
       
1.0 Full Adders

A common adder building block is a full adder, also known as a 3:2 carry-save adder 
(CSA) because it takes three inputs and produces two outputs. The full adder takes three 
inputs, A, B, and Cin, and adds them to produce a two bit result, Cin and Sum. It can be 
viewed as a unary to binary converter.

FIGURE 1. Full Adder

Static full adders are often built with a symmetric CMOS gate (Fig 8.6 of Weste) or with 
transmission gates (shown incorrectly in fig 8.12 of Weste). The symmetric design is com-
pact and fast from Cin to Cout, but slower from any input to Sum. Hence it is a good 
choice when the carry path is most critical. Dynamic full adders are usually built with dual 
rail sum and carry gates.

2.0 Ripple Carry Adders

There are many ways to build an N-bit adder that sums two N-bit inputs A and B plus per-
haps a carry Cin. The simplest scheme is to just cascade a number of ripple carry adders, 
as shown in Figure 2.
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FIGURE 2. 3-bit Ripple Carry Adder

The full adders used in ripple carry adders should be optimized for fast Cin->Cout paths. 
One trick is to build an inverting carry chain that can use a single gate from Cin to Cout, 
rather than a non-inverting chain which requires two gates. This usually is slightly faster 
when static logic is used. Domino adders need the inversion anyway, so the trick is less 
relevant.

FIGURE 3. Inverting Ripple Carry Adder

The delay through a 16 bit ripple carry adder is:

t = 16tCSA (EQ 1)

3.0 Carry Lookahead Adders

Even a domino ripple carry adder is far too slow for most long adders, since an N bit ripple 
carry adder takes N full adder delays. The delay can be reduced by quickly computing the 
carry through several bits using one complicated gate instead of a cascade of several full 
adders.

A 16 bit carry lookahead adder is shown in Figure 4. It is built from four 4-bit blocks. 
Each block contains a four-bit ripple carry adder and a lookahead circuit. The lookahead 
circuits quickly send the carry to the most significant bits.
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FIGURE 4. Carry Lookahead Adder

To understand the lookahead circuitry, we need to define “Propagate” and “Generate” sig-
nals. Propagate means that the carry out of a block will be true if the carry in is true; the 
block propagates carries from the input to the output. Generate means that the carry out of 
a block will always be true; the block generates a carry out.

For a block consisting of a single bit, a carry will always be produced if both inputs A and 
B are true. Thus, generate signal G = A*B. A carry will be passed from input to output if 
either A or B is true. Thus propagate signal P = A+B. Propagate could also be written A 
xor B, but xor is more complex, so a simple OR is usually used.

For a block consisting of many bits, generate and propagate signals can be derived from 
the smaller block (or single bit) generates and propagates. For example, consider the G4 
and P4 signals for a 4-bit block:

P4 = P3P2P1P0 (EQ 2)

G4 = G3 + G2P3 + G1P2P3 + G0P1P2P3 = G3 + P3(G2 + P2(G1 + P1G0)) (EQ 3)

The carry out of a block is true either if the block generates a carry or if it propagates a 
carry and the carry in was true:

Cout = G + P*Cin (EQ 4)

A 4-bit lookahead block can be constructed using generate and propagate logic, as shown 
in Figure 5. Four single bit generate and propagate gates are needed. A four bit generate 
and propagate gate is also needed. Finally, the carry out is computed.

A[3:0], B[3:0]A[7:4], B[7:4]A[11:8], B[11:8]A[15:12], B[15:12]

Ripple

Lookahead

Ripple

Lookahead

Ripple

Lookahead

Ripple
Cin

S[15:12] S[11:8] S[7:4] S[3:0]
November 4, 1997 3 / 14



 

Lecture 12: Adders

              
FIGURE 5. 4-bit lookahead circuit

The total delay through the 16 bit adder is thus the delay to compute the bitwise and 4-bit 
generate and propagate signals, the time for the carry to ripple through three AND/OR 
gates, plus the time for the final four bit ripple carry adder to run:

t = tGP + tGP4 + 3tAND/OR + 4tCSA (EQ 5)

