

1.0 Introduction

The objective of this project is to design the integer execution core of a blindingly fast 8-
bit microprocessor! This processor will be known as the FemptoHAL. The project should
tie together many of the ideas you are learning, including skew-tolerant domino design,
sizing of realistic paths, and high-performance pipelining.

For this project, you should work in a team of two. There will be a prize for the team
implementing the fastest project. The exact prize has not yet been determined, but will
either be an exotic vacation to Hawaii or a nice dinner for two.

1.1 Schedule

10/22-23: Verilog Model of FemptoHAL

10/28-29: Initial design of add/subtracter (prize for speed!)

11/3-11/4: Initial design of register file

11/5-11/6: Complete schematics of FemptoHAL

11/10-11/11: Present optimized FemptoHAL implementation

More details on exactly what must be handed in will be available as the class continues.

2.0 Architecture Specification

The Instruction Set Architecture (ISA) for the FemptoHAL is extremely simple, consisting
of only integer instructions. Since you will not be implementing memory or branch sub-

High Speed CMOS VLSI Design

Project: FemptoHAL
(c) 1997 David Harris
November 4, 1997 1 / 6

Project: FemptoHAL

systems, such instructions are not included. The instructions your processor must handle
are:

The architecture specifies eight general purpose 8-bit registers. Each instruction uses a 12
bit encoding, in which the first three bits are the opcode, the second specify R0, the third
specify R1, and the fourth specify R2, as shown in Figure 1. For LDC instructions, eight
more bits containing a constant are automagically fetched.

FIGURE 1. Instruction Encoding

3.0 Microarchitecture Specification

3.1 Pipeline Overview

The microarchitecture of the FemptoHAL is a single-issue, in-ordered pipelined machine.
The pipestages are:

• FETCH: Fetch the instruction and optional 8-bit constant

• REG: Access the register file or bypass result

• EXE: Execute instruction

• WRB: Update register file with new result

To prevent pipeline stalls, instructions must be able to bypass their result to dependent
instructions later in the program before writeback completes. For instance, consider the
following program:

LDC R0, #1

TABLE 1. Instruction Set

Instruction OPCODE Notes

LDC R0, CONST 000 R0 <- CONST (an immediate constant)

ADD R0, R1, R2 001 R0 <- R1 + R2

SUB R0, R1, R2 010 R0 <- R1 - R2

AND R0, R1, R2 011 R0 <- R1 AND R2

OR R0, R1, R2 100 R0 <- R1 OR R2

NOT R0, R1 101 R0 <- NOT R1

XOR R0, R1, R2 110 R0 <- R1 XOR R2

NOP 111 No OPeration

0 1 2 3 4 5 6 7 8 9 10 11

Opcode R0 R1 R2
November 4, 1997 2 / 6

Project: FemptoHAL

ADD R1, R0, R0

ADD R2, R1, R0

ADD R3, R2, R0

The results of previous instructions are bypassed to become sources of later instructions.

3.2 Inputs

The inputs of your pipeline are listed below. The pipeline has no outputs! Each signal
name ends with the letter F, R, E, or W, indicating that it becomes valid in the FETCH,
REG, EXE, or WRB pipestage, respectively.

A decoder that you do not need to implement produces these control signals from the
fetched opcode. LDC is performed by a NOT operation on the complementary version of
the constant. ADD and SUB share the same 8 bit adder/subtracter using the AddCtlR con-
trol signal to optionally invert the input and supply a carry in for subtraction. NOP is per-
formed by setting DstVldF to 0, indicating an invalid destination address which should not
be matched by the Bypass Control logic or written back to the register file.

All inputs are available 150 ps before the end of the appropriate cycle, except ConstSelR,
which becomes valid 100 ps after the start of the REG stage. Inputs come from non-mono-
tonic static logic.

Although a realistic design would support scan, you already have enough work to do and
do not need to implement scan.

