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This Web addendum to CMOS VLSI Design contains sections that have been moved out
of the printed book to reduce the length.  

 

9.4   

 

More Circuit Families

 

Static CMOS is satisfactory for the great majority of logic gates in modern integrated cir-
cuits and an assortment of domino, pass-transistor circuits, and pseudo-nMOS accounts
for nearly all of the remaining gates. A large number of other circuit families have been
proposed in the literature. This section describes some of these circuit families and their
strengths and limitations.

 

9.4.1  Differential Circuits

 

Several differential circuit families using nMOS pulldown networks are derived from the
basic CVSL form, as shown in Figure W9.1.

 

9.4.1.1 Differential Split-Level (DSL)

 

  

 

Differential Split-Level

 

 (DSL) [Pfennings85]
places nMOS transistors in series with the basic CVSL pulldown networks. By applying a
reference voltage of 
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DD

 

/2 

 

+
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t

 

 to these transistors, the swing on the internal nodes (

 

X

 

and 

 

X

 

) are limited to 0 –

 

V

 

DD

 

/2. This reduces the parasitic delay of the pulldown stacks.
The lower internal voltages also lead to lower electric fields across the pulldown transis-
tors. The inventors took advantage of this lower voltage to reduce the channel lengths of
the transistors without compromising hot-electron reliability. They claimed a tenfold
speedup over a static CMOS full adder; this was attributed to a factor of 2 for the CVSL
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FIGURE W9.1  Differential circuit families
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structure, another factor of 2 from the low-swing signals, and a factor of 2.5 for using
shorter transistors. 

In a nanometer process, transistors are generally as short as can be reliably manufac-
tured, so DSL cannot use even shorter transistors. The authors have been unable to repro-
duce any advantage over static CMOS in a submicron process. The resistance of the extra
series transistor does not help. Another disadvantage of DSL is that the voltages on the
pMOS gates only swing between 0 and 

 

V

 

DD

 

/2. Therefore, the pullup that should be OFF
is actually partially ON, resulting in static power dissipation. Finally, generating and dis-
tributing the reference voltage requires some effort and the reference may be sensitive to
power supply noise and threshold voltage variations.

 

9.4.1.2 Cascode Nonthreshold Logic (CNTL) 

 

 

 

Cascode Nonthreshold Logic

 

 (CNTL)
[Wang89] is derived from DSL by adding a transistor and shunting capacitor to the bot-
tom of each pulldown network, and setting the reference voltage to 

 

V

 

DD

 

 rather than

 

V

 

DD

 

/2 

 

+

 

 

 

V

 

t

 

. The series transistors are connected with negative feedback. The internal
swing is limited to 

 

V

 

t

 

 to 

 

V

 

DD

 

 – 

 

V

 

t

 

, and there is much less quiescent current draw than in
DSL because the pMOS transistors are nearly turned OFF. CNTL requires more area
than CVSL and the extra series transistors tend to slow it down, although large shunting
capacitors partially alleviate this problem.

CNTL is a variant of Nonthreshold Logic (NTL), shown in Figure W9.2, which is
essentially a pseudo-nMOS gate with an extra transistor and shunting capacitor in series
with the pulldown network. The shunting capacitor is built from the gate of an nMOS
transistor. NTL consumes static power and is slower than pseudo-nMOS.

 

9.4.2  Sense-Amplifier Circuits

 

Sense amplifiers

 

 magnify small differential input voltages into larger output voltages. They
are commonly used in memories in which differential bitlines have enormous capacitive
loads (see Section 12.2.3). Because of the large load, the bitlines swing slowly. To reduce
this delay, the bitline voltages are first equalized. Then, when they are driven apart, the
sense amplifier can detect a small swing and bring it up to normal logic levels. This
reduces the 

 

Δ

 

V

 

 term in EQ (9.1); in other words, it reduces the delay by avoiding waiting
for a full swing on the bitlines. Sense amplifiers offer potential for reducing delay in
heavily loaded logic circuits as well.

Figure W9.3 shows more differential circuit families derived from CVSL. These fam-
ilies add sense amplifiers to dual-rail domino (also repeated in the figure) to detect a small
differential voltage and amplify it to a full-rail output. They will be discussed in detail later
in this section.
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Figure W9.4 shows a generic sense-amplifier circuit. It works best for complex pull-
down networks that would have a large RC delay. The sense amplifier fires after a small

 

Δ

 

V

 

 develops. Once fired, it turns on a driver with a low resistance to slew the outputs
between rails. The combined delay of the pulldown stage and the sense-amplifier stage
may be better than the delay of a single complex stage.
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The sense amplifiers must be clocked after a sufficient differential voltage has devel-
oped. Therefore, the inputs must settle some setup time before the clock edge. The out-
puts become valid at some clock-to-out delay after the clock edge. The total delay of the
sense-amplifier circuit is the sum of the setup time, clock-to-out delay, and any clock skew
that must be budgeted (see Section 10.2.5). 

As with clock-delayed domino (discussed in Section 10.5.4.2), it is tricky to cascade
sense-amplifier circuits because the successive clocks must be delivered at the appropriate
times. If only a single clock phase is used, only one sense-amplifier circuit can be placed in
each cycle. If multiple clocks are generated using delay lines, sufficient timing margin
must be allowed so that the delay line is always slow enough. If multiple clocks are gener-
ated through completion detection, time must be budgeted for the completion detection
circuits.

An inherent trade-off exists between the setup time and circuit reliability because a
longer setup time allows a greater differential voltage 

 

Δ

 

V

 

 to develop and overcome noise.
One of the important sources of noise is charge sharing. For example, Figure W9.5(a)
shows a pair of pulldown networks that are particularly sensitive to charge sharing noise.
Figure W9.5(b) shows the response as the inputs arrive, assuming the outputs are pre-
charged, node 

 

X

 

 carries a residual low voltage from a previous cycle’s operation, and the
sense amp is inactive. Observe that charge sharing from the large internal diffusion capac-
itance on node 

 

X

 

 initially causes 

 

Y

 

 to fall faster than its complement. Eventually, the resis-
tive path pulls down the correct output 

 

Y

 

. This charge sharing noise increases the setup
time before the amplifier can safely fire. Yet another risk for unbuffered sense-amplifier
circuits is that unequal output loading or coupling will cause one output to fall faster than
the other, resulting in incorrect sensing. In summary, sense-amplifier circuits offer promise
for special-purpose applications, but present many design risks to manage.

 

9.4.2.1 Sample Set Differential Logic (SSDL)

 

  

 

Sample Set Differential Logic

 

 (SSDL)
[Grotjohn86] modifies dual-rail domino logic by adding a clocked sense amplifier and
modifying the clocking. Rather than using precharge and evaluation phases, SSDL uses

 

sample

 

 and 

 

set

 

 phases. During sample, 

 

φ

 

 is low and both the precharge and evaluation tran-
sistors are ON. One of the internal nodes (

 

X

 

 or 

 

X

 

)  is precharged high while the other
experiences contention between the precharge transistor and pulldown stack, so its output
settles somewhere below 

 

V

 

DD

 

. Static power is consumed through the sample phase. Dur-
ing set when 

 

φ

 

 is high, precharge and evaluate transistors turn OFF and the clocked sense
amplifier turns ON. The amplifier tends to pull the lower of the two internal nodes down
to GND. At first, it tends to pull down the other side as well, so it is helpful to have a
keeper (shown in blue) to restore the high level. 

YY

f

φ

Inputs
f

Sense
Amp

FIGURE W9.4  Generic sense-amplifier circuit

 



 

Chapter W     Web Enhanced

 

5

9.4.2.2 Enable/Disable CMOS Differential Logic (ECDL) 

 

 

 

Enable/Disable CMOS Differen-
tial Logic

 

 (ECDL) [Lu88, Lu91] improves on SSDL by eliminating the static power con-
sumption. The sense amplifier is made from a pair of cross-coupled clocked inverters, as
redrawn in Figure W9.6(a) to emphasize the inverters. The cycle is again divided into two
phases of operation: 

 

enable

 

 and 

 

disable

 

. When 

 

φ

 

 is high, the gate is disabled. Both outputs
are pulled low and the pullup stack is turned OFF. When 

 

φ

 

 falls, the gate is enabled. The
cross-coupled pMOS transistors are both initially ON and attempt to pull the outputs
high. One output will be held down by its pulldown stack and will lag. Positive feedback
will pull one output fully high and the other back fully low. The sense amplifier rising
delay is somewhat longer than in SSDL because it pulls high through two series pMOS
transistors.

To avoid the difficulty of only having two clock edges in each cycle for gates, Lu proposes
creating a local clock with matched delays, as shown in Figure W9.6(b). The delay from 

 

φ

 

i

 

 to

 

φ

 

i

 

+

 

1

 

 must exceed the ECDL gate delay for correct operation. Another possibility would be to
generate the next clock through 

 

completion detection

 

 as the OR of the two outputs.
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9.4.2.3 Latched CMOS Differential Logic (LCDL) 

 

 

 

Latched CMOS Differential Logic

 

(LCDL) [Wu91] adds a sense amplifier directly to the output nodes of a dual-rail domino
gate and includes n-latches on the outputs. The topology is similar to SSDL, but the non-
inverted clock is used for evaluation. The sense amplifier fires at exactly the same time as
the dual-rail gate, so there is a serious risk of amplifying noise rather than signal. This can
be overcome with a second clock to delay firing the amplifier.

 

9.4.2.4 Differential Current Switch Logic (DCSL)

 

  Differential circuits can consume signif-
icant power because one of the outputs transitions every cycle. 

 

Differential Circuit Switch
Logic

 

 (DCSL) [Somasekhar96] seeks to reduce the power consumption of internal nodes
and offer higher speed by swinging the pulldown networks through a small voltage. This is
done by adding a pair of feedback transistors 

 

N1

 

 and 

 

N2

 

 to the SSDL and ECDL struc-
tures to cut off the pulldown networks before the internal nodes rise far above 0.

DCSL1 is a “precharge high” circuit related to SSDL and LCDL. When the clock is
low, the outputs precharge high. When the clock rises, the circuit begins evaluation. As
one side or the other pulls low, the sense amplifier accelerates the transition. 

 

N1

 

 or 

 

N2

 

turns off to prevent the internal nodes of the pulldown stack on the other side from rising
too much. 

DCSL2 is a “precharge low” circuit related to ECDL. It again adds 

 

N1

 

 and 

 

N2

 

 to
prevent the internal nodes from rising too much. DCSL3 improves on DCSL2 by replac-
ing the two predischarge transistors with a single equalization transistor.

Because the sense amplifiers fire at the same time as the outputs begin to fall, DCSL
is sensitive to amplifying noise instead of signal. It also performs poorly for 
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.
LVDCSL [Somasekhar98] operates better at low voltages, but uses a complex sense
amplifier. 

 

9.4.2.5 Low-Voltage Swing Logic (LVS) 

 

 

 

Low-Voltage Swing

 

 (LVS) Logic [Deleganes04,
Deleganes05] also uses a differential pair of series-connected nMOS networks connected
to a sense amplifier. The networks are carefully balanced and equalized to minimize noise
and allow long chains of transistors. LVS was extremely fast, but difficult to design and
sensitive to process variation and noise. Intel used LVS extensively in the Integer unit of
the 90 nm Pentium 4 processor, but later discarded the technique when it did not scale
gracefully.

Y

f
Inputs

f

Y

φ

φ Y

f
Inputs

f

Y

φi

φi

φi

φ i+1

Matched Delay

(b)(a)

FIGURE W9.6  
Enable/Disable CMOS Differential Logic

 



 

Chapter W     Web Enhanced

 

7

 

9.4.3  BiCMOS Circuits

 

Bipolar transistors can deliver a much higher output current than can CMOS transistors
of equal input capacitance. Therefore, they can be used to build gates with low logical
effort and are good for driving large capacitive loads. Gates mixing bipolar and CMOS
transistors are called 

 

BiCMOS

 

.
Figure W9.7 shows a BiCMOS NAND gate using two NPN bipolar transistors. An

NPN transistor behaves as a switch between the collector and the emitter controlled by the
base. The base voltage must be about 0.7 V above the emitter to turn the transistor ON.
The BiCMOS gate contains an ordinary CMOS NAND gate to compute 

 

x

 

. If 

 

A

 

 or 

 

B

 

 is ‘0,’

 

x

 

 will be driven to ‘1.’ This turns on 

 

Q2

 

 and pulls the output 

 

Y

 

 up. When 

 

x

 

 is high, 

 

M1

 

turns ON, pulling down 

 

w

 

 and turning off 

 

Q1

 

. If 

 

A

 

 and 

 

B

 

 are both ‘1,’ 

 

M3

 

 and 

 

M2 are both
‘ON.’ If Y begins at ‘1,’ w will rise to ‘1’ and turn on Q1. Q1 in turn discharges Y to ‘0.’

Unfortunately, bipolar transistors have an inherent Vbe drop of about 0.7 V when ON.
Hence, Y will never rise above VDD – Vbe. This was acceptable at VDD = 5 V, tolerable at
VDD = 3.3 V, and perhaps manageable with elaborate circuit tricks at VDD = 2.5 V. In
modern processes with low supply voltages, VDD – Vbe is too low to form a valid logic level,
so BiCMOS circuits are no longer particularly useful for digital logic in processes below
0.35 μm. Moreover, CMOS circuits have been scaled much more aggressively than bipolar
transistors, so the short-channel CMOS transistors are now competitive in performance
with older, larger bipolar transistors.