4.0 Carry Select Adders

The carry lookahead adder is much faster than rippling through N CSAs for N above about 
4. However, it still involves ripple carry through a smaller block for the final sum compu-
tation. The critical path involves finding the carry in to the last block, then rippling this 
carry through a short adder. The usual logic design trick of precomputing answers applies 
here: two short adders can be used to speculatively calculate the sum assuming the carry in 
is a 0 or a 1. Then the actual carry in can trigger a mux which selects the appropriate sum, 
as shown in Figure 6. 
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FIGURE 6. Carry Select Adder

This technique is called a carry select adder. The critical path now replaces a short ripple 
with a single mux:

t = tGP + tGP4 + 3tAND/OR + tMUX (EQ 6)

5.0 Logarithmic Adders

For adders of 4-16 bits, the carry selection architecture is very good. For wider adders, the 
time required to ripple through the carry lookahead circuitry is still linear in the number of 
bits and may become unacceptably large; for example, a good 64 bit lookahead adder 
takes about 11 FO4 delays. It can be reduced by doing a lookahead across lookahead 
blocks, and even a lookahead across lookaheads across lookaheads, etc. By building such 
recursive lookahead tree, the add time can drop from a linear to logarithmic function of the 
number of bits. Thus, such adders are known as “logarithmic” or “tree” adders.

The logarithmic lookahead can be done as follows to compute the generate, propagate, and 
carry signals for an N-bit adder:

1. Compute single bit Gi = AiBi, Pi = Ai + Bi (0 <= i < N)

2. Compute G2i = G2i+1 + G2iP2i+1; P2i = P2i+1P2i (0 <= i < N/2)

3. Compute G4i = G22i+1 + G22iP22i+1; P4i = P22i+1P22i (0 <= i < N/4)

4. ...(continue up binary tree to find all generates & propagates)

5. ...(work down tree to find carry ins)

6. C42i+1 = G42i + C8iP42i; C42i = C8i
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7. C22i+1 = G22i + C4P22i; C22i = C4i

8. Cin2i+1 = G2i + C2iP2i; Cin2i = C2i

9. Sumi = Ai xor Bi xor Ci

FIGURE 7. 8-bit logarithmic adder

The example combines two bits per stage, corresponding to a logarithm of base 2. With 
larger fan-in gates, especially feasible for domino designs, base 4 may be used to reduce 
the number of levels in the logarithmic tree.

In this design, the delay involves both rising up the tree to compute P and G for progres-
sively larger blocks, then descending the tree to compute C into each bit. Logarithmic 
adders can be combined with carry selection techniques so that some or all of the descent 
can be skipped to make the adder faster.

Notice that all of the logic to compute carries is non-inverting. This means that the carries 
could be computed with single-rail domino. Unfortunately, the sum logic uses an XOR, 
which requires both true and complementary versions of the carries. Therefore, the adder 
must either switch to static logic at the end to implement the non-monotonic function, or 
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use dual-rail domino throughout. Switching to static means that there must later be a con-
version back to domino. Since clock skew must be budgeted at the conversion, this can 
degrade cycle time. Thus, as transistors become more plentiful, fully dual-rail adders 
become more popular.

Good 64-bit logarithmic adders can operate in about 7 FO4 delays.

6.0 Example: 64 bit Adder Design

To illustrate some of the issues in a large-scale design, let us look at a complete 64 bit 
adder. The adder is built entirely from dual-rail domino. It employs two levels of carry 
selection to minimize delay. It is limited to only perform addition and does not accept a 
carry in; in contrast, most adders used in processors must optionally invert an input and 
add a carry to perform subtraction. Simulated in the HP14 0.6 micron process with esti-
mated long wire loads, the adder has a latency of 6.4 FO4 delays.

The adder architecture is illustrated in Figure 8. The adder is divided into 2, 4, 16, and 64 
bit blocks. The gates in the critical path are labeled S or D for static or dynamic. The num-
ber following the letter indicates the number of series transistors. This is a rough metric of 
the complexity and delay of the gate.

