge clk)
    if (regwrite) RAM[wa] <= wd;
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  assign rd1 = ra1 ? RAM[ra1] : 0;
  assign rd2 = ra2 ? RAM[ra2] : 0;
endmodule

module zerodetect #(parameter WIDTH = 8)
                   (input  logic [WIDTH-1:0] a, 
                    output logic             y);

   assign y = (a==0);
endmodule

module flop #(parameter WIDTH = 8)
             (input  logic             clk, 
              input  logic [WIDTH-1:0] d, 
              output logic [WIDTH-1:0] q);

  always_ff @(posedge clk)
    q <= d;
endmodule

module flopen #(parameter WIDTH = 8)
               (input  logic             clk, en,
                input  logic [WIDTH-1:0] d, 
                output logic [WIDTH-1:0] q);

  always_ff @(posedge clk)
    if (en) q <= d;
endmodule

module flopenr #(parameter WIDTH = 8)
                (input  logic             clk, reset, en,
                 input  logic [WIDTH-1:0] d, 
                 output logic [WIDTH-1:0] q);
 
  always_ff @(posedge clk)
    if      (reset) q <= 0;
    else if (en)    q <= d;
endmodule

module mux2 #(parameter WIDTH = 8)
             (input  logic [WIDTH-1:0] d0, d1, 
              input  logic             s, 
              output logic [WIDTH-1:0] y);

  assign y = s ? d1 : d0; 
endmodule

module mux3 #(parameter WIDTH = 8)
             (input  logic [WIDTH-1:0] d0, d1, d2,
              input  logic [1:0]       s, 
              output logic [WIDTH-1:0] y);

  always_comb 
    casez (s)
      2'b00: y = d0;
      2'b01: y = d1;
      2'b1?: y = d2;
    endcase
endmodule
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module mux4 #(parameter WIDTH = 8)
             (input  logic [WIDTH-1:0] d0, d1, d2, d3,
              input  logic [1:0]       s, 
              output logic [WIDTH-1:0] y);

  always_comb
    case (s)
      2'b00: y = d0;
      2'b01: y = d1;
      2'b10: y = d2;
      2'b11: y = d3;
    endcase
endmodule

module andN #(parameter WIDTH = 8)
             (input  logic [WIDTH-1:0] a, b,
              output logic [WIDTH-1:0] y);

  assign y = a & b;
endmodule

module orN #(parameter WIDTH = 8)
            (input  logic [WIDTH-1:0] a, b,
             output logic [WIDTH-1:0] y);

  assign y = a | b;
endmodule

module inv #(parameter WIDTH = 8)
            (input  logic [WIDTH-1:0] a,
             output logic [WIDTH-1:0] y);

  assign y = ~a;
endmodule

module condinv #(parameter WIDTH = 8)
                (input  logic [WIDTH-1:0] a,
                 input  logic             invert,
                 output logic [WIDTH-1:0] y);

  logic [WIDTH-1:0] ab;

  inv  inverter(a, ab);
  mux2 invmux(a, ab, invert, y);
endmodule

module adder #(parameter WIDTH = 8)
              (input  logic [WIDTH-1:0] a, b,
               input  logic             cin,
               output logic [WIDTH-1:0] y);

  assign y = a + b + cin;
endmodule
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A.12.3  VHDL

---------------------------------------------------------
-- mips.vhd
-- David_Harris@hmc.edu 9/9/03
-- Model of subset of MIPS processor described in Ch 1
---------------------------------------------------------

---------------------------------------------------------
-- Entity Declarations
---------------------------------------------------------