9.4.4  Comparison
Table W9.1 summarizes the characteristics of the circuit families described in this chapter.
The number of transistors required for k-input gates are listed. Differential circuit families
are those that require true and complementary inputs and generate true and complemen-
tary outputs. Static power indicates that the gate may consume power while quiescent; this
is often not acceptable for battery-operated devices. Circuits with rail-to-rail outputs
swing between GND and VDD. Dynamic nodes are those that have been precharged and
may float or be only weakly held by a keeper; they are particularly sensitive to noise.
Restoring logic families are those whose output logic levels are better than the input logic
levels; if families are not restoring, buffers must be periodically placed between gates.
Ratioed circuits are those whose operation depends on the relative strength of nMOS and
pMOS transistors; they must be sized properly for correct operation. Circuits are cascade-
able if the output of a gate is a legal input to another gate of the same family without any
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FIGURE W9.7  BiCMOS NAND gate
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special delayed clocking or self-timing. For example, domino gates sharing a common
clock can be cascaded, but dynamic gates cannot be without violating monotonicity.
Robustness characterizes the amount of care required to ensure a gate will work. Highly
robust circuits like static CMOS will eventually get the right answer independent of sizing
and noise, while less robust circuits are more sensitive. Undesirable characteristics are
marked in blue.

A large number of circuit families have been presented in this section. A natural ques-
tion is how to choose the appropriate circuit family for the application. 

Static CMOS logic is the best option for the vast majority of CMOS circuits. It is
noise-immune, dissipates no static power, and is fast. Highly automated tools and
readily available libraries exist to synthesize, place, and route static logic. Don’t overlook
compound AOI and OAI gates. High fanin static CMOS gates offer low power but
have large logical effort and are best split into multiple stages of simpler gates when
speed is essential.

Certain high fanin functions are implemented much more efficiently with pseudo-
nMOS or dynamic NOR gates because the logical effort is independent of the width.
Examples include ROMs, PLAs, and CAMs. Pseudo-nMOS static power dissipation can
be a problem for battery-operated systems, but sometimes the pMOS pullup can be
turned OFF during idle periods to save power.

Domino logic remains the technique of choice for high-speed applications, especially
in high-performance microprocessors. However, it has poor noise margins and is suscepti-
ble to noise from charge sharing, coupling, leakage, and alpha particles. If you are not pre-
pared to exhaustively simulate the gates at the circuit level with back-annotated
capacitances from the layout, do not consider domino. Remember that the precharge time
will rob the speed advantage over static designs in poorly designed clocking schemes (this
will be discussed further in Section 10.5.1). Many novices (and pros too!) have been
caught by not understanding all the problems that can arise when domino logic is used.

Pass transistors have their vocal advocates, but transmission gate logic can be viewed
as an alternative way of drawing static CMOS gates with the driving stage at the output
rather than the input. Of the multitude of pass-transistor circuit families that have been
proposed, CPL is the most promising.

Other circuit families offer potential for niche applications (i.e., low noise generation
in sensitive analog circuits), but one must be wary of pitfalls and consider carefully why so
many circuit families have never seen commercial application.

10.3.11  True Single-Phase Clock (TSPC) Latches and Flip-Flops
Conventional latches require both true and complementary clock signals. In modern
CMOS systems, the complement is normally generated locally with an inverter in the latch
cell. In the late 1980s, some researchers worked to avoid the complementary signal. The
True Single-Phase Clock (TSPC) latches and flip-flops replace the inverter-transmission
gate or C2MOS stage with a pair of stages requiring only the clock, not its complement
[ Ji-ren87, Yuan89]. Figure W10.1 (a and b) shows active high and low TSPC dynamic
latches. Figure W10.1(c) shows a TSPC dynamic flip-flop. Note that this flip-flop pro-
duces a momentary glitch on Q after the rising clock edge when D is low for multiple
cycles; this increases the activity factor of downstream circuits and costs power. [Afghahi90]
extends the TSPC principle to handle domino, RAMs, and other precharged circuits.
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The dynamic TSPC latches were used on the groundbreaking Alpha 21064 micro-
processor [Dobberpuhl92]. Logic can be built into the first stage of each latch. The latch
is not easy to staticize [Afghahi90]. In any case, the clock must also be reasonably sharp to
prevent races when both transistors are partially ON [Larsson94]. The Alpha 21164
reverted to conventional dynamic latches for an estimated 10% speed improvement
[Bowhill95]. In summary, TSPC is primarily of historic interest.

10.4.6  Two-Phase Timing Types
As discussed in Section 10.2, latches with two-phase nonoverlapping clocks (φ1 and φ2) are
attractive for class projects because with an adequately long clock period and sufficiently

TABLE 9.1  Comparison of circuit families

Family nMOS pMOS Differ-
ential

Static 
Power

Rail-to-
Rail 

Output

Dynamic 
Nodes

Restor-
ing

Ratioed Cascade-
able

Robustness

Static CMOS k k NO NO YES NO YES NO YES HIGH
Pseudo-nMOS k 1 NO YES NO NO YES YES YES MEDIUM
SFPL 2k + 2 1 NO YES NO NO YES YES YES MEDIUM
CVSL 2k 2 YES NO YES NO YES NO YES HIGH
Dynamic k + 1 1 NO NO YES YES YES NO NO LOW
Domino k + 2 2 NO NO YES YES YES NO YES LOW
Dual-Rail Domino 2k + 3 4 YES NO YES YES YES NO YES LOW
CMOSTG k k NO NO YES NO YES NO YES HIGH
LEAP k 2 NO NO YES NO YES YES YES MEDIUM
DPL 2k 2k YES NO YES NO YES NO YES HIGH
CPL 2k 4 YES NO YES NO YES NO YES MEDIUM
EEPL 2k 4 YES NO YES NO YES NO YES MEDIUM
SRPL 2k 2 YES NO YES NO YES YES YES LOW
DCVSPG 2k – 2 2 YES NO YES NO NO NO YES MEDIUM
PPL k k YES NO YES NO NO NO YES LOW
DSL 2k + 2 2 YES YES NO NO YES NO YES MEDIUM
CNTL 2k + 4 2 YES YES NO NO YES NO YES MEDIUM
NTL k + 1 1 NO YES NO NO YES YES YES MEDIUM
SSDL 2k + 6 6 YES YES YES NO YES NO NO VERY LOW

EDCL 2k + 4 3 YES NO YES NO YES NO NO VERY LOW

LCDL 2k + 8 6 YES NO YES NO YES NO NO VERY LOW

DCSL1 2k + 7 4 YES NO YES NO YES NO NO VERY LOW

BiCMOS 2k + 1 k NO YES NO NO YES NO YES MEDIUM

φ
D QQ

φ φ
D Q

φ

φ

φφ
D

φ
(a) (b) (c)

FIGURE W10.1  TSPC latches and flip-flops
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great nonoverlap, they are guaranteed to be safe from both setup and hold problems as long
as they are used correctly. Logic must be divided into phases 1 and 2. Signals can only inter-
act with other signals in the same phase. Passing through a latch changes the phase of the
signal. The situation becomes slightly more complicated when gated clocks and domino
circuits are mixed with the latches. [Noice83] describes a method of timing types that can
be appended to signal names to keep track of which signals can be safely combined at
inputs to gates and latches. 

In the two-phase timing discipline, a signal can belong to either phase 1 or phase 2
and be of one of three classes: stable, valid, or qualified clock. A signal is said to be stable
during phase 1 (_s1) if it settles to a value before φ1 rises and remains constant until after
φ1 falls. It is said to be valid during phase 1 (_v1) if it settles to a value before φ1 falls and
remains at that value until after φ1 falls. It is said to be a phase 1 gated or qualified clock
(_q1) if it either rises and falls like φ1 or remains low for the entire cycle. By definition, φ1
is a _q1 signal. Phase 2 signals are analogous. Figure W10.2 illustrates the timing of each
of these types. 

Latches must take qualified clocks (either _q1 or _q2 signals) to their clock inputs. A
phase 1 latch requires a _s1 or _v1 input (so that the input satisfies setup and hold times
around the falling edge of φ1), and produces a _s2 output because the output settles while
φ1 is high (before φ2 rises), and does not change again until the next time φ1 is high (after
φ2 falls). A phase 2 latch requires a _s2 or _v2 input and produces a _s1 output. Qualified

_s1

φ1

φ2

φ2

φ1

tnonoverlap

Tc

_v1

_q1

_s2

_v2

_q2

FIGURE W10.2  Timing types
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clocks are formed as the AND of a clock phase or another qualified clock with a stable
signal belonging to the same phase. The qualifying signal must be stable to ensure there
are no glitches in the clock. Qualified clocks are only used at the clock terminals of latches
or dynamic logic. A block of static CMOS combinational logic requires that all inputs
belong to the same phase. If all inputs are stable, the output is also stable. If any are valid,
the output is valid. The phase of a domino gate is defined by the clock or qualified clock
driving its evaluation transistor. The precharge transistor accepts the complement of the
other phase. The inputs must be stable or valid during the evaluation phase, and the out-
put is valid during that phase because it settles before the end of the phase and does not
change until precharge at the beginning of the next phase. All of these rules are illustrated
in Figure W10.3. The definitions are based on the assumption that the propagation delays
are short compared to the cycle time so that no time borrowing takes place; however, the
connections continue to be safe even if time borrowing does occur. 

Figure W10.4(a) redraws the flip-flop of Figure 10.21 built from master and slave
latches using two-phase nonoverlapping clocking. The flip-flop changes its output on the
rising edge of φ1. Both input and output are _s2 signals. Figure W10.4(b) shows an
enabled version of the flip-flop using clock gating. The enable signal to the slave must be
_s1 to prevent glitches on the qualified clock; in other words, the enable must not change
while φ1 is high. If the system is built primarily from flip-flops with _s2 outputs, the
enable must be delayed through a phase 2 latch to become _s1. Alternatively, the master
(φ2) latch could be enabled, but this requires that the enable sets up half a cycle earlier.
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Even when conventional two-phase latches with 50% duty cycles are used, the timing
types are still convenient to track which signals can interact. Typically, one distributes a
single 50% duty cycle clock clk and locally generates its complement clk. In such a case, clk
plays the role of φ1 and φ2 while clk plays the role of φ1 and φ2. This means that both the
precharge and evaluate transistors of dynamic gates receive the same signal. Because there
is no nonoverlap, you must analyze each path to ensure no hold problems exist. In particu-
lar, be careful to guarantee a stable enable signal for gated clocks.

Example W10.1

Annotate each of the signals in Figure W10.5 with its timing type. If the circuit con-
tains any illegal connections, identify the problems and explain why the connections
could cause malfunctions.

SOLUTION: Figure W10.6 shows the timing types of each signal. t_?? is the OR of h_s1
and r_s2. Hence, it might change after the rising edge of φ2 or φ1. Excessive clock skew
on φ2 could cause a hold time violation, affecting the result seen at u_s1.
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FIGURE W10.5  Example circuit for timing type checking
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10.5   Sequencing Dynamic Circuits
Dynamic and domino circuits operate in two steps: precharge and evaluation. Ideally, the
delay of a path should be the sum of the evaluation delays of each gate along the path. This
requires some careful sequencing to hide the precharge time. Traditional domino circuits
discussed in Section 10.5.1 divide the cycle into two half-cycles. One phase evaluates
while the other precharges, and then the other evaluates while the first precharges. Trans-
parent latches hold the result of each phase while it precharges. This scheme hides the
precharge time but introduces substantial sequencing overhead because of the latch delays
and setup time. A variety of skew-tolerant domino circuit schemes described in Section
10.5.2 use overlapping clocks to eliminate the latches and the sequencing overhead. Sec-
tion 10.5.3 expands on skew-tolerant domino clocking for unfooted dynamic gates.

Recall that dynamic gates require that inputs be monotonically rising during evalua-
tion. They produce monotonically falling outputs. Domino gates consist of dynamic gates
followed by inverting static gates to produce monotonically rising outputs. Because of
these two levels of inversion, domino gates can only compute noninverting logic functions.
We have seen that dual-rail domino gets around this problem by accepting both true and
complementary inputs and producing both true and complementary outputs. Dual-rail
domino is not always practical. For example, dynamic logic is very efficient for building
wide NOR structures because the logical effort is independent of the number of inputs.
However, the complementary structure is a tall NAND, which is quite inefficient. When
inverting functions are required, an alternative is to use a dynamic gate that produces
monotonically falling outputs, but delays the clock to the subsequent dynamic gate so that
the inputs are stable by the time the gate enters evaluation. Section 10.5.4 explores a selec-
tion of these nonmonotonic techniques.

10.5.1  Traditional Domino Circuits
Figure W10.7(a) shows a traditional domino clocking scheme. While the clock is high,
the first half-cycle evaluates and the second precharges. While the clock is low, the second
evaluates and the first precharges. With this ping-pong approach, the precharge time does
not appear in the critical path. The inverting latches hold the result of one half-cycle while
that half-cycle precharges and the next evaluates. The data must arrive at the first half-
cycle latch a setup time before the clock falls. It propagates through the latch, so the over-
head of each latch is the maximum of its setup time and D-to-Q propagation delay
[Harris97]. Assuming the propagation delay is longer, the time available for computation
in each cycle is

 (W10.1)

Figure W10.7(b) shows the pipeline with clock skew. Data is launched into the first
dynamic gate of each cycle on the rising edge of the clock and must set up before the fall-
ing edge. Hence, clock skew cuts into the time available for computation in each half-
cycle. This is even worse than flip-flops, which pay clock skew once per cycle. Assuming
the skew and setup time are greater than the propagation delay, the time for computation
becomes

 (W10.2)

t T tpd c pdq= − 2

t T t tpd c= − −2 2setup skew
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Moreover, like flip-flops, traditional domino circuits suffer from imbalanced logic.
Gates cannot borrow time into the next half-cycle, so a fraction of a gate delay at the end
of each half-cycle may be wasted. This penalty is hard to quantify, but clearly the ability to
borrow time intentionally or opportunistically would help performance.