3.3 Pipeline Diagram

Figure 2 shows a pipeline diagram of the FemptoHAL processor microarchitecture that
you are responsible for implementing. Note that no logic optimizations have been done;

TABLE 2. Inputs

Signal Purpose

Src1AdrF[2:0] Register ID of Source 1

Src2AdrF[2:0] Register ID of Source 2

DstAdrF[2:0] Register ID of Destination

DstVldF Destination register ID valid (0 for NOP)

ConstBarF[7:0] Value of constant, inverted (for LDC operation)

ConstSelR Select SRC1 = constant (for LDC operation)

OpR[4:0] Operation (00001 = Add/Sub, 00010 = AND, 00100 =
OR, 01000 = XOR, 10000 = NOT/LDC)

AddCtlR[1:0] Adder Control signal (bit 0 = Cin, bit 1 = subtract)

ph1-ph4, php Four clock phases + pulsed clock
November 4, 1997 3 / 6

Project: FemptoHAL

for example, the 5-input result multiplexor might be faster if implemented with two stages
of smaller multiplexors. You are free to optimize the pipeline but may not add pipe stages.

FIGURE 2. FemptoHAL Pipeline Diagram

The bypass control block takes source and destination addresses from the various pipe
stages to control the bypass multiplexors to select either the current value read from the
register file, a constant, or results of previous instructions in the EXE or WRB stages.
These signals are not shown, so you will have to do some design. DstVldF is also not
shown, but must be used by the write decoder and bypass control.

Result Mux

Bypass Muxes (2)

R
E

G
E

X
E

W
R

B

Register
File

Read

Src1R
[7:0]

Src2R
[7:0]

Register
File

Write
Decoder

Decoders (2)

OpR[4:0]

Bypass
Control

ResultE[7:0]

ResultW[7:0]

Src1AdrF[2:0] Src2AdrF[2:0]DstAdrF[2:0] ConstBarF[7:0]

ConstSelR

AddCtlR[1:0]
November 4, 1997 4 / 6

Project: FemptoHAL

4.0 Block Specification

4.1 Function

Your circuits should implement the microarchitecture described in the previous section.
You may use any circuit tricks you want as long as they do not significantly degrade yield.
You may also make simple modifications to the microarchitecture, but still must correctly
implement the architecture and should not do anything that could reduce IPC such as add
more pipeline stages or remove bypass paths. Check with the instructor if you have cre-
ative ideas that might violate these guidelines.

Plan to use skew-tolerant domino circuits wherever necessary for high speed. Although
wire capacitance is important, most wires in this chip will be fairly short, so neglect them
for simplicity.

4.2 Delay

The cycle time of your machine should be as fast as possible! You should be able to do
substantially better than 1 GHz.

4.3 Input and Output Capacitance Limits

You may assume that all inputs come from 1 mm wires and may present loads on the
inputs comparable to the wire capacitance if necessary.

The circuit produces no outputs because there are no STORE instructions in the limited
architecture. The sizing of the circuit will be set by requirements that it bypass to itself.
Thus, you could make the entire circuit ten times larger than minimum and run at the same
speed. Resist the temptation.

4.4 Area & Power

You may spend as much area and power as necessary to run extremely fast, but no more.
Do not be inefficient by oversizing non-critical gates or by making the entire path larger
than necessary.

4.5 Simulation

Simulate your design at the same temperature and voltage you used when measuring the
FO4 inverter delay in Jobwork 3. Assume TT processing.

Producing clocks will be difficult since your cycle times will be so short. To keep the
project manageable, you can assume ideal clocks. Your block will receive four domino
phases ph1-ph4 with 50% duty cycles, spaced by 90 degrees. It also receives a pulse php
with the rising edge aligned with the first domino phase and a pulse width (50%-50%) of 3
November 4, 1997 5 / 6

Project: FemptoHAL

FO4 delays. All clock edges have 20-80% rise/fall times equal to the rise/fall time of a
FO4 inverter.
November 4, 1997 6 / 6

	Project: FemptoHAL
	1.0 Introduction
	1.1 Schedule

	2.0 Architecture Specification
	TABLE 1. Instruction Set
	FIGURE 1. Instruction Encoding

	3.0 Microarchitecture Specification
	3.1 Pipeline Overview
	3.2 Inputs
	TABLE 2. Inputs

	3.3 Pipeline Diagram
	FIGURE 2. FemptoHAL Pipeline Diagram

	4.0 Block Specification
	4.1 Function
	4.2 Delay
	4.3 Input and Output Capacitance Limits
	4.4 Area & Power
	4.5 Simulation