library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity top is -- top-level design for testing
    generic(width:   integer := 8;     -- default 8-bit datapath
            regbits: integer := 3);    -- and 3 bit register addresses (8 regs)
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; use STD.TEXTIO.all;
use IEEE.STD_LOGIC_UNSIGNED.all;  use IEEE.STD_LOGIC_ARITH.all;
entity memory is -- external memory accessed by MIPS
    generic(width: integer);
    port(clk, memwrite:  in STD_LOGIC;
         adr, writedata: in STD_LOGIC_VECTOR(width-1 downto 0);
         memdata:        out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mips is -- simplified MIPS processor
    generic(width:   integer := 8;     -- default 8-bit datapath
            regbits: integer := 3);    -- and 3 bit register addresses (8 regs)
    port(clk, reset:        in  STD_LOGIC;
         memdata:           in  STD_LOGIC_VECTOR(width-1 downto 0);
         memread, memwrite: out STD_LOGIC;
         adr, writedata:    out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity controller is -- control FSM
    port(clk, reset:                   in  STD_LOGIC;
         op:                           in  STD_LOGIC_VECTOR(5 downto 0);
         zero:                         in  STD_LOGIC;
         memread, memwrite, alusrca, memtoreg,
         iord, pcen, regwrite, regdst: out STD_LOGIC;
         pcsrc, alusrcb, aluop:     out STD_LOGIC_VECTOR(1 downto 0);
         irwrite:                      out STD_LOGIC_VECTOR(3 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity alucontrol is -- ALU control decoder
    port(aluop:   in  STD_LOGIC_VECTOR(1 downto 0);
         funct:   in  STD_LOGIC_VECTOR(5 downto 0);
         alucont: out STD_LOGIC_VECTOR(2 downto 0));
end;
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library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity datapath is  -- MIPS datapath
    generic(width, regbits: integer);
    port(clk, reset:        in  STD_LOGIC;
         memdata:           in  STD_LOGIC_VECTOR(width-1 downto 0);
         alusrca, memtoreg, iord, pcen,
         regwrite, regdst:  in  STD_LOGIC;
         pcsrc, alusrcb:    in  STD_LOGIC_VECTOR(1 downto 0);
         irwrite:           in  STD_LOGIC_VECTOR(3 downto 0);
         alucont:           in  STD_LOGIC_VECTOR(2 downto 0);
         zero:              out STD_LOGIC;
         instr:             out STD_LOGIC_VECTOR(31 downto 0);
         adr, writedata:    out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_ARITH.all; use IEEE.STD_LOGIC_UNSIGNED.all;
entity alu is -- Arithmetic/Logic unit with add/sub, AND, OR, set less than
    generic(width: integer);
    port(a, b:    in  STD_LOGIC_VECTOR(width-1 downto 0);
         alucont: in  STD_LOGIC_VECTOR(2 downto 0);
         result:  out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all; 
use IEEE.STD_LOGIC_UNSIGNED.all; use IEEE.STD_LOGIC_ARITH.all;
entity regfile is -- three-port register file of 2**regbits words x width bits
    generic(width, regbits: integer);
    port(clk:          in  STD_LOGIC;
         write:        in  STD_LOGIC;
         ra1, ra2, wa: in  STD_LOGIC_VECTOR(regbits-1 downto 0);
         wd:           in  STD_LOGIC_VECTOR(width-1 downto 0);
         rd1, rd2:     out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity zerodetect is -- true if all input bits are zero
    generic(width: integer);
    port(a: in  STD_LOGIC_VECTOR(width-1 downto 0);
         y: out STD_LOGIC);
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flop is -- flip-flop
    generic(width: integer);
    port(clk: in  STD_LOGIC;
         d:   in  STD_LOGIC_VECTOR(width-1 downto 0);
         q:   out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity flopen is -- flip-flop with enable
    generic(width: integer);
    port(clk, en: in  STD_LOGIC;
         d:       in  STD_LOGIC_VECTOR(width-1 downto 0);
         q:       out STD_LOGIC_VECTOR(width-1 downto 0));
end;
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library IEEE; use IEEE.STD_LOGIC_1164.all; use IEEE.STD_LOGIC_ARITH.all;
entity flopenr is -- flip-flop with enable and synchronous reset
    generic(width: integer);
    port(clk, reset, en: in  STD_LOGIC;
         d:              in  STD_LOGIC_VECTOR(width-1 downto 0);
         q:              out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux2 is -- two-input multiplexer
    generic(width: integer);
    port(d0, d1: in  STD_LOGIC_VECTOR(width-1 downto 0);
         s:      in  STD_LOGIC;
         y:      out STD_LOGIC_VECTOR(width-1 downto 0));
end;

library IEEE; use IEEE.STD_LOGIC_1164.all;
entity mux4 is  -- four-input multiplexer
    generic(width: integer);
    port(d0, d1, d2, d3: in  STD_LOGIC_VECTOR(width-1 downto 0);
         s:              in  STD_LOGIC_VECTOR(1 downto 0);
         y:              out STD_LOGIC_VECTOR(width-1 downto 0));
end;

---------------------------------------------------------
-- Architecture Definitions
---------------------------------------------------------
architecture test of top is
    component mips generic(width:   integer := 8;   -- default 8-bit datapath
                           regbits: integer := 3);  -- and 3 bit register addresses (8 regs)
        port(clk, reset:        in  STD_LOGIC;
             memdata:           in  STD_LOGIC_VECTOR(width-1 downto 0);
             memread, memwrite: out STD_LOGIC;
             adr, writedata:    out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    component memory generic(width: integer);
        port(clk, memwrite:  in  STD_LOGIC;
             adr, writedata: in  STD_LOGIC_VECTOR(width-1 downto 0);
             memdata:        out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    signal clk, reset, memread, memwrite: STD_LOGIC;
    signal memdata, adr, writedata: STD_LOGIC_VECTOR(width-1 downto 0);
begin
    -- mips being tested
    dut: mips generic map(width, regbits)
              port map(clk, reset, memdata, memread, memwrite, adr, writedata);
    -- external memory for code and data
    exmem: memory generic map(width)
                  port map(clk, memwrite, adr, writedata, memdata);

    -- Generate clock with 10 ns period
    process begin
        clk <= '1';
        wait for 5 ns; 
        clk <= '0';
        wait for 5 ns;
    end process;
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    -- Generate reset for first two clock cycles
    process begin
        reset <= '1';
        wait for 22 ns;
        reset <= '0';
        wait;
    end process;

    -- check that 7 gets written to address 76 at end of program
    process (clk) begin
        if (clk'event and clk = '0' and memwrite = '1') then
            if (conv_integer(adr) = 76 and conv_integer(writedata) = 7) then
                report "Simulation completed successfully";
            else report "Simulation failed.";
            end if;
        end if;
    end process;
end;

architecture synth of memory is
begin
    process is
        file mem_file: text open read_mode is "memfile.dat";
        variable L: line;
        variable ch: character;
        variable index, result: integer;
        type ramtype is array (255 downto 0) of STD_LOGIC_VECTOR(7 downto 0);
        variable mem: ramtype;
    begin