In summary, traditional domino circuits have high sequencing overhead from latch
delay, clock skew, and imbalanced logic. For heavily pipelined systems with short cycle
times, this overhead can be such a large fraction of the cycle time that it wipes out the per-
formance advantage that domino was intended to bring. Therefore, many system designers
have developed skew-tolerant domino sequencing techniques with lower overhead. The
next section is devoted to these techniques.

10.5.2  Skew-Tolerant Domino Circuits
Traditional domino circuits have such high sequencing overhead because they have a hard
edge in each half-cycle: The first domino gate does not begin evaluating until the rising
edge of the clock, but the result must set up at the latch before the falling edge of the
clock. If we could remove the latch, we could soften the falling edge and cut the overhead.
The latch serves two functions: (1) to prevent nonmonotonic signals from entering the
next domino gate while it evaluates, and (2) to hold the results of the half-cycle while it
precharges and the next half-cycle evaluates. Within domino pipelines, all the signals are
monotonic, so the first function is unnecessary. Moreover, after the next half-cycle has had
sufficient time to evaluate using the results of the first half-cycle, the first half-cycle can
precharge without impacting the output of the next. 
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Figure W10.8 illustrates the implications of eliminating the latch. In general, let logic
be divided into N phases rather than two half-cycles. Figure W10.8(a) shows the last
domino gate in phase 1 driving the first gate in phase 2. Figure W10.8(b) shows that the
circuit fails if the clocks are nonoverlapping. When φ1 falls, nodes a and b precharge high
and low, respectively. When φ2 rises, the input to the first domino gate in this phase has
already fallen, so c will never discharge and the circuit loses information. Figure W10.8(c)
shows that the second dynamic gate receives the correct information if the clocks overlap.
Now, φ2 rises while b still holds its correct value. Therefore, the first phase 2 domino gate
can evaluate using the results of phase 1. When φ1 falls and b precharges low, c holds its
value. Without a keeper, c can float either high or low. Figure W10.9 shows a full keeper
consisting of weak cross-coupled inverters to hold the output either high or low. In sum-
mary, the latches can be eliminated at phase boundaries as long as the clocks overlap and
the first dynamic gate of each phase uses a full keeper.

In general, as long as the clock overlap is long enough that the second phase can eval-
uate before the first precharges, the latch between phases is unnecessary. Let us define thold
as the required overlap so that the second phase can evaluate before the first precharges. It
is typically a small negative number because the dynamic gate evaluation is fast, but pre-
charge is slow and must ripple through the static stage. The clocks must overlap enough
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that they still overlap by thold even under worst-case clock skew.1 The sequencing over-
head is zero because data propagates from one domino gate to the next without waiting at
any sequencing elements. Therefore, we use the generic name skew-tolerant domino for
domino circuits with overlapping clocks that eliminate the latches between phases
[Harris01a]. Using more clock phases also helps spread the power consumption across the
cycle, rather than drawing large noisy current spikes on the two clock edges.

Skew-tolerant domino circuits can also borrow time from one phase into the next, as
illustrated in Figure W10.10. Nominally, each phase in this example occupies half the
cycle. However, a φ1 dynamic gate can borrow time into phase 2 if that is convenient,
because both clocks are simultaneously high. If one phase overlaps the next by toverlap less
any clock skew, the maximum time that gates in one phase can borrow into time nomi-
nally allocated for the next is

  (W10.3)

[Williams91] observed that self-timed pipelines could use overlapping clocks to eliminate
latches, but such asynchronous design has not been widely adopted. The Alpha 21164
overlapped clocks in the ALU to eliminate the mid-cycle latch and improve performance
[Bowhill95]. Since then, most high-performance synchronous systems using domino have
employed some form of skew-tolerant domino to avoid the high sequencing overhead of
traditional domino.

There are many ways to produce overlapping clocks. In general, you can use N sepa-
rate clock phases. Each phase can use 50% duty-cycle waveforms or can stretch the falling
edge for even greater overlap. Generating multiple overlapping clocks with low skew is a
challenge. The remainder of this section describes a number of methods that have been
used successfully. 

10.5.2.1 Two-Phase Skew-Tolerant Domino and OTB Domino Figure W10.11 shows a
clock generator for the two-phase skew-tolerant domino system from Figure W10.10.
The generator uses clock choppers (also called clock stretchers) that delay the falling edge to
provide the overlap. A potential problem with two-phase systems is that if a phase of

1Do not confuse this thold, the amount of time that the clocks must overlap in a skew-tolerant domino pipe-
line, with thold on a sequencing element, the time that the data must remain stable after the clock edge. 
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logic has short contamination delay, the data can race through while both clocks are
high.

Opportunistic Time Borrowing (OTB) Domino addresses the race problem by intro-
ducing two more clocks (clk and clkb) with 50% duty cycles that are used on the first gate
of each half-cycle, as shown in Figure W10.12. These first gates block data that arrives too
early so that it will not race ahead. The delayed clocks clkd and clkbd play the role of φ1 and
φ2. OTB domino was used on the Itanium processor [Rusu00]. However, OTB domino
has relatively short overlap and time borrowing capability set by the delay of the clock
chopper. The next section describes how to achieve better performance with four phases.

10.5.2.2 Four-Phase Skew-Tolerant Domino  Figure W10.13 shows a four-phase skew-
tolerant domino system. Each of the phases has a 50% duty cycle and is spaced a quarter
cycle after the previous one, so the nominal overlap is a quarter cycle. The clocks are never
all simultaneously high so race problems are solved unless skew approaches a quarter cycle.
According to EQ (W10.3), the maximum time available for borrowing from one phase to
the next is

 (W10.4)

Figure W10.14(a) shows a local clock generator producing the four phases. φ1 and φ3
are produced directly from the global clock and its complement. φ2 and φ4 are delayed by
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FIGURE W10.11  Two-phase skew-tolerant domino clock generator

S
ta

tic

D
yn

a
m

ic

S
ta

tic

D
yn

a
m

ic

S
ta

tic

D
yn

a
m

ic

D
yn

a
m

ic

S
ta

tic

D
yn

a
m

ic

S
ta

tic

D
yn

a
m

ic

S
ta

tic

D
yn

a
m

ic

D
yn

a
m

ic

S
ta

tic

S
ta

tic

clkd

Phase1 Phase2

clkd clkdclk clkb clkbd clkbd clkbd

clk

clkd

clkb

clkbd

FIGURE W10.12  OTB domino

t T t tcborrow hold skew= − −/ 4



Chapter W     Web Enhanced18

buffers with nominal quarter cycle latency. By using both clock edges, each phase is guaran-
teed to overlap the next phase independent of clock frequency. Variations in these buffer
delays with process, voltage, and temperature can reduce the overlap and available time for
borrowing. To avoid excessive pessimism, remember that in the fast corner where overlaps
are short, the rest of the gates are also faster. The clock generator also includes a built-in
enable.

In general, clock choppers can be used to produce even greater overlap at the expense
of greater race concerns. The Itanium II uses four-phase skew-tolerant domino with duty
cycles exceeding 50% [Naffziger02]. Figure W10.14(b) shows a four-phase clock genera-
tor with clock choppers to provide longer duty cycles. [Harris01a] describes four-phase
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circuit methodology in much more detail, including testability and a generalization of
timing types from Section 10.4.6.

10.5.2.3 N-Phase Skew-Tolerant Domino Another approach to domino clocking is to use
a chain of buffers to produce a unique phase for each level of logic in a cycle. Figure
W10.15 shows two ways of producing these phases. In Figure W10.15(a), half the phases
are generated off the rising edge of the clock and half off the falling edge. In this way, each
phase is guaranteed to overlap the next independent of cycle time. In Figure W10.15(b),
all of the phases are generated off the rising edge. If the clock period is long, the final
phase must delay its falling edge to guarantee it will still overlap the first phase of the next
cycle. The SR latch ensures that the last phase, φ6, will not rise until after clk falls (to avoid
min-delay problems) and will not fall until after clk rises (to ensure overlap of φ1).

A number of design teams have independently developed these techniques. The
approach of one phase for each level of logic has been called Delayed Reset (IBM
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[Nowka98]), Cascaded Reset (IBM [Silberman98]), and Delayed Clocking (Sun [Heald00]).
The phase generator for Cascaded Reset domino is well suited to driving footless dynamic
gates and will be discussed further in Section 10.5.3.

10.5.2.4 Self-Resetting (Postcharge) Domino In the methods examined so far, the timing
of the precharge operation has been controlled by the clock generator. An alternative
approach, called Self-Resetting or Postcharge Domino, is to control the precharge based on
the output of the domino gate. Figure W10.16 shows a simple self-resetting domino gate.
When the domino gate evaluates and the output rises, a timing chain produces a pre-
charge signal reset to precharge the dynamic stage (and possibly assist pulling the HI-skew
inverter low, particularly if the inverter is highly skewed). Once the output has fallen, the
precharge signal turns off the precharge transistors and the gate is ready to evaluate again.
The input must have fallen before the gate reenters evaluation so the gate does not repeat-
edly pulse on a steady input. Therefore, self-resetting gates accept input pulses and pro-
duce output pulses whose duration of five gate delays is determined by the delay of the
timing chain. As long as the first inverter in the timing chain is small compared to the rest
of the load on node Y, its extra loading has negligible impact on performance.

Self-resetting gates save power because they reduce the loading on the clock. More-
over, they only toggle the precharge signal when the gate evaluates low. In Section 12.2.2,
we will see that this is particularly useful for RAM decoders. Only one of many wordlines
in a RAM will rise on each cycle, so a self-resetting decoder saves power by resetting only
that line without applying precharge to the other wordline drivers. For example, an IBM
SRAM [Chappell91], the Intergraph Clipper cache [Heald93], and the Sun UltraSparc I
cache [Heald98] use self-resetting gates.2

Self-resetting AND gates in these decoders often receive the address inputs as static
levels rather than pulses. Predicated self-resetting AND gates [Amrutur01] wait for the
input to fall before precharging the output to stretch the pulse width and prevent multiple
output pulses when the input is held high, as shown in Figure W10.17. The first inverter
in the timing chain is replaced by a generalized Muller C-element, shown in blue, whose

2Also referred to as “delayed reset” by Sun in [Lev95, Heald98].
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output does not rise until both Y and one of the inputs have fallen. This only works for
functions such as AND or OR-AND where one of the inputs is in series with all of the
others.

 [Proebsting91] applies self-resetting techniques to NORA gates for buffers and
memory decoders. Figure W10.18 shows an example of a postcharged buffer for a mem-
ory chip. It rapidly amplifies the chip select signal CS and provides a series of pulses that
serve as clocks for large (multi-pF) loads across the chip. The clock chopper produces a
pulse to trigger the first stage of the buffer. The buffer consists of alternating extremely
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FIGURE W10.17  Predicated self-resetting gate
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HI- and LO-skew inverters with logical efforts of approximately two thirds and one third,
respectively. Each inverter also receives a postcharge signal from a subsequent stage to
assist the weak device in resetting the gate. The very small transistor serves as a keeper, so
the gates can be viewed as unfooted NTP dynamic nMOS and pMOS inverters. Forward
moving pulses trigger each gate. Signals from four stages ahead feed back to postcharge
the gate. The buffer is roughly twice as fast as an ordinary chain of inverters because of the
lower logical efforts. It also avoids the need for an external clock to precharge the dynamic
gates. IBM has developed an extensive methodology for self-resetting domino gates called
SRCMOS [Haring96] that has been applied to circuits including a register file
[Hwang99a], 64-bit adder [Hwang99b], and the S/390 G4 CPU cache [Webb97].
SRCMOS gates are typically unfooted dynamic gates followed by highly skewed static
inverters, as shown in Figure W10.19. True and complementary reset signals precharge
the dynamic stage and help pull the output low. An additional weak static evaluation tran-
sistor converts the gate into pseudo-nMOS when the global se signal is asserted to assist
with testing and low-frequency debug. The inputs and outputs are pulses. The reset sig-
nals are generated from the gate outputs or from a global reset. 

To avoid the overhead and timing constraints of reset circuitry on every gate, the reset
signals can be derived from the output of the first gate in a pipeline and delayed through
buffers to reset subsequent gates. Figure W10.20 shows an example of an SRCMOS
macro adapted from [Hwang99b]. The upper portion represents an abstract datapath.
None of the keepers or static evaluation devices are shown. The center is a timing chain
that provides reset pulses to each gate. These pulses may be viewed as N-phase skew-
tolerant domino clocks. The bottom shows a pulse generator. In normal operation, the
power-on reset signal is low and the static evaluation signal se is high. Assume that all of
the gates have been precharged. When the input pulse arrives at A, the datapath will begin
evaluating. The first stage must use dual-rail (or in general, 1-of-N hot) encoding so that
Y1_h or Y1_l will rise when the stage has completed. This triggers the pulse generator,
which raises the done signal and initiates a reset. A wave of low-going reset pulses propa-
gates along the timing chain to precharge each gate. One of the reset pulses also pre-
charges the pulse generator, terminating the reset operation. At this point, the datapath
can accept a new input pulse. If the data idles low, none of the nodes toggle and the circuit
consumes no dynamic power.