In each of the 32 two-bit blocks, the 2-bit propagate and generate signals are computed 
from A and B. In each of 16 four-bit blocks, the 2-bit propagate and generate signals are 
combined into 4-bit propagates and generates. In the sixteen-bit blocks, the P4 and G4 sig-
nals are further combined into P16 and G16 signals. Finally, in the top-level 64-bit block, 
the carries into each 16 bit block are computed. They are driven back to muxes in each 2-
bit block to select the appropriate result.

To do this, the adder must have calculated sums for each 16-bit block assuming the carry 
in was 0 and 1. This calculation itself is critical, so it is done with a smaller 16 bit logarith-
mic adder that shares the 4 bit P/Gs with the 64 bit adder. In the middle fork of the picture, 
the 4 bit carries are computed from the 4-bit P and G signals. Then 2 bit carries are also 
produced. The 2-bit carries do an initial level of carry selection so that only 2-bit ripple 
carry adders, shown in the bottom form of the figure, are needed for speculative sum com-
putation. The 16 bit and 2 bit carry selection is merged into a single large mux because 
both carry signals are critical. Notice how the inputs are buffered before the speculative 
sum generation to avoid loading the critical path.
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FIGURE 8. Adder architecture

The contents of each block are specified in detail below:

2-bit Logic

2-bit Propagates & Generates

• P2 = P0P1 = (A0+B0)(A1+B1)

• G2 = G1+G0P1 = A1B1 + A0B0(A1+B1)

Speculative Sums to bit b assuming carry in c: sumcb

• sum00 = A0 xor B0

• sum10 = ~(A0 xor B0)

• sum01 = A1 xor B1 xor (A0B0)

• sum11 = A1 xor B1 xor (A0 + B0)

Final Result

• R0 = cin16 ? (cin21 ? sum10 : sum00) : (cin20 ? sum10 : sum00)

• R1 = cin16 ? (cin21 ? sum11 : sum01) : (cin20 ? sum11 : sum01)

4-bit Logic

Carry in to 2 bit block b assuming cin to 16 bit block is c: cin2cb

• cin200 = cin40

• cin210 = cin41

• cin201 = g20 + p20cin40

• cin111 = g20 + p20cin41

4-bit Propagates and Generates

• g4 = g21 + p21g20
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• p4 = p20p21

16-bit Logic

Carry in to 4 bit block b assuming cin to 16 bit block is c: cin4cb

• cin400 = 0

• cin410 = 1

• cin401 = g40

• cin411 = g40 + p40

• cin402 = g41 + p41(g40)

• cin412 = g41 + p41(g40 + p40)

• cin403 = g42 + p42(g41 + p41(g40))

• cin413 = g42 + p42(g41 + p41(g40 + p40))

16-bit Propagates and Generates

• g16 = g43 + p43(g42 + p42(g41 + p41g40))

• p16 = p20p21p22p23

64-bit Logic

Carry in to 16 bit block b assuming cin to 16 bit block is c: cin16b

• cin160 = 0

• cin161 = g160

• cin162 = g161 + p161(g160)

• cin163 = g162 + p162(g161 + p161(g160))

Complete schematics of the blocks are also shown in the following figures. The capacitors 
represent lumped capacitance of long wires. Large gates are necessary in the 16 and 64 bit 
blocks to drive the wires and the heavy loads attached.
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FIGURE 9. 2-bit block schematic

The 2-bit blocks contain the 2-bit P,G logic, the result selection multiplexors, and the buff-
ered 2-bit sum computation logic.

FIGURE 10. 4-bit block schematic
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The 4-bit blocks contain 2 2-bit blocks, 4-bit P,G logic, and logic to compute the carries 
into each 2-bit block.

FIGURE 11. 16-bit block schematic

The 16-bit block contains 4 4-bit blocks, the 16-bit P/G logic, and gates to compute carries 
in to each 4 bit block.
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FIGURE 12. 64-bit block schematic

Finally, the 64-bit block, representing the entire adder, contains 4 16-bit blocks and logic 
to compute the carry in to each 16 bit block.