-- initialize memory from file
-- memory in little-endian format
--  80020044 means mem[3] = 80 and mem[0] = 44

        for i in 0 to 255 loop -- set all contents low
            mem(conv_integer(i)) := "00000000";
        end loop;
        index := 0; 
        while not endfile(mem_file) loop
            readline(mem_file, L);
            for j in 0 to 3 loop
                result := 0;
                    for i in 1 to 2 loop
                        read(L, ch);
                        if '0' <= ch and ch <= '9' then 
                            result := result*16 + character'pos(ch)-character'pos('0');
                        elsif 'a' <= ch and ch <= 'f' then
                            result := result*16 + character'pos(ch)-character'pos('a')+10;
                        else report "Format error on line " & integer'image(index)
                             severity error;
                        end if;
                    end loop;
                mem(index*4+3-j) := conv_std_logic_vector(result, width);
            end loop;
            index := index + 1;
        end loop;
        -- read or write memory
        loop
            if clk'event and clk = '1' then
                if (memwrite = '1') then mem(conv_integer(adr)) := writedata;
                end if;
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            end if;
            memdata <= mem(conv_integer(adr));
            wait on clk, adr;
        end loop;
    end process;
end;

architecture struct of mips is
    component controller
        port(clk, reset: in  STD_LOGIC;
             op:   in  STD_LOGIC_VECTOR(5 downto 0);
             zero: in  STD_LOGIC;
             memread, memwrite, alusrca, memtoreg,
             iord, pcen, regwrite, regdst: out STD_LOGIC;
             pcsrc, alusrcb, aluop:  out STD_LOGIC_VECTOR(1 downto 0);
             irwrite:     out STD_LOGIC_VECTOR(3 downto 0));
    end component;
    component alucontrol
        port(aluop:      in  STD_LOGIC_VECTOR(1 downto 0);
             funct:      in  STD_LOGIC_VECTOR(5 downto 0);
             alucont:    out STD_LOGIC_VECTOR(2 downto 0));
    end component;
    component datapath generic(width, regbits: integer);
        port(clk, reset:        in  STD_LOGIC;
             memdata:           in  STD_LOGIC_VECTOR(width-1 downto 0);
             alusrca, memtoreg, iord, pcen,
             regwrite, regdst:  in  STD_LOGIC;
             pcsrc, alusrcb:    in  STD_LOGIC_VECTOR(1 downto 0);
             irwrite:           in  STD_LOGIC_VECTOR(3 downto 0);
             alucont:           in  STD_LOGIC_VECTOR(2 downto 0);
             zero:              out STD_LOGIC;
             instr:             out STD_LOGIC_VECTOR(31 downto 0);
             adr, writedata:    out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    signal instr: STD_LOGIC_VECTOR(31 downto 0);
    signal zero, alusrca, memtoreg, iord, pcen, regwrite, regdst: STD_LOGIC;
    signal aluop, pcsrc, alusrcb: STD_LOGIC_VECTOR(1 downto 0);
    signal irwrite: STD_LOGIC_VECTOR(3 downto 0);
    signal alucont: STD_LOGIC_VECTOR(2 downto 0);
begin
    cont: controller port map(clk, reset, instr(31 downto 26), zero, 
                              memread, memwrite, alusrca, memtoreg,
                              iord, pcen, regwrite, regdst,
                              pcsrc, alusrcb, aluop, irwrite);
    ac: alucontrol port map(aluop, instr(5 downto 0), alucont);
    dp: datapath generic map(width, regbits)
                 port map(clk, reset, memdata, alusrca, memtoreg,
                          iord, pcen, regwrite, regdst,
                          pcsrc, alusrcb, irwrite, 
                          alucont, zero, instr, adr, writedata);
end;

architecture synth of controller is
    type statetype is (FETCH1, FETCH2, FETCH3, FETCH4, DECODE, MEMADR,
                       LBRD, LBWR, SBWR, RTYPEEX, RTYPEWR, BEQEX, JEX);
    constant LB:    STD_LOGIC_VECTOR(5 downto 0) := "100000";
    constant SB:    STD_LOGIC_VECTOR(5 downto 0) := "101000";
    constant RTYPE: STD_LOGIC_VECTOR(5 downto 0) := "000000";



A.12      Example: MIPS Processor 771

    constant BEQ:   STD_LOGIC_VECTOR(5 downto 0) := "000100";
    constant J:     STD_LOGIC_VECTOR(5 downto 0) := "000010";
    signal state, nextstate:     statetype;
    signal pcwrite, pcwritecond: STD_LOGIC;
begin
    process (clk) begin -- state register
        if clk'event and clk = '1' then 
            if reset = '1' then state <= FETCH1;
            else state <= nextstate;
            end if;
        end if;
    end process;