The power-on reset forces done and reset high to initialize the pipeline at startup.
When the static evaluation signal is asserted, the reset pulses are inhibited. In this mode,
the datapath gates behave as pseudo-nMOS rather than dynamic, permitting low-
frequency test and debug.

Self-resetting gates require very careful design because they act on pulses rather than
static levels. Some of the timing checks include [Narayanan96]:

� Pulse overlap constraints—Pulses arriving at series transistors must overlap so the 
dynamic gate can pull down through all the transistors.
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� Pulse width constraints—Pulses must be wide enough for a gate to evaluate.
� Collision avoidance constraints—Pulses must not arrive at dynamic gates while the 

gates are being precharged.

The Pentium 4 uses yet another form of self-resetting domino called Globally-Reset
Domino with Self-Terminating Precharge (Global STP) to achieve very fast cycle times
[Hinton01]. The first design operated at 2 GHz in a 180 nm process (< 16 FO4 inverter
delays/cycle). More remarkably, the integer execution was double-pumped to 4 GHz
using Global STP domino. Each cycle has time for only eight gate delays: four dynamic
gates and four static gates.

Figure W10.21 illustrates the Global STP circuits. A frequency doubler generates
pulses off both edges of the clock to drive the datapath. Each stage of the datapath is a
domino gate with a keeper (k) and precharge transistor (p). The gates are shown using HI-
skew inverters but could use any HI-skew inverting static gate. The small NAND gates
save power by only turning on the precharge transistor if the dynamic gate had evaluated
low. The first stage requires a foot to only sample the input while φ1 is high. The last stage
also uses a foot, a full keeper, and more complex reset circuitry to stretch the width of the
output pulse so that it is compatible with static logic. The reset timing chain must be
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carefully designed to produce precharge clocks properly aligned to the data. For example,
φ3 should be timed to rise close to the time Y1 evaluates high, to prevent contention
between the precharge transistor and the pulldown network. Global STP circuit design
can be a very labor-intensive process. IBM used a similar timing chain without the fre-
quency doubler on an experimental 1 GHz PowerPC chip and called the method cascaded
reset [Silberman98].

10.5.3  Unfooted Domino Gate Timing
Unfooted domino gates have a lower logical effort than footed gates because they eliminate
the clocked evaluation transistor. They also reduce clock loading, which can save power.
However, at least one input in each series stack must be OFF during precharge to prevent
crowbar current flowing from VDD to GND through the precharge device and ON stack.
The easiest way to ensure this is to require that the input come from a previous domino gate
that has completed precharge before the footless gate begins precharge. Moreover, the pre-
vious gate must not output a ‘1’ again until the unfooted gate is in evaluation. 
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One way to ensure these constraints is to delay the falling edge of clocks to footless
gates, as shown in Figure W10.22(a). The first domino gate is footed to accept static
inputs that might be high during precharge. The subsequent unfooted gates begin evaluat-
ing at the same time but have their precharges delayed until the previous gate has pre-
charged. Multiple delayed clocks can be used to allow multiple stages of unfooted gates.
For example, the Itanium II processor uses one footed gate followed by four unfooted
gates in the first half-cycle of the execution stage for the 64-bit adder [Fetzer02]. If the
falling edge is delayed too much in a system with a short clock period, the clock may not
be low long enough to fully precharge the gate. Figure W10.22(b) shows an OTB domino
system that uses only one delayed clock but allows every other domino gate to be footless.
The delayed clocks can be produced with clock choppers, as shown in Figure W10.21.

The precharge time on each of the delayed phases in Figure W10.22(a) becomes
shorter because the falling edge is delayed but the rising edge is not. It is not strictly nec-
essary for all the rising edges to coincide; some delay can be accepted so long as the
delayed clock is in evaluation by the time the input arrives at its unfooted gate. Figure
W10.23 shows a delayed precharge clock buffer [Colwell95] used on the Pentium II. The
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delayed clocks are produced with skewed buffers that have fast rising edges but slower fall-
ing edges.

Self-resetting domino also works well with unfooted gates. The inputs are pulses
rather than levels. As long as the pulses are only high while the gate is in evaluation, no
precharge contention will occur. For example, Figures W10.18, W10.20, and W10.21
illustrate self-resetting circuits with unfooted gates in some or all of the stages.

The consequence of precharging an unfooted gate before its input has fully fallen low
is excess power consumption rather than outright circuit failure. Therefore, delays can be
set to nominally avoid precharge contention, yet accept that, under worst-case clock skew,
contention may occur in a few places.

10.5.4  Nonmonotonic Techniques
The monotonicity requirement forces domino gates to perform only noninverting func-
tions. Dual-rail domino accepts true and complementary inputs and produces true and
complementary outputs. This works reasonably well for circuits such as XORs at the
expense of twice the hardware. However, domino is particularly poorly suited to wide
NOR functions. Figure W10.24 compares a dual-rail domino 4-input OR/NOR gate to a
4-input dynamic NOR. The dual-rail design tends to be slow because the complementary
gate is a tall NAND with a logical effort of 5/3. On the other hand, a dynamic wide NOR
is compact and has a logical effort of only 2/3. The problem is exacerbated for wider gates.

The output of a dynamic gate is monotonically falling so it cannot directly drive
another dynamic gate controlled by the same clock, as shown in Figure 9.27. However, if
the rising edge of the clock for the second gate is delayed until the first gate has fully evalu-
ated, the second gate sees a stable input and will work correctly, as shown in Figure
W10.25. The primary trade-off in such clock-blocked circuits is the amount of delay: If the
delay is too short, the circuit will fail, but as the delay becomes longer, the circuit sacrifices
the performance advantages that dynamic logic was supposed to provide. This challenge is
exacerbated by process and environmental variations that require margins on the delay in
the nominal case so that the circuit continues to operate correctly in the worst case. 

Figure W10.25 also illustrates the precharge race problem. When X precharges while Y
is still in evaluation, Y will start to fall. If φ2 falls too late, Y will incorrectly glitch low. We
can alleviate this problem by latching Y before X precharges or by delaying the falling edge
of φ1.
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FIGURE W10.23  Delayed precharge clock buffer
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This section addresses a number of nonmonotonic techniques using delayed clocks to
directly cascade dynamic gates, and examines the margins required for matched delays.

10.5.4.1 Delay Matching Figure W10.26 shows a number of simple delay elements. The
buffer delay can be set by adjusting gate widths. The buffer with transmission gates provides
flexibility for longer delays. The current-starved inverter and switched capacitance designs
use a reference voltage to adjust the delay externally. The digitally controlled current-starved
inverter uses several digital signals rather than an analog voltage to adjust delay.
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The delay of gates can vary by as much as 30% relative to an FO4 inverter across pro-
cess, voltage, and temperature variations. Therefore, the delay line should provide some
margin to guarantee it always is slower than the gate it must match. For example, [Yee00]
uses a 20% margin. Many industrial designs use even more margin to ensure the circuit
will have good yield in high-volume production. (Who wants to explain to the big boss
why he or she wasted millions of dollars for the sake of saving a few picoseconds?) You
should always make sure that the circuit works correctly in all process and environmental
corners because it is not obvious which corner will cause the worst-case mismatches.
Moreover, random device variations and inaccuracies in the parasitic extraction and device
models cause further mismatch that cannot be captured through the design corner files.
Yet another problem is that matching differs from one process to another, potentially
requiring expensive redesign of circuits with matched delays when they are ported to the
next process generation. Adjustable delay lines are attractive because the margin can be set
more aggressively and increased after fabrication (as was done in [Vangal02]); however,
generating and distributing a low-noise reference voltage can be challenging.

The key to good matching is to make the delay circuit behave like the gate it should
match as much as possible. A good technique is to use a dummy gate in the delay line, as
shown in Figure W10.27 for a 2:1 dynamic multiplexer. The dummy gate replicates the
gate being matched so that to first order, process and environmental variations will affect
both identically. The input pattern is selected for worst-case delay.

You might be tempted to use longer-than-minimum length transistors to create long
delays, but this is not good because transistor length variations will affect the delay circuit
much differently than the gate it matches.

Despite all of these difficulties, delay matching has been used for decades in special-
ized circumstances that require wide NOR operation such as CAMs and PLAs (see Sec-
tions 12.6 and 12.7). [Yee00] proposes wider use of delay matching in datapath
applications and names the practice Clock-Delayed (CD) Domino.

10.5.4.2 Clock-Delayed Domino  In the simplest CD Domino scheme, logic is levelized as
shown in Figure W10.28(a). The boxes represent domino gates annotated with their
worst-case delay. Delay elements produce clocks tuned to the slowest gate in each level.
The overall path delay is the sum of the delays of each element, which may be longer than
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the actual critical path through logic. An alternative scheme is to clock each gate at a time
matched to its latest input, as shown in Figure W10.28(b). This better matches the critical
path at the expense of more delay elements and design effort. CD Domino is most effec-
tive for functions where high fanin gates can be converted to wide dynamic NORs.

10.5.4.3 Race-Based Nonmonotonic Logic The Itanium II processor uses a specialized
nonmonotonic structure called an annihilation gate for high fanin AND functions such as
a 6-input decoder [Naffziger02]. An ordinary high fanin AND gate requires many series
transistors. Using DeMorgan’s law, it can be converted to a wide NOR with complemen-
tary inputs. The annihilation gate in Figure W10.29 performs this NOR function very
rapidly while generating a monotonically rising output suitable as an input to subsequent
domino gates. It can be viewed as a dynamic NOR followed by a domino buffer with no
clock delay. This introduces a race condition, but the two stages are carefully sized so the
NOR will always win the race.
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Initially, both X and W are precharged. The inputs must set up and hold around the
rising edge of φ. When φ rises and the gate evaluates, W begins pulling down. If one or
more of the inputs are asserted, X will also pull down, cutting off the transistor that was
discharging W. The keeper will restore W back to a high level and the output Y will remain
low. If all of the inputs are low, X will remain high, W will discharge, and Y will monoton-
ically rise. The full keepers hold both X and W after evaluation. The gate has a built-in
race: X must fall quickly so that W does not droop too much and cause a glitch on Y. The
annihilation gate requires very careful design and attention to noise sources, but is fast and
compact. 

The annihilation gate is a new incarnation of a long-lost circuit called Latched Domino
[Pretorius86] shown in Figure W10.30. The Latched Domino gate adds a cross-coupled
nMOS transistor to help pull down node X. It also replaces the full keepers with ordinary
keepers. As long as the glitches on X and W are small enough, Y_h and Y_l are good
monotonic dual-rail outputs.

Intel uses a similar gate called a Complementary Signal Generator (CSG), shown in
Figure W10.31, to produce dual-rail outputs from single-rail inputs in a 5 GHz ALU
[Vangal02]. Again, nodes X and W precharge and the inputs must set up before the rising
edge of φ. When φ rises, W begins to discharge. If any of the inputs are true, X also begins
to discharge. The pulldown and keeper strengths must be chosen so that X falls much
faster than W. Once one of these nodes falls, it turns on the cross-coupled pMOS pullups
to restore the other node to full levels. These strong pullups also help fight leakage, per-
mitting wide fanin logic functions. The CSG was designed so the glitch on W would not
exceed 10% of VDD. In a dual-Vt  process, low Vt  transistors were used on all but the noise-
sensitive input transistors.
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The CSG is very effective in circuits that can use single-rail signals through most of
the path but that require dual-rail monotonic inputs to the last stage for functions such as
XOR. They can be much faster and more compact than dual-rail domino but suffer from
the very delicate race. The clock does impose a hard edge before which the inputs must set
up so that skew and delay mismatches on this clock appear as sequencing overhead.

10.5.4.4 Output Prediction Logic Clock-delayed and race-based dynamic logic represent
two extremes in nonmonotonic logic. Both consist of two cascaded dynamic gates. CD
Domino delays the clock to the second gate until the first has had time to fully discharge
so that the second gate will not glitch. Race-based logic such as annihilation gates and
CSGs do not delay the clock, but use transistor and keeper sizing to ensure the glitch on
the second gate remains acceptably small. Output Prediction Logic (OPL) fits between
these two extremes, delaying the clock by a moderate amount and accepting modest
glitches [McMurchie00]. The delay is chosen as a compromise between performance and
glitch size.

Figure W10.32 shows a basic OPL gate consisting of a Noise-Tolerant Precharge
dynamic stage (a dynamic gate with weak pMOS transistors to assist the keeper
[Yamada95, Murabayashi96, Thorp99]). You can view it either as a complementary
CMOS structure with clocked evaluation and precharge transistors or as a dynamic gate
plus a complementary pMOS pullup network. Like an ordinary dynamic gate, the output
precharges high while the clock is low, then evaluates low when the clock rises and the
appropriate inputs are asserted. However, like a static CMOS gate, the output can pull
back high through the pMOS network to recover from output glitches.

Figure W10.33 shows a chain of OPL 2-input NAND gates. Each receives a clock
delayed from the previous stage. As the stages are inverting, it resembles a chain of CD
Domino gates. The amount of delay is critical to the circuit operation. Suppose A is ‘1’ and
all the unnamed outer inputs are also ‘1’ so B, D, and F should pull low and C and E stay
high. OPL precharges all the outputs to predict each output will remain high. The gates
can be very fast because only half of the outputs have to transition. Figure W10.34 shows
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three cases of short (a), long (b), and medium (c) clock delays between a pair of OPL
inverters. Simulating OPL is tricky because if all the gates are identical, the outputs will
tend to settle at a metastable point momentarily, then diverge as the previous gate transi-
tions. To break this misleading symmetry, a small parasitic capacitance Cp was added to
node B.