7.0 Ling Adders

A clever designer noticed another way to write the adder equations which slightly reduces 
the critical path in the carry chain. Adders are such a specialized circuit that such savings 
is significant; the technique is now known as the “Ling” adder.

The Ling adder is based on an observation about the 4-bit generate and propagate signals. 
The conventional signals are defined below, repeated from earlier equations:

P4 = P3P2P1P0 (EQ 7)

G4 = G3 + G2P3 + G1P2P3 + G0P1P2P3 = G3 + P3(G2 + P2(G1 + P1G0)) (EQ 8)

The equations could be rewritten in terms of A and B inputs:

P4 = (A3+B3)(A2+B2)(A1+B1)(A0+B0) (EQ 9)
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G4 = A3B3 + (A3 + B3)(A2B2 + (A2 + B2)(A1B1 + (A1 + B1)A0B0)) (EQ 10)

This G4 equation is too complicated to efficiently implement in a single domino gate 
because it would require too many series transistors. However, if we introduce a “Pseudo-
generate” signal H4 such that G4 = H4*P3, we find that H4 is easier to implement:

H4 = G3 + G2 + G1P2 + G0P1P2 = A3B3 + (A2B2 + (A2 + B2)(A1B1 + (A1 + B1)A0B0)) (EQ 11)

Indeed, H4 can be built from a domino gate with 4 series transistors.

As long as the AND of H4 and P3 occurs before G4 is actually used, the rest of the carry 
chain can be built using H4 in place of G4. Therefore, the four bit propagates and pseudo-
generates can be computed in a single complex stage of domino logic, rather than in two 
gates as given in the previous section. It turns out that the gating with P3 can be cleverly 
woven into a non-critical path so the Ling adder may be slightly faster than a regular loga-
rithmic adder.

Naffziger describes an excellent implementation of a 64-bit Ling adder used on HP PA-
RISC chips in ISSCC96. The paper is unfortunately terse, but a Verilog model with the 
complete logic equations may help explain the adder operation (see the Ling Adder hand-
out). The adder runs in 7 FO4 delays and is remarkably compact.

The adder implementation uses another trick of “pseudo-complements” to simplify 
design. Normally, dual-rail _h and _l signals are true complements of each other. This 
means that different gates must be designed for the _h and _l paths using DeMorgan’s law. 
Remarkably, most logic in an adder can be designed by using the same gates for _h and _l. 
Although the _h and _l signals are no longer true complements of each other, when they 
get consumed at the end of carry generation, the correct carries can be computed. The 
mathematics justifying this is nicely explained by Wang et. al in JSSC Feb. 1997. As a 
result, only half as many types of gates must be designed and laid out.

8.0 Multiple Input Adders

Sometimes it is necessary to add more than 2 N-bit numbers. This can be done by using 
CSAs to add the numbers and produce a sum and a carry output. Then a regular adder, 
using any of the architectures above, can add the sums and carries. The regular adder is 
often called a carry-propagate adder (CPA) to distinguish it from a CSA.

For example, consider adding three 4-bit numbers X, Y, and Z. The addition can be done 
with a 3:2 CSA and a CPA:
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FIGURE 13. 3-input Adder

Notice how the carries out of the CSAs are shifted by one column before driving the CPA 
because the carry is one place more significant than the sum.

A similar approach is used in multipliers, which must sum large numbers of partial prod-
ucts.

9.0 Conclusions

We’ve explored a wide variety of adder architectures. The best architecture depends on the 
application. Very short, non-critical adders can be implemented with little effort or area 
using the ripple carry approach. Moderate length adders (4-16 bits) are often most effi-
ciently implemented with a look-ahead approach, often combined with carry selection. 
Longer adders become too slow unless a logarithmic approach is used; therefore, high per-
formance 64 bit processors use some form of logarithmic adder, usually with carry selec-
tion. The Ling adder is an interesting form that uses a clever logic optimization to simplify 
the carry path; it is a good choice for wide adders.
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