    process (state, op) begin -- next state logic
        case state is
            when FETCH1 => nextstate <= FETCH2;
            when FETCH2 => nextstate <= FETCH3;
            when FETCH3 => nextstate <= FETCH4;
            when FETCH4 => nextstate <= DECODE;
            when DECODE => case op is
                               when LB | SB => nextstate <= MEMADR;
                               when RTYPE => nextstate <= RTYPEEX;
                               when BEQ => nextstate <= BEQEX;
                               when J => nextstate <= JEX;
                               when others => nextstate <= FETCH1; -- should never happen
                           end case;
            when MEMADR => case op is
                               when LB => nextstate <= LBRD;
                               when SB => nextstate <= SBWR;
                               when others => nextstate <= FETCH1; -- should never happen
                           end case;
            when LBRD => nextstate <= LBWR;
            when LBWR => nextstate <= FETCH1;
            when SBWR => nextstate <= FETCH1;
            when RTYPEEX => nextstate <= RTYPEWR;
            when RTYPEWR => nextstate <= FETCH1;
            when BEQEX => nextstate <= FETCH1;
            when JEX => nextstate <= FETCH1;
            when others => nextstate <= FETCH1; -- should never happen
        end case;
    end process;

    process (state) begin
        -- set all outputs to zero, then conditionally assert just the appropriate ones
        irwrite <= "0000";
        pcwrite <= '0'; pcwritecond <= '0';
        regwrite <= '0';  regdst <= '0';
        memread <= '0'; memwrite <= '0';
        alusrca <= '0'; alusrcb <= "00"; aluop <= "00";
        pcsrc <= "00";
        iord <= '0'; memtoreg <= '0';

        case state is
            when FETCH1 => memread <= '1';
                           irwrite <= "0001";
                           alusrcb <= "01";
                           pcwrite <= '1';
            when FETCH2 => memread <= '1';
                           irwrite <= "0010";
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                           alusrcb <= "01";
                           pcwrite <= '1';
            when FETCH3 => memread <= '1';
                           irwrite <= "0100";
                           alusrcb <= "01";
                           pcwrite <= '1';
            when FETCH4 => memread <= '1';
                           irwrite <= "1000";
                           alusrcb <= "01";
                           pcwrite <= '1';
            when DECODE => alusrcb <= "11";
            when MEMADR => alusrca <= '1';
                           alusrcb <= "10";
            when LBRD =>   memread <= '1';
                           iord <= '1';
            when LBWR =>   regwrite <= '1';
                           memtoreg <= '1';
            when SBWR =>   memwrite <= '1';
                           iord <= '1';
            when RTYPEEX => alusrca <= '1';
                            aluop <= "10";
            when RTYPEWR => regdst <= '1';
                            regwrite <= '1';
            when BEQEX =>  alusrca <= '1';
                           aluop <= "01";
                           pcwritecond <= '1';
                           pcsrc <= "01";
            when JEX =>    pcwrite <= '1';
                           pcsrc <= "10";
        end case;
    end process;

    pcen <= pcwrite or (pcwritecond and zero); -- program counter enable
end;

architecture synth of alucontrol is
begin
    process(aluop, funct) begin
        case aluop is
            when "00" => alucont <= "010"; -- add (for lb/sb/addi)
            when "01" => alucont <= "110"; -- sub (for beq)
            when others => case funct is         -- R-type instructions
                               when "100000" => alucont <= "010"; -- add (for add)
                               when "100010" => alucont <= "110"; -- subtract (for sub)
                               when "100100" => alucont <= "000"; -- logical and (for and)
                               when "100101" => alucont <= "001"; -- logical or (for or)
                               when "101010" => alucont <= "111"; -- set on less (for slt)
                               when others   => alucont <= "---"; -- should never happen
                           end case;
        end case;
    end process;
end;

architecture struct of datapath is
    component alu generic(width: integer);
        port(a, b:    in  STD_LOGIC_VECTOR(width-1 downto 0);
             alucont: in  STD_LOGIC_VECTOR(2 downto 0);
             result:  out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
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    component regfile generic(width, regbits: integer);
        port(clk:          in  STD_LOGIC;
             write:        in  STD_LOGIC;
             ra1, ra2, wa: in  STD_LOGIC_VECTOR(regbits-1 downto 0);
             wd:           in  STD_LOGIC_VECTOR(width-1 downto 0);
             rd1, rd2:     out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    component zerodetect generic(width: integer);
        port(a: in  STD_LOGIC_VECTOR(width-1 downto 0);
             y: out STD_LOGIC);
    end component;
    component flop generic(width: integer);
        port(clk: in  STD_LOGIC;
             d:   in  STD_LOGIC_VECTOR(width-1 downto 0);
             q:   out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    component flopen generic(width: integer);
        port(clk, en: in  STD_LOGIC;
             d:       in  STD_LOGIC_VECTOR(width-1 downto 0);
             q:       out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    component flopenr generic(width: integer);
        port(clk, reset, en: in  STD_LOGIC;
             d:              in  STD_LOGIC_VECTOR(width-1 downto 0);
             q:              out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    component mux2 generic(width: integer);
        port(d0, d1: in  STD_LOGIC_VECTOR(width-1 downto 0);
             s:      in  STD_LOGIC;
             y:      out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    component mux4 generic(width: integer);
        port(d0, d1, d2, d3: in  STD_LOGIC_VECTOR(width-1 downto 0);
             s:              in  STD_LOGIC_VECTOR(1 downto 0);
             y:              out STD_LOGIC_VECTOR(width-1 downto 0));
    end component;
    constant CONST_ONE:  STD_LOGIC_VECTOR(width-1 downto 0) := conv_std_logic_vector(1, width);
    constant CONST_ZERO: STD_LOGIC_VECTOR(width-1 downto 0) := conv_std_logic_vector(0, width);
    signal ra1, ra2, wa: STD_LOGIC_VECTOR(regbits-1 downto 0);
    signal pc, nextpc, md, rd1, rd2, wd, a,
           src1, src2, aluresult, aluout, dp_writedata, constx4: STD_LOGIC_VECTOR(width-1 downto 0);
    signal dp_instr: STD_LOGIC_VECTOR(31 downto 0);

begin
    -- shift left constant field by 2
    constx4 <= dp_instr(width-3 downto 0) & "00";