In Figure W10.34(a), all the clocks rise simultaneously. φ2 arrives at the second stage
while the input B is still high so C pulls most of the way low. When B falls, C rises back
up. This causes D to fall, E to rise, and F to fall. In this mode of operation, the data ripples
through the gates much as in static CMOS and the path delay is rather slow.

In Figure W10.34(b), the clock spacing is 50 ps. φ2 arrives at the second stage after
the input B has pulled most of the way low so C remains high. After another delay, φ3
rises, D falls, and so forth. In this mode of operation, the OPL chain behaves in clock-
blocked mode just like clock-delayed domino. The path delay is the sum of the clock
delays plus the propagation delay of the final stage, which again is rather slow because the
clock delay is lengthy.

In Figure W10.34(c), the clock spacing is 15 ps. φ2 arrives at the second stage as the
input B is falling so C glitches slightly, then returns to a good high value. After another
delay, D falls. Again, the path delay is essentially the sum of the clock delays and final
stage delay, but it is now faster because the clock delay is shorter than required for CD
domino. The extra speed comes at the expense of some glitching.

A challenge in designing OPL gates is to choose just the right clock spacing. It
should be as short as possible but not too short. Figure W10.35 plots the delay from A to
F against the spacing between clocks. The nMOS transistors are two units wide and the
figure compares the performance for pMOS of one, three, or five units. Wider pMOS
transistors have slower evaluation delays but recover better from glitches. The lowest path
delay occurs with a clock spacing of 10–15 ps. The path slows significantly if the clock
spacing is too short, so the designer should nominally provide some margin in clock delay
to ensure the worst case is still long enough. In comparison, a chain of complementary
CMOS NAND gates has a delay of 213 ps.

The basic OPL technique was illustrated for modified complementary CMOS gates
that are relatively slow but recover quickly from large glitches. It also applies to other cir-
cuit families that have faster evaluation delays for high fanin NOR structures such as
pseudo-nMOS or dynamic gates, as illustrated in Figure W10.36(a and b). Pseudo-
nMOS OPL is faster at evaluating because of the lower logical effort, but slower at recov-
ery if the glitch is large. Dynamic OPL gates evaluate even faster but cannot recover at all
if the glitch is large enough to flip the keeper. Using a low-skew feedback inverter
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improves the glitch tolerance for the keeper. As the best delay between clocks is a function
of both evaluation delay and glitch tolerance, pseudo-nMOS and dynamic OPL are com-
parable in performance. Dynamic gates dissipate less power than pseudo-nMOS but may
fail entirely if the clock delay is too short. Figure W10.36(c) shows a differential OPL gate
using cross-coupled pMOS keepers that do not fight the initial transition and that can
recover from arbitrarily large glitches [Kio01]. The inventors found that this was the fast-
est family of all, nearly five times faster than static CMOS.  

Other OPL implementations of functional units can be found in [Guo05, Chong06].

10.5.5  Static-to-Domino Interface
Static CMOS gates require inputs that are levels and may produce nonmonotonic glitches
on the outputs. Domino gates require inputs that are monotonic during evaluation and
produce pulses on the outputs. Therefore, interface circuitry is necessary at the static-to-
domino interface to avoid glitches, as well as circuitry at the domino-to-static interface to
convert the pulses into levels.

10.5.5.1 Static-to-Domino Interface Falling static inputs to domino gates must set up by
the time the gate begins evaluation and should not change until evaluation is complete.
This imposes a hard edge and the associated clock skew penalties, so the static-to-domino
interface is relatively expensive. High-performance skew-tolerant domino pipelines build
entire loops out of domino to avoid paying the skew at the static-to-domino interface.

A simple solution to avoiding glitches at the interface is to latch the static signals, as
shown in Figure W10.37(a). The latch is opaque while the domino gates evaluate. Figure
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W10.37(b) shows that the latch does not need to be placed at the end of the previous half-
cycle. The static logic must be designed to set up before domino gates enter evaluation.
The latch prevents the next token from arriving too early and upsetting the domino input.

In systems using flip-flops or pulsed latches, another approach is to capture the input
on the clock edge with a flop or latch that produces monotonically rising outputs, as
shown in Figure W10.38. The SA/F-F produces dual-rail monotonic outputs if the SR
latch is replaced by HI-skew inverters. The K6 differential flip-flop also produces dual-rail
monotonic pulsed outputs suitable for self-resetting logic that requires pulsed inputs. In
any of these cases, you can build logic into the latch or flip-flop. For example, Figure
W10.39 shows a single-rail pulsed domino flip-flop or entry latch (ELAT) with integrated
logic used on UltraSparc and Itanium 2 [Klass99, Naffziger02]. It can be viewed as a fully
dynamic version of the Klass SDFF. Falling inputs must set up before the clock edge, but
rising inputs can borrow a small amount of time after the edge. The output is a monoton-
ically rising signal suitable as an input to subsequent domino gates. The pulsed domino
flip-flop can also use a single pulsed nMOS transistor in place of the two clocked devices
[Mehta99].

10.5.5.2 Domino-to-Static Interface Domino outputs are pulses that terminate when the
gates precharge. Static logic requires levels that remain stable until they are sampled, inde-
pendent of the clock period. At the domino-to-static interface, another latch is required as
a pulse-to-level converter. The output of this latch can borrow time into subsequent static
logic, so the latch does not impose a hard edge.
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Figure W10.40 shows a domino gate with a simple built-in output latch. The HI-
skew inverter is replaced with a clocked inverter. The critical path still passes through only
the pMOS transistor, so the latch is nearly as fast as a simple inverter. On the falling edge
of the clock, the latch locks out the precharge, holding the result of the domino gate until
the next rising edge of the clock. A weak inverter staticizes the Y output. Y should typically
be buffered before driving long wires to prevent noise from backdriving the latch. Note
that Y does glitch low shortly after the rising edge of the clock. The glitch can cause excess
power dissipation in the static logic. Dual-rail domino outputs can avoid the glitch at the
cost of greater delay by using a SR latch (see several designs in [Nikolic00]). 
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The Itanium 2 uses a dynamic latch converter (DLC) on the last domino gate in each
half-cycle to hold the output by delaying the precharge until the next rising clock edge.
This provides greater skew tolerance in domino paths and allows the output to drive static
logic. An ordinary dynamic gate receives the same clock for the precharge (RCLK) and
evaluation (ECLK) transistors and has a weak pMOS keeper. Figure W10.41 shows a
DLC that is a “bolt-on” block consisting of a delayed clock generator and an extra nMOS
keeper, to make a full keeper. The RCLK generator produces a brief low-going precharge
pulse on the rising edge of the clock. Although the precharge and evaluate transistors may
be on momentarily, this is not a large concern because the DLC operates the last gate of
the half-cycle so that the inputs do not arrive until several gate delays after the clock edge.
The DLC also may include scan circuitry illustrated in Section 15.6.2.3.

In self-resetting domino, the reset pulse for the last gate can also be delayed so that
the domino output is compatible with static logic. For example, Figure W10.41 showed
such a pulse generator for Global STP domino.

10.5.6  Delayed Keepers
Dynamic gates with high leakage current will eventually discharge to an invalid logic level
unless they have strong keepers. The problem is especially severe when the inputs use
many parallel low-Vt  transistors. Unfortunately, the strong keeper slows the dynamic gate,
reducing the performance advantage it was supposed to provide. As discussed in Section
9.2.4.3 for the burn-in keeper, this problem can be addressed by breaking the keeper into
two parts. One part operates in the typical fashion. The second part turns on after some
delay when the gate has had adequate time to evaluate. This combines the advantage of
fast initial evaluation from the smaller keeper with better long-term leakage immunity
from the two keepers in parallel.

Figure W10.42(a) shows such a conditional keeper [Alvandpour02]. P2 is the conven-
tional feedback keeper. P1 turns on three gate delays after φ rises to help fight leakage.
Figure W10.42(b) shows High-Speed Domino that leaves X floating momentarily until P1
turns ON [Allam00]. Skew-Tolerant High-Speed Domino uses two transistors in series as
the second keeper [ Jung01], as shown in Figure W10.42(c). The inverting delay logic
(IDL) can be an inverter, three inverters in series, or some other inverting structure with
greater delay.
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A challenge with any of these delayed keeper techniques is to ensure that the second
part of the keeper turns on at a suitable time after the input arrives, but before too much
leakage occurs. They work best for the first gate after a phase boundary, where the inputs
are known to set up by the time the clock rises [Alvandpour02]. 

10.9   Case Study: Pentium 4 and Itanium 2 
        Sequencing Methodologies
The Pentium 4 and Itanium 2 represent two philosophies of high-performance micropro-
cessor design sometimes called Speed Demon and Braniac, respectively. The Pentium 4 was
designed by Intel for server and desktop applications and has migrated into laptop
computers as well. The Itanium 2 was jointly designed by Hewlett-Packard and Intel for
high-end server applications. Figure W10.43 shows the date of introduction and the per-
formance of several generations of these processors.

The Pentium 4 uses a very long (20+ stage) pipeline with few stages of logic per cycle
to achieve extremely high frequencies. It issues up to three instructions per cycle, but the
long pipeline causes severe penalties for branch mispredictions and cache misses, so the
overall average number of instructions executed per cycle is relatively low. Figure 7.36
showed a die photo of the 42-million transistor Pentium 4. The chip consumes about 55
watts. A top-of-the-line Pentium 4 sold in 1000-unit quantities for around $400–$600
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(depending on price pressure from competitor AMD). The chip has aggressively migrated
into Intel’s most advanced processes both to achieve high performance and to reduce the
die size and manufacturing cost. The Speed Demon approach also gives Intel bragging
rights to the highest clock frequency microprocessors, which is important because many
consumers compare processors on clock frequency rather than benchmark performance.
[Hrishikesh02] argues that the best logic depth is only 6 to 8 FO4 inverter delays per cycle.

In contrast, the Itanium 2 focuses on executing many instructions per cycle at a lower
clock rate. It uses an 8-stage integer pipeline clocked at about half the rate of the Pentium
4 in the same process, so each cycle accommodates about twice as many gate delays
(roughly 20–24 FO4 inverter delays, compared to roughly 10–12 for the Pentium 4).
However, it issues up to six instructions per cycle and has a very high-bandwidth memory
and I/O system to deliver these instructions and their data. As a result, it achieves nearly
the same integer performance and much better floating-point benchmark results than the
Pentium 4. Moreover, it also performs well on multiprocessor and transaction processing
tasks typical of high-end servers. Figure W10.44 shows a die photo of the Itanium 2 with
a 3 MB level 3 (L3) cache; notice that the three levels of cache occupy most of the die area
and most of the 221 million transistors. The 1.5 GHz model with 6 MB cache bumps the
transistor count to 410 million and further dwarfs the processor core. The chip consumes
about 130 watts, limited by the cost of cooling multiprocessor server boxes. A high-end
Itanium 2 sold for more than $4000 because the server market is much less price-sensitive.
The chip has lagged a year behind the Pentium 4 in process technology.

21.6 mm

19.5 mm

FIGURE W10.44  Itanium II die photo (© IEEE 2002.)



Chapter W     Web Enhanced 39

10.9.1  Pentium 4 Sequencing
The Pentium 4 actually operates at three different internal clock rates [Hinton01,
Kurd01]. In addition to the core clock that drives most of the logic, it has a double-speed
fast clock for the ALU core and a half-speed slow clock for noncritical portions of the chip.
The core clock is distributed across the chip using a triple spine, as shown in Section
13.4.4.3. These clocks drive pulsed latches, flip-flops, and self-resetting domino gates.

The ALU runs at a remarkable rate of twice the core clock frequency (about 6 FO4
inverter delays). To achieve this speed, it is stripped down to just the essential functions of
the bypass multiplexer and the 16-bit add/subtract unit. Other less commonly used blocks
such as the shifter and multiplier operate at core frequency. The ALU uses unfooted dom-
ino gates. The gates produce pulsed outputs and precharge in a self-timed fashion using
Global STP domino. These circuits demanded extensive verification by expert circuit
designers to ensure the domino gates function reliably.

The Pentium 4 uses pulsed latches operating at all three clock speeds. Figure W10.45
shows pulse generators that receive the core clock and produce the appropriate output
pulses. The medium-speed pulse generator produces a pulse on the rising edge of the core
clock. The pulse width can be shaped by the adjustable delay buffer to provide both long
pulses (offering more time borrowing) and short pulses (to prevent hold-time problems).
The buffer is built from a digitally controlled current-starved inverter with four discrete
settings. The pulse generator also accepts enable signals to gate the clock or save power on
unused blocks. The slow pulse generator produces a pulse on every other rising edge of the
core clock. To do this, it receives a sync signal that is asserted every other cycle. While the
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FIGURE W10.45  Pulse generators
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sync signal must be distributed globally, it is more convenient than distributing a half-
speed clock because it can accept substantial skew while still being stable around the clock
edge. The fast pulse generator produces pulses on both the rising and falling edges of the
core clock. Therefore, the core clock should have nearly equal high and low times, i.e.,
50% duty cycle, so the pulses are equally spaced.

The 90 nm Pentium 4 adopted even more elaborate LVS circuits described in Section
9.4.2.4. However, design for extreme clock frequencies consumed too much power. More-
over, these circuits did not scale well as process variation increased and supply voltage
decreased. Intel eventually abandoned these techniques and moved to the Core architec-
ture, running at a lower frequency using mostly static logic and fewer pipeline stages.