    -- register file address fields
    ra1 <= dp_instr(regbits+20 downto 21);
    ra2 <= dp_instr(regbits+15 downto 16);
    regmux:  mux2 generic map(regbits) port map(dp_instr(regbits+15 downto 16),
                                                dp_instr(regbits+10 downto 11), regdst, wa);

    -- independent of bit width, load dp_instruction into four 8-bit registers over four cycles
ir0: flopen generic map(8) port map(clk, irwrite(0), memdata(7 downto 0), dp_instr(7 downto 0));
ir1: flopen generic map(8) port map(clk, irwrite(1), memdata(7 downto 0), dp_instr(15 downto 8));
ir2: flopen generic map(8) port map(clk, irwrite(2), memdata(7 downto 0), dp_instr(23 downto 16));
ir3: flopen generic map(8) port map(clk, irwrite(3), memdata(7 downto 0), dp_instr(31 downto 24));
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    -- datapath
    pcreg: flopenr generic map(width) port map(clk, reset, pcen, nextpc, pc);
    mdr: flop generic map(width) port map(clk, memdata, md);
    areg: flop generic map(width) port map(clk, rd1, a);
    wrd: flop generic map(width) port map(clk, rd2, dp_writedata);
    res: flop generic map(width) port map(clk, aluresult, aluout);
    adrmux: mux2 generic map(width) port map(pc, aluout, iord, adr);
    src1mux: mux2 generic map(width) port map(pc, a, alusrca, src1);
    src2mux: mux4 generic map(width) port map(dp_writedata, CONST_ONE, 
                                              dp_instr(width-1 downto 0), constx4, alusrcb, src2);
    pcmux: mux4 generic map(width) port map(aluresult, aluout, constx4, CONST_ZERO, pcsrc, nextpc);
    wdmux: mux2 generic map(width) port map(aluout, md, memtoreg, wd);
    rf: regfile generic map(width, regbits) port map(clk, regwrite, ra1, ra2, wa, wd, rd1, rd2);
    alunit: alu generic map(width) port map(src1, src2, alucont, aluresult);
    zd: zerodetect generic map(width) port map(aluresult, zero);
        
    -- drive outputs
    instr <= dp_instr; writedata <= dp_writedata;
end;

architecture synth of alu is
    signal b2, sum, slt: STD_LOGIC_VECTOR(width-1 downto 0);
begin
    b2 <= not b when alucont(2) = '1' else b;
    sum <= a + b2 + alucont(2);
    -- slt should be 1 if most significant bit of sum is 1
    slt <= conv_std_logic_vector(1, width) when sum(width-1) = '1'
           else conv_std_logic_vector(0, width);
    with alucont(1 downto 0) select result <=
        a and b when "00",
        a or b  when "01",
        sum     when "10",
        slt     when others;
end;

architecture synth of regfile is
    type ramtype is array (2**regbits-1 downto 0) of STD_LOGIC_VECTOR(width-1 downto 0);
    signal mem: ramtype;
begin
    -- three-ported register file
    -- read two ports combinationally
    -- write third port on rising edge of clock
    process(clk) begin
        if clk'event and clk = '1' then
            if write = '1' then mem(conv_integer(wa)) <= wd;
            end if;
        end if;
    end process;
    process(ra1, ra2) begin

if (conv_integer(ra1) = 0) then rd1 <= conv_std_logic_vector(0, width); -- register 0 holds 0
else rd1 <= mem(conv_integer(ra1));
end if;
if (conv_integer(ra2) = 0) then rd2 <= conv_std_logic_vector(0, width); 
else rd2 <= mem(conv_integer(ra2));
end if;

    end process;
end;
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architecture synth of zerodetect is
    signal i: integer;
    signal x: STD_LOGIC_VECTOR(width-1 downto 1);
begin -- N-bit AND of inverted inputs
    AllBits: for i in width-1 downto 1 generate
        LowBit: if i = 1 generate
                    A1: x(1) <= not a(0) and not a(1);
                end generate;
                OtherBits: if i /= 1 generate
                    Ai: x(i) <= not a(i) and x(i-1);
                end generate;
        end generate;
    y <= x(width-1);
end;

architecture synth of flop is
begin
    process(clk) begin
        if clk'event and clk = '1' then -- or use "if RISING_EDGE(clk) then"
            q <= d;
        end if;
    end process;
end;

architecture synth of flopen is
begin
    process(clk) begin
        if clk'event and clk = '1' then
            if en = '1' then q <= d;
            end if;
        end if;
    end process;
end;