10.9.2  Itanium 2 Sequencing
The Itanium 2 operates at a single primary clock speed, but also makes use of extensive
domino logic and pulsed latches [Naffziger02, Fetzer02, Rusu03]. The clock is distributed
across the chip using an H-tree, as shown in Section 13.4.4.2. The H-tree drives 33
second-level clock buffers distributed across the chip. These buffer outputs, called
SLCBOs, in turn drive local clock gaters that serve banks of sequencing elements within
functional blocks. There are 24 different types of clock gaters producing inverted,
stretched, delayed, and pulsed clocks. Figure W10.46 shows some of these clocks. Each
gater comes in many sizes and is tuned to drive different clock loads with low skew over
regions of up to about 1000 μm. 

In the Itanium 2, 95% of the static logic blocks use Naffziger pulsed latches with 125-
ps wide pulses called PCK. The pulsed latches are fast, permit a small amount of time bor-
rowing, and present a small load to the clock. In situations where more time borrowing is
needed, the gater may produce a wider pulsed clock WPCK. Clocked deracers using
NPCK can be inserted between back-to-back pulsed latches to prevent hold time
violations. 

The Itanium 2 uses extensive amounts of domino logic to achieve high performance
at the expense of power consumption and careful design. Figure W10.47 shows a typical
four-phase skew-tolerant domino pipeline from the Itanium 2. CK and NCK are clocks
with a duty cycle slightly higher than 50% that are playing the roles of φ1 and φ3. They are
delayed with buffers to produce CKD and NCKD (φ2 and φ4). 

SLCBO

PCK

NPCK

WPCK

CK

NCK

CKD/ECK

NCKD

RCK

PRECK

PRECKX

FIGURE W10.46  Clock gater waveforms
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The last gate in each phase uses a dynamic latch converter (DLC) to hold the output
so that it can drive static logic and retain its state when the clock stops. The DLC also
provides scan capability at each half-cycle boundary to help with test.

At static-to-dynamic interfaces, inputs pass through pulsed entry latches (ELATs)
that capture the static signal and convert it into a single-rail monotonic dynamic signal.
These ELATs are shown in Figure W10.47 and can perform logic as well as latching.
Some ELATs use PCK, while others derive the pulse internally from CK. 

In some especially critical paths, alternating stages use unfooted domino gates. The
falling edge of the clocks for these stages is delayed further to avoid contention during pre-
charge. Figure W10.48 shows an extreme example in which a footed gate is followed by
three stages of unfooted domino with successively delayed precharge edges, as was done in
the 64-bit Naffziger adder used in the integer execution units.

[Naffziger06, Fisher06, McGowen06, and Stackhouse09] describe the evolution of
these techniques in subsequent Itanium processors and the introduction of dynamic volt-
age scaling.

11.2.2.4 Manchester Carry Chain Adder  The carry chain can also be built from switch
logic using propagate, generate, and kill signals. The majority gate of Figure W11.1(a) can
be replaced with a switch network. Figure W11.1(b) shows a static implementation
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operating on a complementary carry. The complementary carry can be propagated
through the transmission gate, generated with the nMOS transistor, or killed with the
pMOS transistor. Figure W11.1(c) shows a dynamic version that is faster and requires less
hardware.

Multiple stages are directly connected to build a Manchester carry chain, as shown in
Figure W11.2(a) [Kilburn59]. The resistance and capacitance of the carry chain grow with
the length, so the delay grows with the square of length. This is clearly not viable for long
adders. As with long wires, the delay can be made linear with length by periodically break-
ing the chain and inserting an inverter to buffer the signals. The best chain length depends
on the parasitic capacitance and can be determined through simulation or calculations for
a particular technology (see Exercise 11.4), but is typically 3 or 4; Figure W11.2(b) shows
a valency-4 carry chain. The widths of the transistors along the chain can be tapered to
reduce parasitic delay.

Observe that the Manchester carry chain computes the functions

 (W11.1)

G3:0 is analogous to the valency-4 group generate circuit of EQ (11.8), while the other
outputs are the generate signals for smaller groups (including a simple buffer of the input).
In other words, the carry chain can be viewed as a buffer and three gray cells of increasing
valency, as shown in Figure W11.2(c). If the carry chain of Figure W11.2(b) is redrawn in
a more conventional form (Figure W11.3), it can also be seen to be another representation
of a footless multiple-output domino gate, as discussed in Section 9.2.4.6. 
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Figure W11.4 shows a Manchester carry chain adder using valency-4 stages. It is sim-
ilar to the carry-ripple adder, but uses N/3 stages.

11.2.2.12 An Aside on Domino Implementation Issues  Using K = A + B in place of P, all
the group generate signals Gi:0 are monotonic functions of the noninverted inputs and can
be computed with single-rail domino gates. However, the final sum XOR is inherently
nonmonotonic and cannot be computed this way. The two common choices for designers
of domino adders are to build the final sum XOR with static logic or to construct the
entire adder out of dual-rail domino. 

Domino adders with a static sum XOR produce nonmonotonic outputs that must be
stabilized on a clock edge before driving subsequent domino gates. As adders are often
used in self-bypass loops where the output of the adder serves as one of the inputs on the
next cycle, this introduces a hard edge and the associated costs of setup time and clock
skew into the critical path. 

G0

P1 G1
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P2

P3

φ

C1 = G1:0

C2 = G2:0

C3 = G3:0
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FIGURE W11.3  Equivalence of Manchester 
carry chain and multiple-output domino gate
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FIGURE W11.4  Manchester carry chain adder group PG network
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The alternative is to build a dual-rail domino sum XOR accepting monotonic true
and complementary (sig_h and sig_l ) versions of the carries. Producing these carries in
turn requires extra hardware all the way back to the adder inputs, which also must be pro-
vided in dual-rail form. If the sum is also computed in dual-rail form, the outputs can be
directly bypassed to the inputs in a skew-tolerant fashion. The drawback of such adders is
the extra hardware involved in the group PG network. Again, there are two common cell
designs. One is to build dual-rail group propagate and generate signals, i.e., four signals
per bundle. Another is to use monotonic 1-of-3 hot propagate-generate-kill (PGK) sig-
nals.

The first approach uses the following logic:
 

                   (W11.3)

Observe that the group generate G_h and G_l and kill K_h and K_l signals are not truly
complementary; they are sometimes called pseudo-complements [Wang93]. They take
advantage of the symmetry of the addition function so that the same type of gate can be
reused. It is left to the reader to recursively verify that Gi–1:0_h and Ki–1:0_h are the true
and complementary versions of the carries into bit i. Schematics of each gate are shown in
Figure W11.5(a).

The 1-of-3 hot version uses less logic: 
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The approach gets its name because exactly one of the three signals P, G, or K is true
for any group. The complementary propagate signal P ′  = G + K is required for the final
sum XOR, but nowhere earlier. Again, notice that the G and K functions are identical,
simplifying design and layout. The group kill prefixes are the complements of the group
generates (Gi–1:0 = Ki–1:0); this is used in EQ (W11.5) to reduce the loading on each sig-
nal in the sum XOR. The 1-of-n hot technique can be useful for other domino applica-
tions, such as multiplexer select signals and shifter control signals; it also reduces switching
activity and power consumption. Figure W11.5(b) shows how transistors can be shared
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between gates. 
Manchester carry chains can also generate both polarities of carries. Figure W11.6

shows how the same type of carry chain can be used for both C3_h and C3_l carries as well
as to find the group propagate signal using 1-of-3 hot encoding.

11.9.7  Serial Multiplication
Large parallel multipliers consume huge numbers of transistors. While transistor budgets
have expanded to the point that this is often acceptable, designers of low-cost systems still
may find serial multiplication attractive. Serial multiplication uses far less hardware, but
requires multiple clock cycles to operate. Multiplication can be performed in a word-serial
or bit-serial fashion.

Figure W11.7(a) shows a word-serial unsigned multiplication unit that only requires
an M-bit adder and an (M + N )-bit loadable shift register [Patterson04]. On each step, it
conditionally adds the multiplicand Y to the running product if the appropriate bit of the
multiplier X is 1. It is based on the observation that on the kth step, the running product
has a length of M + k bits and that bits 0…k – 1 of X have already been considered and are
no longer necessary. 

The multiplier is initialized by loading all of X into the lower portion of the shift reg-
ister and a running product of zeroes into the upper portion. On step k, the running prod-
uct  shifts and Y is added to the most significant part if xk = 1. Each shift doubles the
weight at which the next partial product will be added to the running product. After N
steps, the shift register will contain the final product. Figure W11.7(b) demonstrates mul-
tiplying 1100 × 0101 = 00111100. The vertical bar separates the running product from the
remaining bits of X.

The cycle time of word-serial multiplication is set by the M-bit carry-propagate addi-
tion on each step. This CPA delay can be shortened to a CSA delay by maintaining the
partial product in carry-save redundant form. The cost is doubling the number of registers
to hold the redundant partial product and a final CPA to convert the redundant result into
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a two’s complement number at the end of the multiplication. Alternatively, only the upper
M bits can be kept in redundant form, and a single full adder can convert each bit on the
fly as it shifts into the lower N bits.

Serial multiplication can be accelerated by processing more bits of X on each step. For
example, a radix-4 approach consumes 2 bits of X on each step, halving the cycle count.
Booth encoding can be used to avoid having to compute 3Y. Booth-encoding also handles
signed operands gracefully.

14.7   Physical Design Styles
Basic gate layout was introduced in Section 1.5.4. In this section, we will examine the
physical layout of CMOS gates in a general sense to understand the impact of the physical
structure on the behavior and performance of circuits. For more extensive treatment by
one of IBM’s mask design instructors, see [Saint02].

14.7.1  Static CMOS Gate Layout
Complementary static CMOS gates can be designed using a single row of nMOS transis-
tors below (or above) a single row of pMOS transistors, aligned at common gate connec-
tions. Most “simple” gates can be designed using an unbroken row of transistors in which
abutting source/drain connections are made. This is sometimes called the “line of diffusion”
rule, referring to the fact that the transistors form a line of diffusion intersected by polysil-
icon gate connections.

If we adopt this layout style, we can use automated techniques for designing such
gates [Uehara81]. The CMOS circuit is converted to a graph when the following occurs: 

� The vertices in the graph are the source/drain connections.
� The edges in the graph are gates of transistors that connect particular source/drain 

Step Shift Reg  Notes
     0000|0101 initialize
0a   1100|010 1 add 1*Y
0b   01100|010 shift right
1a   01100|01 0 add 0*Y
1b   001100|01 shift right
2a   111100|0 1 add 1*Y
2b   0111100|0 shift right
3a   0111100| 0 add 0*Y
3b   00111100| shift right
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+
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FIGURE W11.7  Word-serial multiplier
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vertices.

Two graphs, one for the pulldown network (n), and one for the pullup network (p),
result. Figure W14.1(a) shows an example of the graph transformation. The connection of
edges in the graphs mirrors the series-parallel connection of the transistors in the circuits.
Each edge is named with the gate signal name for that particular transistor. For example,
the p-graph (light lines and circles) has four vertices: Y, I1, I2, and VDD. It has four edges,
representing the four transistors in the pullup structure. Transistor A (A connected to gate)
is an edge from the vertex Y to I2. The other transistors are similarly arranged in Figure
W14.1(b). Note that the graphs are duals of each other because the pullup and pulldown
networks are the dual of each other. The n-graph (dark lines and crosses) overlays the p-
graph in Figure W14.1(b) to illustrate this point. If two edges are adjacent in the p- or n-
graph, then they can share a common source/drain connection and can be connected by
abutment. Furthermore, if there exists a sequence of edges (containing all edges) in both
graphs that have identical labeling, then the gate can be designed with no breaks in the
line of diffusion. This path is known as a Euler path. The main points of the algorithm are
as follows:

� Find all Euler paths that cover the graph.
� Find a p- and n-Euler path that have identical labeling (a labeling is an ordering of 

the gate labels on each vertex).
� If the paths in step 2 are not found, then break the gate in the minimum number of 

places to achieve step 2 by separate Euler paths.

The original graph with a possible Euler path is shown in Figure W14.2(a). The
sequence of gate signal labels in the Euler path is (A, B, C, D). To complete a layout, the
transistors are arranged in the order of the labeling in parallel rows, as shown in stick dia-
gram form in Figure W14.2(b). Vertical polysilicon lines form the gate connections. Metal
routing wires complete the layout. This procedure can be followed when manually design-
ing a gate, although good layouts usually become possible by inspection with a bit of
practice.

A variation of the “line of diffusion” style occurs in circuits where a signal is applied to
the gates of multiple transistors. In this case, transistors can be stacked on the appropriate
gate signal using multiple rows of diffusion in a style called gate matrix layout [Wing82,
Hu90]. This also occurs in cascaded gates that cannot be constructed from a single row of
transistors. A good example of this is the complementary XNOR gate. A schematic for
this gate is shown in Figure W14.3(a). According to the style of layout that we have used
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to date, two possible layouts are shown in Figure W14.3(b) and Figure W14.3(c). The
layout in Figure W14.3(b) uses the single row of n- and p-diffusion with a break, while
that of Figure W14.3(c) uses a gate matrix layout. The selection of styles would depend on
the overall layout––whether a short fat or long thin cell were needed. Note that the gate
segments that are maximally connected to the power and ground rails should be placed
adjacent to these signals.
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14.7.2  General CMOS Layout Guidelines
Layout can consume an unlimited amount of time because there are so many degrees of
freedom and there is so much opportunity to squeeze a lambda here or there. In general,
time to market is much more important than reducing chip area by a few percent, so it is
important to settle on a simple and consistent layout design methodology. The following
general layout guidelines can be stated:

� Complete the electrical gate design and verification before layout. Circuit changes 
after layout is started become schedule busters.

� Run VDD and GND horizontally in metal at the top and bottom of the cell. Often 
these wires are wider than minimum to carry large DC currents without electromi-
gration problems.

� Run a vertical polysilicon line for each gate input.
� Order the polysilicon gate signals to allow the maximal connection between tran-

sistors via abutting source/drain connections. These form gate segments.
� Place n-diffusion segments close to GND and p-diffusion segments close to VDD, 

as dictated by connectivity requirements.
� Make connections to complete the logic gate in polysilicon (for short connections 

between gates) or metal. Squeeze transistors together to minimize diffusion 
between transistors.

� Place well and substrate contacts under the supply lines in each cell.

In general, metal layers should run perpendicular to each other to avoid “routing one-
self into a corner.” Exceptions are sometimes made to allow limited use of metal1 in the
“wrong” direction to shorten connections or avoid the need for metal2 within a cell. Fig-
ure W14.4 shows two styles of standard cell layout for 2-input NOR gates. The first uses
metal1 horizontally. The second uses metal1 vertically. Observe that the polysilicon gates
are bent to minimize the diffusion between series transistors. The layouts assume that
metal1–metal2 vias can be stacked on top of poly-metal1 contacts, as is common in mod-
ern planarized processes. If this is not allowed, the contacts must be placed adjacent to
each other, sometimes increasing cell area. 
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FIGURE W14.4  Standard cell metal usage
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For standard cells, inputs and outputs must usually be routed to contacts near the cen-
ter in current processes, or the top or bottom of the cell where they can connect to the
routing channels for older processes with few metal layers. In the vertical metal1 style, this
often increases the cell area because the metal1 cannot run over the top of other contacts
within the cell. In datapath cells, however, inputs and outputs can contact bitlines running
over the top of cells parallel with VDD and GND. In this case, the vertical metal1 style
may be preferred because metal2 bitlines are free to run horizontally over the cells. 

Other layout guidelines include the following:

� Diffusion has high resistance and capacitance. Never wire in diffusion. Minimize 
the area of diffusion regions. Fully contact large transistors to avoid series resis-
tance through the diffusion between the contact and the edge of the transistor.

� Polysilicon has high resistance, so use it only for short connections within cells. 
When long polysilicon lines are required (e.g., in the word line of a memory), strap 
the poly periodically with metal.

� Lower levels of metal are thin and on a tight pitch. They are best for shorter con-
nections (e.g., within a functional block) where density is important. 

� Upper levels of metal are thicker and on a wider pitch. They are faster and well-
suited to global interconnections, the clock, and the global power/ground network. 
However, they are a scarce resource and must be carefully allocated.

� Probe points should be placed on the top metal layer where they will be accessible 
during test (see Section 15.4).

� Consider adding an assortment of unused gate array “happy gates” scattered 
through random logic. This facilitates making metal-only changes to fix logic bugs 
during silicon debug.

Note that the style of layout discussed involves optimizing the interconnection at the
transistor level rather than the gate level. As a rule, smaller and perhaps faster layouts
result by taking logic blocks with 10- to 100-transistor complexities rather than designing
individual gates and trying to piece them together. For example, Figure W14.5(a) shows a
transparent latch schematic. Figure W14.5(b) shows the latch layout built from simple
standard cells, while Figure W14.5(c) shows an optimized layout with two thirds the area.
This improvement in density is due to a number of factors, including the following:

� Better use of routing layers––routes can occur over cells
� More “merged” source/drain connections
� More use of  “white space” (blank areas with no devices or connections) in sparse 

gates

Improvements gained by optimizing at this level over a poorly implemented standard-
cell approach can be up to 100% or more in area. However, such an approach is quite
labor-intensive. These days, it is only worth investing manual effort in highly repetitive
and reused structures like datapaths and widely used standard cells. Implementing random
control logic manually in this manner is clearly a mistake because this type of logic often
changes and the manual effort has to be continually spent to keep up with the changes.
With modern multilevel metallization processes and optimized standard cell libraries, the
density difference between custom-designed cells and hand or algorithmically placed stan-
dard cells is minimal if the same circuits are used, because the transistor area fits under any
routing. Density differences for custom circuits occur where the circuit is optimized to
reduce the number of transistors (i.e., taking out buffer inverters in a latch). The point is
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that “in the old days” there was a much greater difference between custom and even a well-
implemented standard cell design than there is today (given the same circuits).

15.6.2.3 Other Scannable Elements During scan mode, the flip-flops are connected
back-to-back. Clock skew can lead to hold time problems in the scan chain. These prob-
lems can be overcome by adding delay buffers on the SI input to flip-flops that might see
large clock skews. Another approach is to use nonoverlapping clocks to ensure hold times.
For example, the Level Sensitive Scan Design (LSSD) methodology developed at IBM uses
flip-flops with two-phase nonoverlapping clocks like those shown in Figure 10.21. During
scan mode, a scan clock φs is toggled in place of φ2, as shown in Figure W15.1. The non-
overlapping clocks also prevent hold time problems in normal operation, but increase the
sequencing overhead of the flip-flop. Alternatively, φ1 and φ2 can be complementary
clocks, but φs can be nonoverlapping to prevent races. Figure W15.1(c) shows a conven-
tional design using a weak feedback inverter on the master latch that can be overpowered
when either the φ2 or φs transmission gates are on. Figure W15.1(d) shows a design from
the PowerPC 603 microprocessor using a generalized tristate feedback [Gerosa94]. Figure
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FIGURE W14.5  Transparent latch layouts
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W15.1(e) shows another gate-level LSSD flip-flop design [Eichelberger78]. Such a
design is substantially larger and slower than a conventional pass-transistor circuit, so it is
primarily of historical interest. In the IBM LSSD methodology, φs, φ1, φ2, and SI are
often called A, B, C, and I, respectively.

Systems using latches can also be modified for scan. Typically, a scan input and an
extra slave scan latch are added to convert the latch into a scannable flip-flop. Figure
W15.2 shows a scannable transparent latch. During scan, the global clock is stopped low,
so φ1 is low and the latch is opaque. Then, a two-phase nonoverlapping scan clock φ1s and
φ2s is toggled to march the data through the scan chain. The SO scan-out terminal of each
latch connects to the SI scan-in terminal of the next latch. Figure W15.2(c) shows a faster
and more compact but less robust version of the scannable latch suitable for custom data-
paths [Harris01a]. Scanning one latch in each cycle is adequate to provide good observ-
ability and controllability in a system; there is no need to scan the φ2 latch.

The same principle applies to pulsed latches. Figure W15.3 shows the scannable
Naffziger pulsed latch used on the Itanium 2 [Naffziger02] (see also Section 10.3.3). It
uses a single-phase scan clock. The global clock is stopped during scan so the pulsed
latches remain opaque. The scan input overpowers the feedback node Y to avoid loading
the critical path from D to Q. The transmission gate latch driving SO has a dynamic node
Z, so φs has a limit on how long it can be high to properly retain data during scan. This is
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handled on-chip with a clock chopper that converts the external low-frequency scan clock
into an on-chip φs with short pulses. The scan chain must also be checked for hold time
races. Note that the SO transmission gate is ON during normal operation, loading the Q
output and increasing power consumption through spurious transitions on Z and SO.
Many designers would elect to use a second scan clock wire to avoid these problems.
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Domino pipelines also can be scanned. Traditional domino pipelines incorporate scan
into the two-phase transparent latches on the half-cycle boundaries. Skew-tolerant dom-
ino eliminates the latches and must include scan directly in the domino gates. One natural
point to scan is the last gate of each cycle.

Figure W15.4(a) shows how to make the last φ4 gate of each cycle in a skew-tolerant
domino pipeline scannable [Harris01a]. The last dynamic gate has a full keeper and thus
will retain its state when either high or low. The scan technique resembles that of a
transparent latch from Figure W15.2(c). The key is to turn off both the precharge and the
evaluation transistors so the output node floats and behaves like a master latch. Then a
two-phase scan clock is toggled to shift data first onto the master node and then into a
slave scan latch. These scan clocks are again called φ1s and φ2s and bear no relationship to
the domino clocks φ1 and φ2. gclk is stopped low, so φ4 is high and the precharge transistor
is off. A special clock gater forces φ4s low during scan to turn the evaluation transistor off.
When scan is complete, gclk rises so the next φ1 domino gate resumes normal operation.
This scan approach adds a small amount of loading on the critical path through the
dynamic gate. Figure W15.4(b) shows a clock gater that produces the domino phases. It
uses an SR latch to stop and release φ4s during scan, as illustrated in Figure W15.4(c). The
gater also accepts an enable to stop the domino clocks when the pipeline is idle.
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The Itanium 2 provides domino scan in a similar fashion, but with a single-phase scan
clock that is compatible with scan of the Naffziger pulsed latches [Naffziger02]. The last
domino gate in each half-cycle uses a dynamic latch converter, as discussed in Section
10.5.5.2. Scan circuitry can be added to the DLC in much the same way as it is added to a
latch, as shown in Figure W15.5.

Robust scan circuitry obeys a number of rules to avoid electrical failures. SI is locally
buffered to prevent problems with directly driving diffusion inputs and overdriving feed-
back inside the latch. The output is also buffered so noise cannot back-drive the state
node. Two-phase nonoverlapping scan clocks prevent hold-time problems, and static
feedback on the state node allows low-frequency operation. All internal nodes should
swing rail-to-rail. These rules can be bent to save area at the expense of greater electrical
verification on the scan chain, as was done for the Itanium 2.

15.7.1  The Test Access Port (TAP)
The Test Access Port has four or five single-bit connections:

� TCK Test Clock Input Clocks tests into and out of the chip
� TMS Test Mode Select Input Controls test operations
� TDI Test Data In Input Test data into the chip
� TDO Test Data Out Output Test data out of the chip; driven only 

when TAP controller is shifting out 
test data

�   TRST * Test Reset Signal Input Optional active low signal to asynchro-
nously reset the TAP controller if no 
power-up reset signal is automatically 
generated by the chip

When the chip is in normal mode, TRST *  and TCK are held low and TMS is held
high to disable boundary scan. To prevent race conditions, inputs are sampled on the ris-
ing edge of TCK and outputs toggle on the falling edge.
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FIGURE W15.5  Scannable dynamic gate for four-phase skew-tolerant domino
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15.7.2  The Test Logic Architecture and Test Access Port
The basic test architecture is shown in Figure W15.6. It consists of the following:

� The TAP interface pins
� A set of two or more test-data registers (DR) to collect data from the chip
� An instruction register (IR) specifying the type of test to perform
� A TAP controller, which controls the scan of bits through the instruction and test-

data registers

The TAP controller is a small finite-state machine that configures the system. In one
mode, it scans an instruction into the instruction register specifying what boundary scan
should do. In another mode, it scans data in and out of the test-data registers. The specifi-
cation requires at least two test-data registers: the boundary scan register and the bypass
register. The boundary scan register is associated with all the inputs and outputs on the
chip so that boundary scan can observe and control the chip I/Os. The bypass register is a
single flip-flop used to accelerate testing by avoiding shifting data into the boundary scan
registers of idle chips, when only a single chip on the board is being tested. Internal scan
chain, BIST, or configuration registers can be treated as optional additional data registers
controlled by boundary scan.
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15.7.3  The TAP Controller
The TAP controller is a 16-state FSM that proceeds from state to state based on the TCK
and TMS signals. It provides signals that control the test-data registers and the instruction
register. These include serial shift clocks and update clocks.

The state transition diagram is shown in Figure W15.7. The TAP controller is initial-
ized to Test-Logic-Reset on power-up by TRST *  or an internal power-up detection cir-
cuit. It moves from one state to the next on the rising edge of TCK based on the value of
TMS.

A typical test sequence will involve clocking TCK at some rate and setting TRST *  to
0 for a few cycles and then returning this signal to 1 to reset the TAP controller state
machine. TMS is then toggled to traverse the state machine for whatever operation is
required. These operations include serially loading an instruction register or serially load-
ing or reading data registers that are used to test the chip. A variety of these operations
will be described as this section unfolds.

The following Verilog code implements the TAP controller. The TRST *  is named
trstn. Note that the controller produces gate clocks to control the data and instruction
registers at the appropriate times.