architecture synchronous of flopenr is
begin
    process(clk) begin
        if clk'event and clk = '1' then
            if reset = '1' then
                q <= CONV_STD_LOGIC_VECTOR(0, width); -- produce a vector of all zeros
            elsif en = '1' then q <= d;
            end if;
        end if;
    end process;
end;

architecture synth of mux2 is
begin
    y <= d0 when s = '0' else d1;
end;

architecture synth of mux4 is
begin
    y <= d0 when s = "00" else 
         d1 when s = "01" else
         d2 when s = "10" else
         d3;
end;
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Exercises
The following exercises can be done in your favorite HDL. If you have a simulator avail-
able, test your design. Print the waveforms and explain how they prove that the code
works. If you have a synthesizer available, synthesize your code. Print the generated circuit
diagram and explain why it matches your expectations.

A.1 Sketch a schematic of the circuit described by the following HDL code. Simplify 
to a minimum number of gates.

A.2 Sketch a schematic of the circuit described by the following HDL code. Simplify 
to a minimum number of gates.

A.3 Write an HDL module that computes a 4-input XOR function. The input is A3:0 
and the output is Y.

A.4 Write a self-checking testbench for Exercise A.3. Create a test vector file contain-
ing all 16 test cases. Simulate the circuit and show that it works. Introduce an error 
in the test vector file and show that it reports a mismatch.

SystemVerilog 

module exercise1(input  logic a, b, c,
                 output logic y, z);
  

assign y = a & b & c | a & b & ~c | a & ~b & c;
assign z = a & b | ~a & ~b;

endmodule 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise1 is
  port(a, b, c: in  STD_LOGIC;
       y, z:    out STD_LOGIC);
end;

architecture synth of exercise1 is
begin
  y <= (a and b and c) or (a and b and (not c)) or
      (a and (not b) and c);
 z <= (a and b) or ((not a) and (not b));
end;

SystemVerilog 

module exercise2(input  logic [3:0] a,
                 output logic [1:0] y);
  
  always_comb
    if (a[0])      y = 2'b11;
    else if (a[1]) y = 2'b10;
    else if (a[2]) y = 2'b01;
    else if (a[3]) y = 2'b00;
    else           y = a[1:0];
endmodule 

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity exercise2 is
  port(a: in  STD_LOGIC_VECTOR(3 downto 0);
       y: out STD_LOGIC_VECTOR(1 downto 0));
end;

architecture synth of exercise2 is
begin
  process(a) begin
    if    a(0) = '1' then y <= "11";
    elsif a(1) = '1' then y <= "10";
    elsif a(2) = '1' then y <= "01";
    elsif a(3) = '1' then y <= "00";
    else                  y <= a(1 downto 0);
    end if;
  end process;
end;
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  A.5 Write an HDL module called minority. It receives three inputs, A, B, and C. It 
produces one output Y that is TRUE if at least two of the inputs are FALSE.

  A.6 Write an HDL module for a hexadecimal 7-segment display decoder. The decoder 
should handle the digits A, B, C, D, E, and F as well as 0–9.

  A.7 Write a self-checking testbench for Exercise A.6. Create a test vector file contain-
ing all 16 test cases. Simulate the circuit and show that it works. Introduce an error 
in the test vector file and show that it reports a mismatch.

  A.8 Write an 8:1 multiplexer module called mux8 with inputs S2:0, D0, D1, D2, D3, D4, 
D5, D6, D7, and output Y.

  A.9 Write a structural module to compute Y = AB + BC + ABC using multiplexer logic. 
Use the 8:1 multiplexer from Exercise A.8.

A.10 Repeat Exercise A.9 using a 4:1 multiplexer and as many NOT gates as you need.

A.11 Section A.5.4 pointed out that a synchronizer could be correctly described with 
blocking assignments if the assignments were given in the proper order. Think of 
another simple sequential circuit that cannot be correctly described with blocking 
assignments regardless of order.

A.12 Write an HDL module for an 8-input priority circuit.

A.13 Write an HDL module for a 2:4 decoder.

A.14 Write an HDL module for a 6:64 decoder using three of the 2:4 decoders from 
Exercise A.13 along with 64 3-input AND gates.

A.15 Sketch the state transition diagram for the FSM described by the following HDL 
code.

SystemVerilog 

module fsm2(input  logic clk, reset, 
            input  logic a, b,
            output logic y);

  typedef enum logic [1:0] 
    {S0, S1, S2, S3} statetype;

  statetype state, nextstate;

  always_ff @(posedge clk)
    if (reset) state <= S0;
    else       state <= nextstate;

  always_comb
    case (state)
      S0: if (a ^ b) nextstate = S1;
          else       nextstate = S0;
      S1: if (a & b) nextstate = S2;
          else       nextstate = S0;
      S2: if (a | b) nextstate = S3;
          else       nextstate = S0;
      S3: if (a | b) nextstate = S3;
          else       nextstate = S0;
    endcase

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm2 is
  port(clk, reset: in  STD_LOGIC;
       a, b:       in  STD_LOGIC;
       y:          out STD_LOGIC);
end;

architecture synth of fsm2 is
  type statetype is (S0, S1, S2, S3);
  signal state, nextstate: statetype;
begin
  process(clk, reset) begin
    if reset = '1' then state <= S0;
    elsif clk'event and clk = '1' then 
      state <= nextstate;
    end if;
  end process;

process (state, a, b) begin
    case state is
      when S0 => if (a xor b) = '1' then
                   nextstate <= S1;
                 else nextstate <= S0;
                 end if; (continues)
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A.16 Sketch the state transition diagram for the FSM described by the following HDL 
code. An FSM of this nature is used in a branch predictor on some microprocessors.