 
// TAP Controller States
`define TEST_LOGIC_RESET 4'b1111
`define RUN_TEST_IDLE    4'b1100
`define SELECT_DR_SCAN   4'b0111
`define CAPTURE_DR       4'b0110
`define SHIFT_DR         4'b0010
`define EXIT1_DR         4'b0001
`define PAUSE_DR         4'b0011
`define EXIT2_DR         4'b0000
`define UPDATE_DR        4'b0101
`define SELECT_IR_SCAN   4'b0100
`define CAPTURE_IR       4'b1110
`define SHIFT_IR         4'b1010
`define EXIT1_IR         4'b1001
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`define PAUSE_IR         4'b1011
`define EXIT2_IR         4'b1000
`define UPDATE_IR        4'b1101

module tapcontroller(input      tms, tck, trstn, 
                     output reg ShiftIR, ShiftDR, 
                     output     ClockIR, ClockDR,
                     output     UpdateIR, UpdateDR, 
                     output reg Resetn, Enable);

   reg [3:0] state;

   // next state logic
   always @(posedge tck, negedge trstn)  
      if (~trstn) state = `TEST_LOGIC_RESET;
      else case (state)

`TEST_LOGIC_RESET:state = (tms) ? state : `RUN_TEST_IDLE;
`RUN_TEST_IDLE: state = (tms) ? `SELECT_DR_SCAN : state;
`SELECT_DR_SCAN: state = (tms) ? `SELECT_IR_SCAN : `CAPTURE_DR;
`CAPTURE_DR: state = (tms) ? `EXIT1_DR : `SHIFT_DR;
`SHIFT_DR: state = (tms) ? `EXIT1_DR : state;
`EXIT1_DR: state = (tms) ? `UPDATE_DR : `PAUSE_DR;
`PAUSE_DR: state = (tms) ? `EXIT2_DR : state;
`EXIT2_DR: state = (tms) ? `UPDATE_DR : `SHIFT_DR;
`UPDATE_DR: state = (tms) ? `SELECT_DR_SCAN : `RUN_TEST_IDLE;
`SELECT_IR_SCAN: state = (tms) ? `TEST_LOGIC_RESET : `CAPTURE_IR;
`CAPTURE_IR: state = (tms) ? `EXIT1_IR : `SHIFT_IR;
`SHIFT_IR: state = (tms) ? `EXIT1_IR : state;
`EXIT1_IR: state = (tms) ? `UPDATE_IR : `PAUSE_IR;
`PAUSE_IR: state = (tms) ? `EXIT2_IR : state;
`EXIT2_IR: state = (tms) ? `UPDATE_IR : `SHIFT_IR;
`UPDATE_IR: state = (tms) ? `SELECT_DR_SCAN : `RUN_TEST_IDLE;

      endcase  

   // Clock registers on rising edge of tck at end of state
   // otherwise idle clock high
   assign ClockIR  = tck | ~((state == `CAPTURE_IR) | (state == `SHIFT_IR));
   assign ClockDR  = tck | ~((state == `CAPTURE_DR) | (state == `SHIFT_DR));

   // Update registers on falling edge of tck
   assign UpdateIR = ~tck & (state == `UPDATE_IR);
   assign UpdateDR = ~tck & (state == `UPDATE_DR);

   // Change control signals on falling edge of tck
   always @(negedge tck, negedge trstn)
     if (~trstn) begin
        ShiftIR <= 0;
        ShiftDR <= 0;
        Resetn  <= 0;
        Enable  <= 0;
     end else begin
        ShiftIR <= (state == `SHIFT_IR);
        ShiftDR <= (state == `SHIFT_DR);
        Resetn  <= ~(state == `TEST_LOGIC_RESET);
        Enable  <= (state == `SHIFT_IR) | (state == `SHIFT_DR);
     end
endmodule
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15.7.4  The Instruction Register
The instruction register has to be at least 2 bits long. Recall that boundary scan requires at
least two data registers. The instruction register specifies which data register will be placed
in the scan chain when the DR is selected. It also determines from where the DR will load
its value in the Capture-DR state, and whether the values will be driven to output pads or
core logic. The following three instructions are required to be supported:

� BYPASS—This instruction places the bypass register in the DR chain so that the 
path from TDI to TDO involves only a single flip-flop. This allows specific chips 
to be tested in a serial scan chain without having to shift through the lengthy shift 
register stages in all the chips. This instruction is represented with all 1s in the IR.

� SAMPLE/PRELOAD—This instruction places the boundary scan registers (i.e., at the 
chip’s I/O pins) in the DR chain. In the Capture-DR state, it copies the chip’s I/O 
values into the DRs. They can then be scanned out in successive Shift-DR states. 
New values are shifted into the DRs, but not driven onto the I/O pins yet.

� EXTEST—This instruction allows for the testing of off-chip circuitry. It is similar 
to SAMPLE/PRELOAD, but also drives the values from the DRs onto the output 
pads. By driving a known pattern onto the outputs of some chips and checking for 
that pattern at the input of other chips, the integrity of connections between chips 
can be verified.

In addition to these instructions, the following are also recommended (others can be
defined as needed):

� INTEST— This instruction allows for single-step testing of internal circuitry via 
the boundary scan registers. It is similar to EXTEST, but also drives the chip core 
with signals from the DRs rather than from the input pads. 

� RUNBIST— This instruction is used to activate internal self-testing procedures 
within a chip.

Note that the instruction encodings are not part of the specification (except that BYPASS is
all 1s). The component designer must document what encodings were selected for each
instruction.

A typical IR bit is shown in Figure W15.8. Observe that it contains two flip-flops.
The ClockIR flip-flops of each bit are connected to form a shift register. They are loaded
with a constant value from the Data input in the Capture-IR state, and then are shifted
out in the Shift-IR state while new values are shifted in. The constant value is user-
defined, but must have a 01 pattern in the least significant two bits so that the integrity of
the scan chain can be verified. In the Update-IR state, the contents of the shift register are
copied in parallel to the IR output to load the entire instruction at once. This prevents the
IR from momentarily having illegal values while new instructions are shifted in. On reset,
the IR should be asynchronously loaded with an innocuous instruction such as BYPASS
that does not interfere with the normal behavior of the core logic.

A minimal implementation of a 3-bit control register is shown below. Notice the
instruction encoding definitions. This implements the six registers required for a 3-bit
instruction. The instruction is decoded to produce mode_in, mode_out, and bypass sig-
nals to control the data registers, as will be discussed in the next sections.
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// Instructions
`define BYPASS         3'b111
`define SAMPLE_PRELOAD 3'b101
`define EXTEST         3'b110
`define NOP            3'b001
`define INTEST         3'b100

module inst_reg(input  tdi,
                input  Resetn, ClockIR, UpdateIR, ShiftIR,
                output tdo_ir, mode_in, mode_out, bypass);

   reg [2:0] shiftreg, instreg;

   always @(posedge ClockIR) 
      shiftreg <= ShiftIR ? {tdi, shiftreg[2:1]} : `NOP;
   always @(posedge UpdateIR, negedge Resetn)
      if (~Resetn) instreg <= `BYPASS;
      else instreg <= shiftreg;

   assign tdo_ir = shiftreg[0];
   assign bypass = (instreg == `BYPASS);
   assign mode_in = (instreg == `INTEST);
   assign mode_out = (instreg == `INTEST) || (instreg == `EXTEST);
endmodule  

15.7.5  Test Data Registers
The test data registers are used to set the inputs of modules to be tested and collect the
results of running tests. The simplest data register configuration consists of a boundary
scan register (passing through all I/O pads) and a bypass register (1-bit long). Figure
W15.9 shows a generalized view of the data registers in which an internal data register has
been added. This register might represent the scan chain within the chip or a BILBO sig-
nature register. Thus, boundary scan elegantly incorporates other built-in test structures.
A multiplexer under the control of the TAP controller selects which data register is routed
to the TDO pin. When internal data registers are added, the IR decoder must produce
extra control signals to select which one is in the DR chain for a particular instruction.
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15.7.5.1 Boundary Scan Register  The boundary scan register connects to all of the I/O
circuitry. Like the instruction register, it internally consists of a shift register for the scan
chain and an additional bank of flip-flops to update the outputs in parallel. An extra mul-
tiplexer on the output allows the boundary scan register to override the normal path
through the I/O pad so it can observe and control inputs and outputs. The schematic and
symbol for a single bit of the boundary scan register are shown in Figure W15.10. 

The boundary scan register can be configured as an input pad or output pad, as shown
in Figure W15.11(a and b). As an input, the register receives DataIn from the pad and
sends Qout to the core logic in the chip. As an output, the register receives DataIn from
the core logic and drives Qout to a pad. Tristate and bidirectional pads use two or three
boundary scan register cells, as shown in Figure W15.11(c and d).

The Mode signal determines whether Qout should be taken from DataIn or the
boundary scan register. Separate mode_in and mode_out signals are used for input and
output pads so they can be controlled separately. In normal chip operation, both mode sig-
nals are 0, so the boundary scan registers are ignored. For the EXTEST instruction,
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mode_out = 1, so the outputs can be controlled by the boundary scan registers. For
INTEST or RUNBIST instructions, mode_in and mode_out are both 1, so the core logic
receives its inputs from the boundary scan registers and the outputs are also driven to
known safe values by the boundary scan registers.

15.7.5.2 Bypass Register  When executing the BYPASS instruction, the single-bit Bypass
register is connected between TDI and TDO. It consists of a single flip-flop that is cleared
during Capture-DR, and then scanned during Shift-DR, as shown in Figure W15.12.

15.7.5.3 TDO Driver  The TDO pin shifts out the least significant bit of the IR during
Shift-IR, or the least significant bit of one of the data registers during Shift-DR, depend-
ing on which instruction is active. The IEEE boundary scan specification requires that
TDO change on the falling edge of TCK, and be tristated except during the Shift states.
This prevents race conditions when the value is clocked into the next chip in the rising
edge of TCK, and allows multiple chips to be connected in parallel with their TDO pins
tied together to reduce the length of the boundary scan chain.
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FIGURE W15.11  Boundary scan pad configuration
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Figure W15.13 shows a possible implementation of the TDO driver. The multiplexers
choose among the possible shift registers including the instruction register, boundary scan
register, and bypass register. Additional multiplexers would be used if more data registers
were included. A flip-flop or latch delays the TDO signal until the falling edge of TCK.
The tristate drives TDO during Shift-IR or Shift-DR.

15.7.5.4 Complete Test Data Register Logic  The Verilog code below describes the com-
plete Test Data Register for a chip with four inputs a[3:0] and four outputs y[3:0]. The
four input and four output boundary scan register bits are collected into a single 8-bit shift
register. mode_in serves the four most significant bits connected to the inputs, while
mode_out serves the four least significant bits connected to the outputs.

module data_reg(input  [3:0] a, fromlogic,
                input        tck, tdi, tdo_ir,
                input        ClockDR, UpdateDR, ShiftDR, Enable,
                input        mode_in, mode_out, bypass,
                output [3:0] y, tologic,
                output       tdo);
  
   reg  [7:0] shiftreg, datareg;
   wire       tdo_selected;
   reg        tdo_byp, tdo_delayed;

   // Boundary scan registers
   // four input registers and four output registers connected in 8-bit chain
   always @(posedge ClockDR)
      shiftreg <= ShiftDR ? {tdi, shiftreg[7:1]} : {a, fromlogic};
   always @(posedge UpdateDR)
      datareg <= shiftreg;
   assign tologic = mode_in ? datareg[7:4] : a;
   assign y = mode_out ? datareg[3:0] : fromlogic;

   // Bypass register
   always @(posedge ClockDR)
      tdo_byp <= tdi & ShiftDR;

   // tdo output driver
   // select appropriate register to shift out, delay to negative edge of tck
   assign tdo_selected = ShiftDR ? (bypass ? tdo_byp : shiftreg[0]) : tdo_ir;
   always @(negedge tck) 
      tdo_delayed <= tdo_selected;
   assign tdo = Enable ? tdo_delayed : 1'bz;
endmodule
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FIGURE W15.13  TDO driver
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15.7.6  Summary
Figure W15.14 shows a complete implementation of boundary scan for a chip with four
inputs and four outputs. It consists of the TAP controller state machine and state decoder,
a 3-bit instruction register with instruction decode, the bypass register, four boundary scan
input pads, and four boundary scan output pads. The other pads comprise the test access
port. The boundary scan register control signals (UpdateDR, ClockDR, ShiftDR,
mode_in, and mode_out) are shown as the Control bus.

The Verilog for this design follows:

module core(input  [3:0] tologic, 
            output [3:0] fromlogic);

   // a silly chip logic function
   assign fromlogic = {&tologic, |tologic, ^tologic, ~tologic[0]};
endmodule

module top(input        tck, tms, tdi, trstn, 
           input  [3:0] a,
           output       tdo, 
           output [3:0] y);
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FIGURE W15.14  Complete boundary scan implementation
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   wire [3:0] tologic, fromlogic;
   wire       UpdateIR, ShiftIR, ClockIR;
   wire       UpdateDR, ShiftDR, ClockDR;
   wire       Resetn, Enable;
   wire       mode_in, mode_out, bypass;
   wire       tdo_ir;

   // Core Logic
   core core(tologic, fromlogic);

   // TAP Controller
   tapcontroller tc(tms, tck, trstn, ShiftIR, ShiftDR, ClockIR, ClockDR,
                    UpdateIR, UpdateDR, Resetn, Enable);

   // Instruction register
   inst_reg ir(tdi, Resetn, ClockIR, UpdateIR, ShiftIR, 
               tdo_ir, mode_in, mode_out, bypass);

   // Test data registers
   data_reg dr(a, fromlogic, tck, tdi, tdo_ir,
               ClockDR, UpdateDR, ShiftDR, Enable, mode_in, mode_out, bypass,
               y, tologic, tdo);
endmodule

Boundary scan testing typically begins with the SAMPLE/PRELOAD instruction. Then,
a data value is preloaded into the boundary scan registers. Next, the EXTEST or INTEST
instruction is applied to activate the loaded value. Subsequent data values are shifted into
the boundary scan registers and the results of the tests are shifted out. 

Figure W15.15 shows waveforms for this operation. The TAP controller is initially
reset. At this point, the core logic operates normally with an input pattern of 0000 and an

FIGURE W15.15  Boundary scan example waveforms
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output pattern of 0001. Then the IR is loaded with 101 (SAMPLE/PRELOAD). The data pat-
tern 0111 is shifted in. The IR is loaded with 1000 (INTEST). This sends the 0111 pattern
to the core logic, producing an output pattern of 0110. Finally, the data pattern 1111 is
shifted in and the old output 0110 is shifted out. Because the INTEST is still active, the
1111 is applied to the core, producing a new output of 1100. 

Boundary scan is in widespread use in chips today. It provides a uniform interface to
single- and multiple-chip testing and circuit-board testing. 
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