SystemVerilog (continued) 
assign y = (state == S1) || (state == S2);
endmodule

VHDL (continued) 
      when S1 => if (a and b) = '1' then
                      nextstate <= S2;
                 else nextstate <= S0;
                 end if;
      when S2 => if (a or b) = '1' then
                      nextstate <= S3;
                 else nextstate <= S0;
                 end if;
      when S3 => if (a or b) = '1' then
                      nextstate <= S3;
                 else nextstate <= S0;
                 end if;
    end case;
  end process;

  y <= '1' when ((state = S1) or (state = S2))
       else '0';
end;

SystemVerilog 

module fsm1(input  logic clk, reset, 
            input  logic taken, back,
            output logic predicttaken);
  
  typedef enum logic [4:0] 
    {S0 = 5'b00001,
     S1 = 5'b00010,
     S2 = 5'b00100,
     S3 = 5'b001000,
     S4 = 5'b10000} statetype;

  statetype state, nextstate;

  always_ff @(posedge clk)
    if (reset) state <= S2;
    else       state <= nextstate;

  always_comb
    case (state)
      S0: if (taken) nextstate = S1;
          else       nextstate = S0;
      S1: if (taken) nextstate = S2;
          else       nextstate = S0;
      S2: if (taken) nextstate = S3;
          else       nextstate = S1;
      S3: if (taken) nextstate = S4;
          else       nextstate = S2;
      S4: if (taken) nextstate = S4;
          else       nextstate = S3;
      default:       nextstate = S2;
    endcase

VHDL 

library IEEE; use IEEE.STD_LOGIC_1164.all;

entity fsm1 is
  port(clk, reset:   in  STD_LOGIC;
       taken, back:  in  STD_LOGIC;
       predicttaken: out STD_LOGIC);
end;

architecture synth of fsm1 is
  type statetype is (S0, S1, S2, S3, S4);
  signal state, nextstate: statetype;
begin
  process(clk, reset) begin
    if reset = '1' then state <= S2;
    elsif clk'event and clk = '1' then 
      state <= nextstate;
    end if;
  end process;

  process (state, taken) begin
    case state is
      when S0 => if taken = '1' then
                      nextstate <= S1;
                 else nextstate <= S0;
                 end if;
      when S1 => if taken = '1' then
                      nextstate <= S2;
                 else nextstate <= S0;
                 end if;

(continues)
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A.17 Write an HDL module for an SR latch.

A.18 Write an HDL module for a JK flip-flop. The flip-flop has inputs clk, J, and K, and 
output Q. On the rising edge of the clock, Q keeps its old value if J = K = 0. It sets 
Q to 1 if J = 1, resets Q to 0 if K = 1, and inverts Q if J = K = 1.

A.19 Write a line of HDL code that gates a 32-bit bus called data with another signal 
called sel to produce a 32-bit result. If sel is TRUE, result = data. Oth-
erwise, result should be all 0s.

SystemVerilog Exercises
The following exercises are specific to SystemVerilog.

A.20 Explain the difference between blocking and nonblocking assignments in           
SystemVerilog. Give examples.

A.21 What does the following SystemVerilog statement do?
result = |(data[15:0] & 16'hC820);

A.22 Rewrite the syncbad module from Section A.5.4. Use nonblocking assignments, 
but change the code to produce a correct synchronizer with two flip-flops.

A.23 Consider the following two pieces of SystemVerilog code. Do they have the same 
function? Sketch the hardware each one implies.
module code1(input  logic clk, a, b, c,
             output logic y);
  logic x;

  always_ff @(posedge clk) begin
    x <= a & b;
    y <= x | c;
  end
endmodule

SystemVerilog (continued) 
  assign predicttaken = (state == S4) ||
                        (state == S3) ||
                        (state == S2 && back);
endmodule

VHDL (continued) 
      when S2 => if taken = '1' then
                      nextstate <= S3;
                 else nextstate <= S1;
                 end if;
      when S3 => if taken = '1' then
                      nextstate <= S4;
                 else nextstate <= S2;
                 end if;
      when S4 => if taken = '1' then
                      nextstate <= S4;
                 else nextstate <= S3;
                 end if;
      when others =>  nextstate <= S2;
    end case;
  end process;

  -- output logic
  predicttaken <= '1' when 
                 ((state = S4) or (state = S3) or
                 (state = S2 and back = '1'))
    else '0';
end;



Appendix A     Hardware Description Languages780

module code2(input  logic a, b, c, clk,
             output logic y);
  logic x;

  always_ff @(posedge clk) begin
    y <= x | c;
    x <= a & b;
  end
endmodule

A.24 Repeat Exercise A.23 if the <= is replaced by = everywhere in the code.

A.25 The following SystemVerilog modules show errors that the authors have seen stu-
dents make in the lab. Explain the error in each module and how to fix it.

module latch(input  logic       clk, 
             input  logic [3:0] d, 
             output logic [3:0] q);

   always @(clk)
      if (clk) q <= d;
endmodule

module gates(input  logic [3:0] a, b, 
             output logic [3:0] y1, y2, y3, y4, y5);

   always @(a)
      begin
         y1 = a & b; 
         y2 = a | b; 
         y3 = a ^ b; 
         y4 = ~(a & b); 
         y5 = ~(a | b);
      end
endmodule

module mux2(input  logic [3:0] d0, d1, 
            input  logic       s,
            output logic [3:0] y);
   
   always @(posedge s)
      if (s) y <= d1;
      else   y <= d0;
   
endmodule

module twoflops(input  logic clk, 
                input  logic d0, d1, 
                output logic q0, q1);

   always @(posedge clk)
      q1 = d1;
      q0 = d0;
endmodule

module FSM(input  logic clk, 
           input  logic a, 
           output logic out1, out2);

   logic state;
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   // next state logic and register (sequential)
   always_ff @(posedge clk)
      if (state == 0) begin
         if (a) state <= 1;
      end else begin
         if (~a) state <= 0;
      end

   always_comb // output logic (combinational)
      if (state == 0) out1 = 1;
      else            out2 = 1;
endmodule

module priority(input  logic [3:0] a, 
                output logic [3:0] y);

   always_comb
      if      (a[3]) y = 4'b1000;
      else if (a[2]) y = 4'b0100;
      else if (a[1]) y = 4'b0010;
      else if (a[0]) y = 4'b0001;
endmodule

module divideby3FSM(input  logic clk, 
                    input  logic reset, 
                    output logic out);

   typedef enum logic [1:0] {S0, S1, S2} statetype;

   statetype state, nextstate;

   // State Register
   always_ff @(posedge clk)
      if (reset) state <= S0;
      else       state <= nextstate;

   // Next State Logic
   always_comb
      case (state)
         S0: nextstate = S1;
         S1: nextstate = S2;
         S2: nextstate = S0;
      endcase

   // Output Logic
   assign out = (state == S2);
endmodule

module mux2tri(input  logic [3:0] d0, d1,
               input  logic       s,
               output tri   [3:0] y);

   tristate t0(d0, s, y);
   tristate t1(d1, s, y);
endmodule

module floprsen(input  logic       clk,
                input  logic       reset, 
                input  logic       set,
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                input  logic [3:0] d, 
                output logic [3:0] q);
   
   always_ff @(posedge clk)
      if (reset) q <= 0;
      else       q <= d;

   always @(set)
     if (set) q <= 1;
endmodule

module and3(input  logic a, b, c,
            output logic y);

   logic tmp;

   always @(a, b, c)
   begin
      tmp <= a & b;
      y   <= tmp & c;
   end
endmodule

VHDL Exercises
The following exercises are specific to VHDL.

A.26 In VHDL, why is it necessary to write 

q <= '1' when state = S0 else '0'; 

rather than simply 

q <= (state = S0); ?

A.27 Each of the following VHDL modules contains an error. For brevity, only the 
architecture is shown; assume the library use clause and entity declaration are cor-
rect. Explain the error and how to fix it.

architecture synth of latch is
begin
  process(clk) begin
    if clk = '1' then q <= d;
    end if;
  end process;
end;

architecture proc of gates is
begin
  process(a) begin
    y1 <= a and b;
    y2 <= a or b;
    y3 <= a xor b;
    y4 <= a nand b;
    y5 <= a nor b;
  end process;
end;

architecture synth of flop is
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begin
  process(clk)
    if clk'event and clk = '1' then 
      q <= d;
end;

architecture synth of priority is
begin
  process(a) begin
    if    a(3) = '1' then y <= "1000";
    elsif a(2) = '1' then y <= "0100";
    elsif a(1) = '1' then y <= "0010";
    elsif a(0) = '1' then y <= "0001";
    end if;
  end process;
end;

architecture synth of divideby3FSM is
  type statetype is (S0, S1, S2);
  signal state, nextstate: statetype;
begin
  process(clk, reset) begin
    if reset = '1' then state <= S0;
    elsif clk'event and clk = '1' then 
      state <= nextstate;
    end if;
  end process;

   process(state) begin
    case state is
      when S0 => nextstate <= S1;
      when S1 => nextstate <= S2;
      when S2 => nextstate <= S0;
    end case;
  end process;

  q <= '1' when state = S0 else '0';
end;

architecture struct of mux2 is
  component tristate 
    port(a:  in  STD_LOGIC_VECTOR(3 downto 0);
         en: in  STD_LOGIC;
         y:  out STD_LOGIC_VECTOR(3 downto 0));
  end component;
begin
  t0: tristate port map(d0, s, y);
  t1: tristate port map(d1, s, y); 
end;

architecture asynchronous of flopr is
begin
  process(clk, reset) begin
    if reset = '1' then
      q <= '0';
    elsif clk'event and clk = '1' then
      q <= d;
    end if;
  end process;
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  process(set) begin
    if set = '1' then
      q <= '1';
    end if;
  end process;
end;

architecture synth of mux3 is
begin
  y <= d2 when s(1) else 
       d1 when s(0) else d0;
end;
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